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Abstract

Neuropeptide B/W receptor 1 (NPBWR1) is a G-protein coupled receptor, which was initially reported as an orphan receptor,
and whose ligands were identified by this and other groups in 2002 and 2003. To examine the physiological roles of
NPBWR1, we examined phenotype of Npbwr12/2 mice. When presented with an intruder mouse, Npbwr12/2 mice showed
impulsive contact with the strange mice, produced more intense approaches toward them, and had longer contact and
chasing time along with greater and sustained elevation of heart rate and blood pressure compared to wild type mice.
Npbwr12/2 mice also showed increased autonomic and neuroendocrine responses to physical stress, suggesting that
impairment of NPBWR1 leads to stress vulnerability. We also observed that these mice show abnormality in the contextual
fear conditioning test. These data suggest that NPBWR1 plays a critical role in limbic system function and stress responses.
Histological and electrophysiological studies showed that NPBWR1 acts as an inhibitory regulator on a subpopulation of
GABAergic neurons in the lateral division of the CeA and terminates stress responses. These findings suggest important
roles of NPBWR1 in regulating amygdala function during physical and social stress.
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Introduction

NPB and NPW were recently identified as endogenous ligands

for two closely related G-protein coupled receptors, GPR7

(NPBWR1) and GPR8 (NPBWR2) [1,2,3]. The NPBWR1 gene

is highly conserved between the humans and rodents, while

NPBWR2 is not found in rodent genomes [4,5]. Npbwr1 mRNA is

localized in discrete brain regions in rodents, including the

hypothalamus (dorsomedial hypothalamus and suprachiasmatic

nucleus), hippocampus, ventral tegmental area (VTA) and

extended amygdala (CeA and bed nucleus of the stria terminalis;

BST) [3,6]. The particularly strong expression of Npbwr1 in the

CeA, together with the robust projection of NPW-containing

axons to the CeA [7], suggests that this receptor might be an

important modulator of the output signal from the amygdala.

NPBRW1 is also abundantly expressed in other limbic regions,

including the hippocampus, suggesting its roles in emotion and

memory [3,5].

In this study, we investigated potential physiological roles of

NPBRW1 by studying mice with a battery of behavioral tests [8]

(Table 1). While Npbwr12/2 mice showed normal results in many

of these tests, the screening pointed to obvious abnormality of

social interaction and contextual fear in these mice. Histological

and electrophysiological studies revealed that NPBWR1 was

expressed in GABAergic neurons in the CeA, and acted as a

neuroinhibitory regulator of these neurons. These findings suggest

that NPBWR1 is an important modulator of amygdala function,

and that NPBWR1 may be implicated in responses to stressful

social and environmental stimuli.

These observations suggest that the NPB/W system plays

important roles in regulating emotion and fear memory.

Results

Abnormalities in Social Behaviour in Npbwr12/2 Mice
In the resident-intruder test, male Npbwr12/2 mice showed

significantly shorter latency to initial physical contact with the

intruder and a significantly longer time in contact with the

intruder compared with wild type male mice (C57BL/6J)

(Fig. 1A,B). The resident-intruder test also revealed that
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Npbwr12/2 mice showed characteristic behavior such as persistent

chasing during the session (movies S1 and S2). They abandoned

their normal caution and tendency to withdraw when confronted

with a strange mouse. Instead, they impulsively approached the

intruder and showed a greater frequency and duration of contact.

When Npbwr12/2 mice were used as intruders, they again showed

very fast contact with wild type resident mice and persistent

chasing behavior (Fig. S1A).

Because it is well known that amygdala activation correlates

with an increase in sympathetic outflow [9], we simultaneously

monitored locomotor activity, heart rate (HR), and mean arterial

pressure (MAP) in resident Npbwr12/2 and wild type littermates

mice during the resident intruder paradigm, to examine the effect

of social stress on these parameters. Basal activity, HR and MAP

were comparable between male Npbwr12/2 and wild type

littermates (Fig. 1C). All these parameters increased during the

resident-intruder test in both Npbwr12/2 and control mice.

However, while these parameters transiently increased and

gradually returned to basal levels within 60 min in wild type

controls, Npbwr12/2 mice showed sustained responses of activity,

HR and MAP throughout the presence of the intruder. These

observations suggest that Npbwr12/2 mice exhibit exaggerated and

sustained behavioral and autonomic excitability to social stimuli.

We also found that both Npb and Npw mRNAs were increased

under stressful conditions induced by the resident-intruder

paradigm (Fig. 1D), suggesting that this system might work as a

negative feedback regulator of amygdala function. Notably,

heterozygous Npbwr1+/2 mice also showed increased locomotor

activity and chasing behavior during this test, which suggests a

possible gene dosage effect (Fig. S1B).

Altered Stress Responses of Npbwr12/2 Mice
The behavioral and autonomic abnormality of Npbwr12/2 mice

in threatening circumstances induced by social interaction suggests

that NPBWR1 plays an important role in regulation of behavioral

arousal and autonomic output induced by social emotional stress

in mice. To examine the roles of NPBWR1 in evoking stress

responses to physical environmental challenges, we further

examined the autonomic and neuroendocrine responses of

Npbwr12/2 mice to physical stresses. We found that stress-induced

hyperthermia, which is often used to examine stress responses in

mice [10,11], was significantly higher in Npbwr12/2 mice than in

wild type mice (Fig. 2A). We also found that basal corticotropin-

releasing hormone (Crh) mRNA level in the hypothalamus was higher

in Npbwr12/2 mice than in controls (Fig. 2B). Furthermore,

although the basal serum corticosterone level in Npbwr12/2 mice

was comparable to that in control mice, possibly due to tight

feedback regulation of this hormone in the basal state, it increased

to a higher level after application of restraint stress for 10 min as

compared with that in wild type controls (Fig. 2B). These

observations further support an inhibitory role of NPBWR1 in

stress-induced neuroendocrine and autonomic responses.

The increased responses to various stresses in Npbwr12/2 mice

suggest the possibility that these mice show high anxiety. However,

in the open-field test, Npbwr12/2 mice exhibited no abnormality in

the percentage of time spent in the center of the arena

(thigmotaxis), and showed no significant difference in the

percentage of time spent in the open arms in the elevated-plus

maze test (Fig. 2C), suggesting that the basal level of anxiety was

unaltered in Npbwr12/2 mice. However, Npbwr12/2 mice showed

a significantly shorter latency to first entry into the dark chamber

in the light-dark exploration test (Fig. 2C). As Npbwr12/2 mice

had normal thigmotaxis and a normal response in the elevated

plus maze, this response to light-dark exploration might reflect

increased impulsivity of Npbwr2/2 mice to a novel physical

environment rather than heightened anxiety. This is consistent

with the aforementioned results of the resident-intruder test, which

may be interpreted as increased impulsivity to a social challenge.

Abnormality of Contextual Fear in Npbwr12/2 Mice
The amygdala and hippocampus have long been thought to

play an important role in establishment of emotional memory. We

tested whether Npbwr1 plays a role in this process using classical

cued and contextual fear conditioning paradigms. Mice were

placed in a conditioning chamber for 2 min before being given an

auditory-cued conditioned stimulus (CS), a tone, which lasted for

30 sec. The last 2 sec of the CS was paired with a mildly aversive

shock unconditioned stimulus (US). For contextual fear testing,

mice were tested in the absence of both CS and US in the same

experimental context at 24 hr after training [12]. Although wild

Table 1. Summary of behavioral phenotypes of NPBWR1 knockout mice.

Behavioral test Parameter Results

Open field test Anxiety Normal time spent in center of arena

Elevated plus maze test Anxiety Normal time spent and number of entries in open arms

Light-dark exploration test Anxiety Decrease in escape latency and time spent in light box

Porsolt forced swim test Depression, learning helplessness Normal time spent swimming

Prepulse inhibition test Sensory motor reactivity Normal percentage of prepulse inhibition

Marble burying behavior test Compulsive behavior Normal number of marbles buried

Cued and contextual fear conditioning test Fear and memory Decrease in time of freezing behavior during contextual testing while normal
during auditory-cued testing

Morris water maze test Spatial memory Normal escape latency

Resident-intruder test Social interaction Abnormal social interaction

Stress-induced hyperthermia Stress response Exaggerated hyperthermia

Daily locomotor activity Circadian rhythm Normal in both light/dark cycle and constant dark condition. Normal
entrainment by food or light

Sleep-wake behavior (EEG/EMG) Sleep/wake cycle Normal in each episode duration, times spent in each state in hourly sleep/
wake analysis

doi:10.1371/journal.pone.0016972.t001
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type control mice showed significantly increased freezing time

when they were put in the same context as they were conditioned,

Npbwr12/2 mice did not show increased freezing behavior during

the contextual fear test. However, we did not observe a significant

difference in freezing behavior between Npbwr12/2 and wild type

mice during CS testing under the altered context (Fig. 3A).

To further evaluate the abnormality of fear-related memory

seen in the contextual fear conditioning test, we also performed

fear conditioning with a different conditioning protocol (safety

conditioning [13]). In this paradigm, we used an auditory CS that

was explicitly unpaired with a US (Fig. 3B). With three days of

training and testing, this protocol established safety conditioning in

wild type mice, and the CS signals (safety signals) significantly

reduced the expression of freezing behavior to the experimental

context. However, Npbwr12/2 mice showed markedly different

behavioral characteristics during this test. They did not show fear

responses to the experimental context after safety conditioning,

and exhibited freezing behavior to the CS.

As a control experiment for the safety conditioning protocol, we

performed a test with a similar protocol, but this time, the US

immediately followed every occurrence of the CS. In the test

session of this protocol (fear conditioning), the CS robustly

increased freezing time beyond the contextual freezing level in

wild type mice. In this experimental condition, Npbwr12/2 mice

showed virtually the same result as in the classical protocol; they

showed freezing behavior to the US, but not to the experimental

context (Fig. 3B). These observations suggest that Npbwr12/2 mice

have an abnormality in establishment of contextual fear memory

and/or expression of fear-related behavior, although they can

establish fear memory to a simple auditory cue.

Function of NPBWR1 is Involved in Amygdala Regulation
Since we found abnormality of social interaction, autonomic

responses, and contextual fear conditioning, all of which are

related to amygdala function, in Npbwr12/2 mice, we next

explored the neuronal mechanisms by which NPBWR1 regulates

the function of the amygdala, by probing the expression profile of

NPBWR1 in the neural circuitry of the amygdala in mice. By

double-label in situ hybridization, we found that Npbwr1 was

abundantly expressed in GAD67-positive, gamma-aminobutyric

acid (GABAergic) neurons in the medial region of the lateral

division of the CeA (CeAl) (Fig. 4A). Npbwr1 mRNA was present in

34.165.3% (n = 3) of Gad67-positive neurons within the CeAl.

Virtually all Npbwr1-positive neurons were also positive for Gad67,

suggesting that most of the NPBWR1-positive neurons were

GABAergic in the CeAl. We also observed that Npbwr1 was

expressed in Gad67-positive neurons in the BST, which is

recognized to be an extension of the CeA [9] (Fig. S2A). These

findings confirm that NPBWR1 is expressed in GABAergic

neurons in the output nuclei of the extended amygdala, where

NPW-immunoreactive fibers were exclusively observed in the

mouse brain [5,7] (Fig. S2B). We next examined the effect of NPB

and NPW on Gad67-positive neurons in the CeAl by means of

patch-clamp recording. Whole cell recording showed that bath

application of NPB or NPW hyperpolarized and inhibited 8 out of

19 Gad67-positive neurons in the CeAl in slice preparations

(Fig. 4B). None of the 10 neurons tested from Npbwr12/2 mice

showed such inhibition. Neurons in the CeAl are mostly

GABAergic and many of these neurons are thought to send

inhibitory projections to neurons in the medial part of CeA

(CeAm), the main output nucleus of the amygdala. However, a

subpopulation of CeAl neurons are also known to directly project

to the BST and brain stem target areas [14]. Morphological

examination of NPW-inhibited cells by injecting neurobiotin after

recordings showed that four out of seven NPW-inhibited neurons

examined had relatively long axons that projected through the

CeAm to outside the amygdala (Fig. 4C, D). These observations

demonstrate that NPB/W acts on projection neurons in the CeAl.

We also observed some cells with shorter axons that ended within

the CeAl. Because these studies were done using slice preparations,

we cannot conclude that these axons ended within the CeAl, but it

is plausible that some NPBWR1-positive neurons could be

GABAergic interneurons in the CeAl.

Discussion

Abnormality in Behavioral and Neuroendocrine
Responses of Npbwr12/2 Mice

Our present study showed that Npbwr12/2 mice have abnormal

behavioral and neuroendocrine responses to social and physical

stresses (Figs. 1, 2). The abnormal behavior toward the intruder

possibly reflects increased impulsivity to potential danger and/or

inability to appropriately recognize unknown conspecifics as a

threat. We hypothesized that this abnormal behavior is due to

abnormal neurotransmission in the amygdala, firstly because

NPBWR1 is abundantly expressed in the CeAl, the only region in

which we observed NPW-ir in mouse brain [7]. Secondly, the

phenotype is similar to the abnormality in humans and primates

with amygdala damage. Earlier studies in nonhuman primates

with bilateral amygdala lesions also showed a similar response,

where the lesioned animals showed less tension-related behavior

and diminished passive avoidance of potentially dangerous

environmental stimuli such as a rubber snake when compared to

sham-controlled animals [15,16]. Another possibility is that

Figure 1. Increased impulsiveness and contact time with associated increased autonomic responses in Npbwr12/2 mice during
resident-intruder test. (A) Male naive 8-week-old mice were housed individually for 4 weeks before the procedure. The behavior of mice was
recorded with a CCD video camera. A randomly chosen male intruder (C57BL/6J) was used only once in each session. The intruder was introduced
into the resident cage, and behavior was recorded for 10 min. A variety of social behaviors were scored including the latency to the first aggressive
contact (left panel) and time spent in aggressive contact (sniffing, rattling, chasing, mounting, wrestling and fighting) (right panel). Npbwr12/2 mice
showed a shorter latency time to contact with the intruder (F1,12 = 5.304, p = 0.040), and longer physical contact with the intruder compared with wild
type mice (F1,12 = 6.068, p = 0.030). Data are presented as mean 6 SEM (WT n = 6, KO n = 8). Also see movies S1 and S2, which show typical examples
of behavior observed during this test. (B) Video tracking system shows traces of intruder (white) and resident (green) during 10 min session of
resident-intruder test, showing that Npbwr12/2 mice exhibited more sustained and insistent contact and chasing behavior. Note that the trace of
Npbwr12/2 mice is very similar to that of the intruder, reflecting the insistent chasing. (C) Locomotor and cardiovascular responses during resident-
intruder test in radiotelemetry-implanted freely moving mice. Activity (upper panels), heart rate (HR; middle panels) and mean arterial pressure (MAP;
lower panels) of resident mice (Npbwr12/2 or wild type littermates) during the time course of the resident-intruder test are shown. Intruders (male
C57BL/6J mice) were put in the cages at 0 min. Horizontal solid bar indicates the presence of an intruder. Baseline values were defined as the average
values of parameters obtained during 10 min immediately prior to the resident-intruder test. Data are presented as mean 6 SEM (wild type; n = 4,
Npbwr12/2; n = 5) (*p,0.05, **p,0.01, compared to wild-type). (D) Real time PCR analysis showed that Neuropeptide B (NPB) and Neuropeptide W
(NPW) mRNAs in whole brain were upregulated after the resident-intruder test for 60 min. Each level of expression was normalized by the level of
Gapdh mRNA (wild type; n = 45, Npbwr12/2; n = 5).
doi:10.1371/journal.pone.0016972.g001
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Npbwr12/2 mice have a lack of personal space regulation, which

may be similar to that seen in a human with bilateral amygdala

lesions, who showed a lack of discomfort at close distances to

others [17]. Our observations suggest that Npbwr12/2 mice have

an abnormality in evoking normal caution and/or fear when

confronted with strange mice.

Our findings in Npbwr12/2 mice of exaggerated neuroendo-

crine responses to various physical stresses are consistent with a

neuroinhibitory effect on Npbwr1 on amygdala function, which

leads to strong and sustained activation of the sympathetic division

of the autonomic outflow in response to environmental stimuli.

Abnormality of Contextual Fear in Npbwr12/2 Mice
Abnormality of the behavior evoked by the resident-intruder

paradigm and the results of contextual fear conditioning suggest

that Npbwr1 might play a role in evoking proper behavior to

Figure 2. Increased autonomic, neuroendocrine and behavioral responses to physical stress in Npbwr12/2 mice. (A) Npbwr12/2 mice
showed a greater increase in body temperature during repetitive handling stress (mild restriction and insertion of a probe into the rectum). (B)
Corticotropin-releasing hormone (Crh) mRNA level in the hypothalamus was higher in Npbwr12/2 mice than in wild type mice (left panel) (wild type;
n = 7, Npbwr12/2; n = 6, F1,11 = 6.928, p = 0.023). Basal serum corticosterone level in Npbwr12/2 mice was comparable to that in wild type mice (wild
type; n = 12, Npbwr12/2; n = 17, F1,27 = 0.700, p = 0.410), but these mice showed a greater increase in corticosterone after 10 minutes of restraint stress
(right panel) (wild type; n = 3, Npbwr12/2; n = 3, F1,4 = 30.732, p = 0.005). (C) Npbwr12/2 mice did not show overt anxiety in the basal state, but they
show increased impulsiveness to environmental challenges. Left panel, open-field test. Percentage of time spent in the center was not significantly
different between Npbwr12/2 mice and wild type mice (wild type; n = 23, Npbwr12/2; n = 17, F1,38 = 0.551, p = 0.463). Middle panel, elevated-plus
maze test. Number of entries into open arms and time spent in open arms during 5 min test session were not different between genotypes (wild
type; n = 20, Npbwr12/2; n = 24, F1,42 = 1.734, p = 0.195 and F1,42 = 2.089, p = 0.156, respectively). Right panel, light-dark exploration test. The total
number of transitions, time spent in the light side, and latency until mice escaped to the dark side were recorded for 10 min after a single mouse was
placed in the light compartment. Latency to enter the dark chamber from the light chamber is significantly shorter in Npbwr12/2 mice (wild type;
n = 17, Npbwr12/2; n = 17, F1,32 = 10.136, p = 0.003). Data are presented as mean 6 SEM.
doi:10.1371/journal.pone.0016972.g002
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Figure 3. Npbwr12/2 mice showed abnormality in contextual fear conditioning. (A) Fear conditioning was performed to examine the ability
of Npbwr12/2 mice to learn and remember an auditory cue or context that predicted electric shock. Bars show the mean percentage of time spent
freezing (defensive tonic immobility) during 30 s observation. For contextual fear test, mice were tested in the absence of cues in the same context at
24 hr after training. For cued test, mice were tested in new cages and the auditory cue applied. Freezing behavior of mice was counted before (pre-
CS) and during application of the cue. There was a significant difference in duration of freezing behavior between Npbwr12/2 mice and wild type
mice during the contextual fear task (wild type; n = 13, Npbwr12/2; n = 18, F1,29 = 114.15, p,0.001), while no significant difference in freezing behavior
was observed during auditory-cued testing under the altered context. (B) Alternative protocols for fear and safety conditioning [13]. Upper panel,
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relatively complex polymodal environmental cues, such as

contextual information for danger and social interaction. On the

other hand, Npbwr12/2 mice can respond to simple sensory cues

as shown by cued fear conditioning.

Another very interesting pair of results is the impairment of

contextual fear conditioning and ‘‘inversion’’ of safety condition-

ing. In safety conditioning, mice received unpaired presentations

of a tone or light CS and a shock US. Because the shock never

occurred during the CS, wild type mice learned to treat the CS as

a safety signal, so that fear-related behaviors, such as freezing,

were inhibited during presentation of the CS. Npbwr12/2 mice

showed ‘‘inversion’’ of this learning in that the safety-trained CS

elicits fear rather than a reduction in fear (Fig. 3). Npbwr12/2 mice

apparently undergo trace conditioning rather than safety condi-

tioning in this procedure, in that they associate the CS and US

across a long ‘‘trace’’ interval, while the control mice treat CS and

US as unpaired. Npbwr12/2 mice seem to be more ‘‘stimulus

bound’’, meaning that they preferentially attend to discrete stimuli,

to the exclusion of more complex, conjunctive stimuli such as

contexts. This hypothesis would also explain the deficit in

contextual fear conditioning, and should be confirmed in future

studies.

The abnormality in contextual fear conditioning tests suggests

that Npbwr1 might be involved in hippocampal function, since

both the amygdala and hippocampus are necessary for establishing

contextual fear memory, although we did not find any abnormality

in the Morris water maze test, a hippocampus-dependent memory

task (Fig. S3). We also did not find any difference in long-term

potentiation in CA3 pyramidal neurons (N.F., unpublished

results). Together with the strong expression of Npbwr1 in the

CeAl, and the fact that NPW-i fibers were exclusively observed in

the CeAl in mice [7], this supports the notion that the abnormality

of contextual fear memory in Npbwr12/2 mice is likely to stem

from abnormal neurotransmission in the amygdala.

The LA/BLA regions of the amygdala are believed to be a

principal storage site for emotional memory (US-CS association),

while the CeA is implicated in output regulation. Activity of CeAl

neurons could affect the level of inhibitory control in the CeAl-

CeAm circuit, thereby controlling CeAm output. Since Npbwr1 is

expressed in the CeA, but not LA/BLA, Npbwr1 is not likely to be

involved in the storing of emotional memory. Npbwr1 might

instead play an important role in evoking and controlling proper

behavioral and neuroendocrine responses. Npbwr12/2 mice

consistently showed normal freezing behavior in auditory-cued

testing (Fig. 3A).

However, with the recent evidence suggesting that CeA also

participates in the acquisition or expression of fear memory

[14,18], Npbwr1 may play a role in this process. Coordinated

control of CeA neurons by Npbwr1 might contribute to both

memory storage and proper expression of behavioral and

neuroendocrine responses according to complex environmental

conditions. Recent studies have shown that the CeAl neurons

receive input from various regions, including the sensory thalamus,

BLA and insular cortex. Therefore, this region appears to be

important for coordinating and processing various sensory and

internal information in establishing fear memory.

However, the involvement of the NPBWR1 in hippocampal

function should not be disregarded. Indeed, the deficit in

contextual fear conditioning with normal cued fear conditioning

is consistent with hippocampal damage, and the neuroendocrine

phenotype could be related to either hypothalamic or hippocam-

pal abnormalities both of which express Npbwr1 mRNA [5]. A

further study would be needed to confirm the involvement of the

amygdala in these abnormalities using spatially-restricted deletion

of NPBWR1, knockdown or a rescue experiment using Npbwr12/2

mice or electrophysiological experiments using the hippocampus

of mutant mice.

The results in the social interaction test are surprising as

Npbwr12/2 mice showed an increased neuroendocrine response.

In addition, the increased corticosterone response to stress suggests

that these mice would be anxious, which was not obvious in the

open field or elevated plus maze test, but was evident in the light-

dark test. Factorial analysis of behavior in anxiety-related

experiments in animals has shown that different tests reflect

different underlying factors [19]. Therefore, the fact that

Npbwr12/2 mice showed such a specific phenotype in the light/

dark exploration test and not in others might simply reflect the fact

that these tests measure different dimensions of anxiety-related

behaviors, such as impulsivity. Abnormality of stress-induced

autonomic changes may also have contributed to the finding in

the resident-intruder test, because feedback of autonomic responses

through the vagal nerve may contribute to overall behavioral

responses in animals [20].

Peptidergic neuromodulation is a relatively slow and sustained

process as compared to the glutamatergic and GABAergic systems.

We speculate that the NPB/W system might play a role in

regulating amygdala function over a relatively longer time scale.

Both Npb and Npw mRNAs were increased under stressful

conditions induced by the resident-intruder paradigm, suggesting

that this system might work as a feedback regulator of the

amygdala by inhibiting projection neurons in the CeAl (Fig. 1D).

In addition, some of the GABAergic interneurons within the CeAl

also expressed Npbwr1 (Fig. 4C, D). This suggests an intriguing

possibility that NPB/W regulates amygdala networks by inhibiting

some specific outputs while disinhibiting others, thereby helping to

select proper behavioral and neuroendocrine responses [14]

(Fig. 5). This model may explain why Npbwr12/2 mice showed

decreased fear-related behavioral responses to complex contexts

such as social interaction and contextual fear, but showed

increased sympathetic responses to various stresses. Russel and

Mehrabian classified emotions into three dimensions of factors;

valence (pleasure-displeasure), arousal (autonomic response), and

dominance [21]. The NPB/W system might regulate emotions in

the arousal and dominance scales according to the animal’s

environment which contains a relatively complex context.

schematic representation of training and testing protocols. Mice were put in the conditioning chamber for 2 min before the first stimulus.
Conditioning sessions consisted of 5 CS (20 s) (interval, mean 130 s, range, 100–140 s). In safety conditioning sessions, the US was explicitly unpaired
and occurred during the inter-CS interval (five US per session, separated by 20–80 s from each CS). Training sessions were conducted for three days
(one session per day). In fear conditioning, the US was applied for the last two sec of the CS, which was applied at the same protocol as the safety
conditioning. In the test sessions, CS was delivered at the same protocol as conditioning, and no US was delivered. Freezing times in the 20 s periods
before and during CS application were scored as context and cued conditioning, respectively. Lower panels, Times spent freezing during 20 s CS and
20 s prior to CS in safety conditioning (left panel) and fear conditioning (right panel) are shown. In safety conditioning, wild type mice displayed
freezing to the context, which invariably accrued with US exposure. The freezing was reduced by the arrival of the CS. However, Npbwr12/2 mice did
not show fear responses to the context, and exhibited freezing to the CS. In fear conditioning, we obtained virtually the same results as those with
the classical protocol (A).
doi:10.1371/journal.pone.0016972.g003
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Figure 4. Function of NPBWR1 in regulation of CeA neurons. (A) Left panel, Dual-label In situ hybridization histochemistry showed co-
localization of Npbwr1 mRNA (blue) with Gad67-expressing neurons (red) in the CeAl of mice. Scale bar equals 250 mm. Middle panel, higher power
view of yellow rectangle region in the left panel. Right panel, high power view of yellow rectangle region in the middle panel. Opt, optic tract. (B) Left
panels, typical examples of whole cell patch-clamp recording from GAD67-expressing neurons in Gad67-gfp brain sections, showing that bath-
application of NPB (upper panel, 500 nM) or NPW (lower panel, 500 nM) potently inhibited neuronal activity. Right panel, numbers of GFP-positive
neurons activated or inhibited by NPB/W application. We did not observe any effects in neurons of Npbwr12/2 mice. (C) A typical example of
morphology of NPB/W-inhibited GABAergic neurons as revealed by neurobiotin injection after patch-clamp recordings. This cell resides in the medial
region of the CeAl and sends long projections to outside of the amygdala. (D) Schematic drawings of axonal projections of NPW and/or NPB-inhibited
neurons in the CeAl. Left panel shows three neurons depicted in different colors that send axons within the CeAl. Right panel shows four neurons
that send axons outside of the CeA.
doi:10.1371/journal.pone.0016972.g004
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In human and primate genomes, there is a closely related

receptor, NPBWR2, which also receives NPB and NPW as its

ligands. This gene duplication during primate evolution might

result in adaptation to more complex social contexts in humans

and primates compared to those in rodents. Analyzing NPBWR2

function in primate social behavior is also obviously necessary to

fully understand this neuropeptide system. Our ongoing study also

suggests that NPW, one of the ligands for NPBWR1, plays an

essential role in modulating amygdala function under stress in

mice (T.M. et al., unpublished data).

In, summary, we carried out behavioral characterization of

Npbwr1-deficient mice. These mice showed an intriguing pattern

of behavioral abnormalities, including impaired contextual fear

conditioning, impaired safety conditioning, and increased social

Figure 5. Schematic model of regulatory mechanism by which neuropeptide B/W regulates activity of amygdala neurons. (A) NPB or
NPW acts on NPBWR1 expressed on projection neurons in the CeAl, which could signal to the brain stem and BST to elicit emotion-related autonomic
and neuroendocrine responses. Some GABAergic interneurons in the CeAl also express Npbwr1. Therefore, NPB/W signaling could modulate
amygdala function in multiple pathways. (B) When the NPB/W system is activated, some of the projection neurons in the CeAl might be inhibited,
while other projection neurons might be disinhibited through inhibition of GABAergic interneurons. For example, output to autonomic/
neuroendocrine pathways could be inhibited, while behavioral output might be activated. (C) NPB/W system dysfunction may result in exaggerated
autonomic/neuroendocrine responses along with impaired behavioral response.
doi:10.1371/journal.pone.0016972.g005
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interaction in the resident-intruder paradigm. We also observed

electrophysiological changes in GABAergic neurons of the CeA,

although we cannot exclude the possibility that the phenotype may

be attributable to developmental loss of the gene. However, to

determine the neural mechanisms and the possible developmental

and/or extra-amygdalar origins of the phenotype, further

investigation using spatially-restricted knockout mice and/or

genetic rescue of the phenotype of these mice by expressing

NPBWR1 in a region-specific manner will be clearly required in

the near future. It is also clear that our findings could provide

novel therapeutic targets for disorders induced by social stress,

which are among the most prevalent mental health problems in

the world today.

Materials and Methods

Animals
All experimental procedures involving animals were approved by

the Animal Experiment and Use Committee of University or

Kanazawa University (AP-101567), and were in accordance with

NIH guidelines. Npbwr12/2 mice [8], in which the NPBWR1-

coding region in exon 1 is disrupted by inserting a tau-LacZ cassette.

used in the experiments were obtained from the mating of

heterozygous Npbwr1+/2 mice, which were backcrossed to wild

type C57BL/6J mice for more than 10 generations. Their

littermates with Npbwr1+/2 genotype were used as wild type control.

Gad67-gfp(DNeo) mice [22] and Gad67-gfp(DNeo); Npbwr12/2 with

C57BL/6J background were used for electrophysiological and

histological studies. Mice were maintained under a strict 12 hour

light:dark cycle in a temperature and humidity controlled room and

fed ad libitum.

Behavioral Experiments
All behavioral experiments (Table 1) were performed during the

light phase (13:00–17:00) using 8- to 14-week-old male mice. We

used wild type littermates as control mice. The experimenters were

blind to the genotypes until all data had been gathered and

analyzed. Behavioral experiments in this study were basically

performed according to protocols previously described [23]. The

behavior of mice was recorded with a charge coupled device

(CCD) video camera.

Resident-Intruder Test
Male naive mice were housed individually for 4 weeks before

the procedure. Isolation started at 8 weeks old. A randomly chosen

intruder used only once in each session was introduced in the

resident cage, and time spent in aggressive behaviors including

chasing, rattling, wrestling, biting and aggressive grooming were

recorded for 10 min.

Measurement of Blood Pressure and Heart Rate in Fully
Behaving Mice

Radiotelemetry implants (PA-C10; Data Sciences International;

St. Paul, MN, U.S.A.) were used to monitor locomotor activity,

heart rate (HR) and mean arterial pressure (MAP) in freely moving

animals. The PA-C10 catheter was implanted in the left carotid

artery and the transmitter body was placed in a subcutaneous

pocket. All implanted mice were kept isolated, and tests were

performed 7 days post-surgery to allow the mice to fully recover

and their HR and MAP to return to pre-surgical levels. Before

starting the test, HR, MAP and activity were recorded for 1 hour

(baseline). Wild type C57BL/6J mice were used as intruders. A

randomly chosen intruder was introduced in the resident cage, and

HR, MAP and activity of the resident were recorded for 60 min.

Open-Field Test
We used an open field apparatus consisting of a circular (75 cm

diameter, 45 cm height) gray Plexiglas. The arena was set up

under a CCD camera, and data were collected using a video

tracking system, Compact VAS ver 3.0x (Muromachi Kikai,

Tokyo, Japan). The floor was divided into 25 quadrants on the

computer. A single mouse was placed in the center of the open

field arena and its behavior was recorded for a 5-min test session.

Times spent in the central quadrants and in behaviors such as

rising, rearing, grooming, and voiding were evaluated as indexes of

anxiety in mice. Data are presented as mean 6SEM (n = 23 and

17 for wild type and Npbwr12/2, respectively).

Elevated Plus-Maze Test
We used an elevated plus-maze, constructed of Plexiglas and

raised 40 cm above the floor, consisting of two opposite enclosed

arms with 14 cm high opaque walls and two opposite open arms of

the same size (30 cm65 cm). Data were collected using a video

tracking system compact VAS ver 3.0x. A single session lasted for

5 min. To begin a trial, the test animal was placed on the central

platform facing an open arm. Anxiety levels of mice were

evaluated by the percentage of entries into the open and closed

arms, time spent in the open arms and distance traveled. Data are

presented as mean 6SEM (n = 20 and 24 for wild type and

Npbwr12/2, respectively).

Light-Dark Exploration Test
The light-dark exploration test measures the tendency of mice

to explore a novel environment versus the aversive properties of a

brightly lit open field. The light/dark exploration test was

performed using a cage (45627626 cm) equally divided into

two (dark and light) compartments by a black partition containing

a small opening. The total number of transitions, time spent in the

light side, and latency until mice escaped to the dark side were

recorded for 10 min after a single mouse was placed in the light

compartment. Data are presented as mean 6SEM (n = 20 and 15

for wild type and Npbwr12/2, respectively).

Cued and Contextual Fear Conditioning
Experiments were performed essentially as previously described

[12]. On the training day, the mouse was placed in the

conditioning chamber for 2 min before giving the conditioned

stimuli (CS), a tone, which lasted 30 sec at 2900 Hz, 70 dB. The

training was performed three times. The last 2 sec of the CS was

paired with the unconditioned stimuli (US), a mild foot shock of

0.6 mA. After an additional 30 sec in the chamber, the mouse was

returned to its home cage. Mice were tested 24 hr after training.

Context testing was conducted in the same chamber, and freezing

behavior was scored during a 30-sec testing session. Cued testing

was conducted by placing the mouse in a novel environment

(altered context) with the same 30 sec tone that was presented

during the training day. Data are presented as mean 6SEM.

In Situ Hybridization
Preparation of coronal brain sections and single in situ

hybridization were performed according to procedures previously

described [24]. For double in situ hybridization, each combination

of two antisense riboprobes labeled with either fluorescein-UTP

(Gad1) or digoxygenin-UTP (for Npbwr1) was hybridized to sections

simultaneously. Following the chromogen reaction of the first color

(blue) obtained with anti-digoxygenin-alkaline phosphatase (AP)

Fab fragments, 5-bromo-4-chloro-3-indolyl phosphate (Roche)

and nitroblue tetrazolium (Roche), sections were rinsed three times
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with TBS, treated twice with 0.1 M glycine pH 2.2 and 0.1%

Tween 20 for 5 min, washed, and then incubated with anti-

fluorescein-alkaline phosphatase (AP) Fab fragments. For the

chromogen reaction of the second color (orange), 5-bromo-4-

chloro-3-indolyl phosphate (Roche) and 2-[4-iodophenyl]-3-[4-

nitrophenyl]-5- phenyl-tetrazolium chloride (Roche) were used.

Antisense riboprobes were synthesized from plasmids containing

the coding regions of mouse Npbwr1 (Transmembrane domain 1–

5, nucleotides, 323–764) and mouse Gad1 (NM_008077, nucleo-

tides 281–821) cDNAs.

Electrophysiology
Gad67-gfp(DNeo) mice were used for whole cell intracellular

recordings. Mice were anesthetized with intraperitoneal adminis-

tration of Forane (Abbott, Osaka, Japan). The mice were

decapitated under deep anesthesia. The brain was isolated in

ice-cold cutting solution consisting of (mM): 280 sucrose, 2 KCl,

10 HEPES, 0.5 CaCl2, 10 MgCl2, 10 glucose, pH 7.4, bubbled

with 100% O2. Brains were cut coronally into 300-mm slices with a

vibratome (VTA-1000S, Leica, Germany). Slices containing the

CeAl were transferred for 1 hr to an incubation chamber at room

temperature filled with physiological solution containing (mM):

140 NaCl, 2 KCl, 1 CaCl2, 1 MgCl2, 10 HEPES, 10 glucose, pH

7.4 with NaOH. The slices were transferred to a recording

chamber (RC-27L, Warner Instrument Corp., CT, USA) at room

temperature on a fluorescence microscope stage (BX51WI,

Olympus, Tokyo, Japan). Neurons that showed EGFP fluores-

cence in the CeAl region were used for patch-clamp recordings.

The fluorescence microscope was equipped with an infrared

camera (C-3077 78, Hamamatsu Photonics, Hamamatsu, Japan)

for infrared differential interference contrast (IR-DIC) imaging

and a CCD camera (JK-TU53H, Olympus) for fluorescent

imaging. Each image was displayed separately on a monitor

(Gawin, EIZO, Tokyo, Japan). Recordings were carried out with

an Axopatch 200B amplifier (Axon Instruments, Foster City, CA)

using a borosilicate pipette (GC150-10, Harvard Apparatus,

Holliston, MA) prepared using a micropipette puller (P-97, Sutter

Instruments, Pangbourne, UK) and filled with intracellular

solution (4–10 MV) consisting of (mM): 125 K-gluconate, 5 KCl,

1 MgCl2, 10 HEPES, 1.1 EGTA-Na3, 5 MgATP, 0.5 Na2GTP,

0.1% neurobiotin, pH 7.3 with KOH. Osmolarity of the solution

was checked with a vapor pressure osmometer (model 5520,

Wescor, Logan, UT). The osmolarities of the internal and external

solutions were 280–290 and 320–330 mOsm/l, respectively. The

liquid junction potential of the patch pipette and perfused

extracellular solution was estimated to be 216.2 mV and was

applied to the data. The recording pipette was under positive

pressure while it was advanced toward individual cells in the slice.

Tight seals of 0.5–1.0 GV were made by applying negative

pressure and ZAP procedure. The membrane patch was then

ruptured by suction. The series resistance during recording was

10–25 MV and was compensated. The reference electrode was an

Ag-AgCl pellet immersed in bath solution. During recordings, cells

were superfused with extracellular solution at a rate of 1.0–2.0 ml/

min using a peristaltic pump (Miniplus3, Gilson, Paris, France) at

room temperature.

Statistical Analysis
Data were expressed as mean6SEM. One-way analysis of

variance (ANOVA) followed by Bonfferoni method as a post-hoc

test or student’s t-test using Origin 6.1 software was used for

statistical comparison among the various treatment groups.

Differences were considered significant at p,0.05.

Supporting Information

Figure S1 Supplemental data for resident intruder test.
(A) Increased impulsiveness and contact time in Npbwr12/2 mice

during resident-intruder test when intruders were wild type or

Npbwr12/2 mice. Male naive 8-week-old wild type mice were

housed individually for 4 weeks before the procedure. The

behavior of mice was recorded with a CCD video camera. A

randomly chosen male intruder Npbwr12/2 or wild type (WT)

mouse (C57BL/6J) was used only once in each session. The

intruder was introduced into the resident cage, and behavior was

recorded for 10 min. A variety of social behaviors were scored,

including the latency to the first aggressive contact (left panel) and

time spent in aggressive contact (sniffing, rattling, chasing,

mounting, wrestling and fighting) (right panel). Npbwr12/2

intruder mice showed a shorter latency time to contact with the

resident compared with wildtype (wild type; n = 6, Npbwr12/2;

n = 7, F1,11 = 5.162, p = 0.044) and longer contact time (wild type;

n = 6, Npbwr12/2; n = 7, F1,11 = 4.643, p = 0.050). Data are

presented as mean 6 SEM. (B) Locomotor activity of Npbwr12/2

(n = 5), Npbwr12/+ (n = 5), and WT (Npbwr1+/+) mice (n = 5)

monitored by radiotelemetry system during resident-intruder test.

Horizontal solid bar indicates the presence of an intruder. Baseline

values were defined as the average of parameters obtained during

10 min immediately prior to resident-intruder test. Data are

presented as mean 6SEM. * indicates p,0.05.

(TIF)

Figure S2 CeA and BST is major effecter site for
neuropeptide W. (A) In situ hybridization histochemistry com-

bined with GFP-immunostaining showing that Npbwr1 mRNA is

colocalized with GFP in the bed nucleus of the stria terminalis (BST)

of Gad67-gfp(DNeo) mice. Brown staining shows GFP immunoreac-

tivity. Blue staining shows expression of Npbwr1 mRNA. Left panel,

Npbwr1 mRNA is colocalized with Gad67-expressing neurons shown

by GFP-immunoreactivity in the lateral dorsal division of the BST

(BSTlp). Middle panel, higher power view of region within yellow

rectangle in left panel. Right panel, high power view of region within

yellow rectangle in middle panel. Arrow heads show colocalization of

Npbwr1 mRNA and GFP. (B) Immunohistochemical staining

demonstrating NPW-ir fibers in the CeAl in both wild type and

Npbwr12/2 mice. Upper panels show sections from wild type mice

and lower panels show sections from Npbwr12/2 mice. Rectangles in

the left panels are shown as high power views in the right panels.

Similar staining was also observed in the BST.

(TIF)

Figure S3 Npbwr12/2 mice show normal spatial memory
as measured by Morris water maze test. Npbwr12/2 mice did

not show a significant difference compared with wild type mice, even

in the retention phase, transfer phase, and probe trial (WT n = 15,

KO n = 13). Data are presented as mean 6SEM. The apparatus

consisted of a circular pool (40 cm high6120 cm diameter) filled with

water maintained at 25uC and made opaque by addition of nontoxic

white paint. Visual cues were placed around the pool. The escape

platform, made of Plexiglas, was positioned such that its top surface

was 1 cm below the surface of the water. Data were collected using a

video tracking system Compact VAS ver 3.0x (Muromachi Kikai,

Tokyo, Japan). The experiment was conducted in four phases. The

first phase consisted of 2 days with the platform visible. This tested the

ability of the animal to successfully conduct the task, particularly its

visual ability to see the room cues and its motor ability to swim in the

pool. For each trial during the training phase, the platform was

hidden in the same quadrant and the test mouse was placed in the

pool from different quadrants, and its time to reach the platform was
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recorded. At the end of training, a probe trial was performed where

each mouse was tested to see if it could identify its spatial location. For

the probe trial, the hidden platform was removed from the pool, and

then the mouse was placed in the pool as before. The time each

mouse spent in the quadrant that formerly contained the platform for

60 sec was recorded. Five days after the training phase, a retention

phase was conducted to test for long-term memory. Finally, after the

retention phase, the hidden platform was placed in the opposite

quadrant and each mouse was retrained to the new platform location

(transfer phase). This trial tested reversal learning in the mice. For

each phase, four trials per day were given to each mouse. Each trial

lasted a maximum of 90 sec (except the probe trial) with a 15 min

interval between trials.

(TIF)

Movie S1 Typical behavior of wild type C57Bl/6J mouse
during resident-intruder test. The wild type resident mouse

maintained an appropriate personal space, exercising caution

towards the intruder.

(MPG)

Movie S2 Typical behavior of Npbwr12/2 mouse during
resident-intruder test. The resident Npbwr12/2 mouse

showed insistent chasing of the intruder. They abandoned their

normal caution and tendency to withdraw when confronted with a

strange mouse. Instead, they impulsively approached the intruder

and showed a greater frequency and duration of contact.

(MPG)
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17. Kennedy DP, Gläscher J, Tyszka JM, Adolphs R (2009) Personal space
regulation by the human amygdala. Nature Neuroscience 12: 1226–1227.

18. Ciocchi S, Herry C, Grenier F, Wolff SB, Letzkus JJ, et al. (2010) Encoding of
conditioned fear in central amygdala inhibitory circuits. Nature 468: 277–282.

19. Ramos A, Berton O, Mormede P, Chaouloff F (1997) A multiple-test study of
anxiety-related behaviours in six inbred rat strains. Behav Brain Res 85: 57–69.

20. Ferry B, Roozendaal B, McGaugh JL (1999) Role of norepinephrine in

mediating stress hormone regulation of long-term memory storage: a critical
involvement of the amygdala. Biol Psychiatry 46: 1140–1152.

21. Russell JA, Mehrabian AJ (1977) Evidence for a three factor theory of emotions.
Res Personality 11: 273–294.

22. Tamamaki N, Yanagawa Y, Tomioka R, Miyazaki J, Obata K, et al. (2003)

Green fluorescent protein expression and colocalization with calretinin,
parvalbumin, and somatostatin in the GAD67-GFP knock-in mouse. J Comp

Neurol 467: 60–79.
23. Kalueff AV, Wheaton M, Murphy DL (2007) What’s wrong with my mouse

model? Advances and strategies in animal modeling of anxiety and depression.
Behav Brain Res 179: 1–18.

24. Mieda M, Williams SC, Richardson JA, Tanaka K, Yanagisawa M (2006) The

dorsomedial hypothalamic nucleus as a putative food-entrainable circadian
pacemaker. Proc Natl Acad Sci U S A 103: 12150–12155.

NPBWR1 and Amygdala Function

PLoS ONE | www.plosone.org 12 February 2011 | Volume 6 | Issue 2 | e16972


