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Recent advances toward the characterization of Alzheimer’s disease (AD) have permitted the identification of a dozen of
genetic risk factors, although many more remain undiscovered. In parallel, works in the field of network biology have
shown a strong link between protein connectivity and disease. In this manuscript, we demonstrate that AD-related genes
are indeed highly interconnected and, based on this observation, we set up an interaction discovery strategy to unveil
novel AD causative and susceptibility genes. In total, we report 200 high-confidence protein–protein interactions between
eight confirmed AD-related genes and 66 candidates. Of these, 31 are located in chromosomal regions containing sus-
ceptibility loci related to the etiology of late-onset AD, and 17 show dysregulated expression patterns in AD patients,
which makes them very good candidates for further functional studies. Interestingly, we also identified four novel direct
interactions among well-characterized AD causative/susceptibility genes (i.e., APP, A2M, APOE, PSEN1, and PSEN2), which
support the suggested link between plaque formation and inflammatory processes and provide insights into the in-
tracellular regulation of APP cleavage. Finally, we contextualize the discovered relationships, integrating them with all the
interaction data reported in the literature, building the most complete interactome associated to AD. This general view
facilitates the analyses of global properties of the network, such as its functional modularity, and triggers many hypotheses
on the molecular mechanisms implicated in AD. For instance, our analyses suggest a putative role for PDCD4 as a neuronal
death regulator and ECSIT as a molecular link between oxidative stress, inflammation, and mitochondrial dysfunction in AD.

[Supplemental material is available for this article.]

Alzheimer’s disease (AD) is a devastating neurodegenerative dis-

order characterized neuropathologically by the extracellular ac-

cumulation of amyloid-beta (Ab) plaques, and the intracellular

accumulation of hyperphosphorylated tau protein in the form of

neurofibrillary tangles (NFTs). Unfortunately, and despite the re-

cent advances in characterization of the disease (Bettens et al.

2010; Querfurth and LaFerla 2010), current medical treatments for

AD are purely symptomatic and hardly effective (Citron 2010).

Thus, the complete understanding of the molecular mechanisms

underlying AD is paramount for the development of novel thera-

pies able to modify the biology of the disease and efficiently fight

the increase of AD with age in our ever-increasing life expectancy.

Although highly heritable, AD is a genetically complex dis-

order associated with multiple genetic defects either mutational

or of susceptibility, making genetic analysis difficult (Bertram and

Tanzi 2008). It is well established that mutations in the genes en-

coding amyloid precursor protein (APP), presenilin 1 (PSEN1), and

presenilin 2 (PSEN2) can lead to altered production of Ab, which is

sufficient to cause rare, early-onset (;50 yr of age) familial forms

of AD (Selkoe and Podlisny 2002). However, the vast majority of

disease cases are of late onset (>65 yr of age), and this sporadic form

of AD is widely believed to be influenced by a combination of

genes that probably affect a variety of pathways involved in the

production, aggregation, and clearance of Ab (Selkoe and Podlisny

2002). Indeed, the e4 allele of apolipoprotein E (APOE) has been

considered a key genetic factor to play a role in the multifactor

pathogenesis of AD (Raber et al. 2004), which accounts for ;50%

of late-onset AD. In addition, several other genetic risk factors

have been identified (e.g., A2M, SERPINA3, LRP1, IL1A, TNF, ACE,

BACE1, BCHE, CST3, MTHFR, GSK3B, NOS3), although their sus-

ceptibility implication in AD still remains unclear (Bertram et al.

2007). These genes probably converge on common pathogenic

mechanisms that lead to disease predisposition and age of onset

but, unfortunately, current strategies for genome association

studies have not been able to identify candidate loci effectively,

probably due to the highly complex disease traits (Bertram and

Tanzi 2009).

Recent studies have shown that causative/susceptibility genes

for many disease phenotypes often work together within the same

biological module (Oti and Brunner 2007), be it a protein complex,

a pathway, or a protein interaction sub-network, highlighting a

strong link between protein connectivity and disease (Zanzoni

et al. 2009; Pujol et al. 2010). Indeed, the number of interactions

observed between disease-causing genes in several pathologies is

often much higher than what would be expected by chance, and

the discovery of unexpected relationships between apparently

unrelated genes has emerged as a powerful tool for the identifica-

tion of novel genes involved in complex diseases such as breast

cancer (Pujana et al. 2007), Huntington (Goehler et al. 2004),

schizophrenia (Camargo et al. 2007), or cerebral ataxias (Lim et al.

2006). In the particular case of AD, computational analyses showed

that the integration of genetic information with physical and

functional interaction data can be useful for prioritizing candidate

genes (Krauthammer et al. 2004; Chen et al. 2006; Liu et al. 2006).
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In this manuscript, we first explore whether, in the light of

recent data, well-established AD-related genes are indeed highly

interconnected. Based on the obtained results we set up an inter-

action discovery strategy to unveil and validate novel AD causative

and susceptibility genes. Finally, we contextualize the discovered

relationships in the global disease-associated network and formulate

novel hypotheses that provide insights on the molecular mecha-

nisms implicated in AD.

Results and Discussion

Identification of novel AD-related genes through interaction
discovery experiments

It has been described that, in complex diseases, causative and

susceptibility genes tend to be highly interconnected (Oti and

Brunner 2007). This observation was shown to be true for the four

major causative genes identified for AD (Chen et al. 2006; Liu et al.

2006). Based on this observation, we included in our set all 12 well-

established AD causative/susceptibility genes (Table 1), that we

name ‘‘seeds,’’ and checked the interconnectivity between them to

see whether it was still significantly higher than expected. To do so,

we computed the minimal distance between any pair of seed genes

in the frame of the charted human interactome (see Methods).

This measure, known as ‘‘shortest path length,’’ quantifies the con-

nectivity degree between two given nodes in a network. We found

that the shortest path between seed genes is 3.2, meaning that, on

average, we need roughly three links (i.e., two intermediate pro-

teins) to physically connect any two gene products within this set.

To assess the statistical significance of this figure, we compared this

result to two different reference distributions: one consisting of ran-

domly picked sets of 12 proteins in the human interaction space

(RND1, average shortest path = 4.7) and the second one, to avoid

functional biases, composed by randomly picked disease-causing

proteins belonging to different disorder classes (RND2, average

shortest path = 4.9). In both cases, the average distance among AD-

related genes was significantly shorter than that of the reference

distributions (P-valueRND1 = 6.8 3 10�18; P-valueRND2 = 3.5 3 10�23),

indicating that AD seed genes are indeed more interconnected

than one would expect by chance.

We next sought to exploit this finding to reveal novel genes

that could be involved to the onset or progression of AD. This is, to

identify those proteins that physically interact with AD seeds and

that are located in susceptibility loci, as identified by genetic cross-

linking experiments, or whose expression is dysregulated in AD

patients. Accordingly, we defined an interaction discovery strategy

to identify potential interactors of the already known AD-related

genes (Table 1) in an adult brain (Fig. 1). From our initial list of 12

seed genes, we had to discard three (ACE, MPO, and SORL1) for

which the open reading frames (ORFs) were not available. After

converting the nine seeds into bait plasmids (see Methods for de-

tails), we carried out 45 yeast two-hybrid (Y2H) screens against an

adult brain cDNA prey library (five replicates for each of the nine

baits), which yielded 191 interactions between 151 distinct cDNA

clones or preys. DNA sequence verification and a systematic BLAST

search showed that 72 of the isolated potential interactors (i.e.,

preys) contained the downstream gene in frame with the GAL4

activation domain, while the remaining 119 clones showed

plasmids with out-of-frame sequences or sequences from non-

protein-encoding regions, which were discarded. We retested all of

the 72 positive interactions by cotransformant pairwise Y2H arrays,

and validated 32 of them, indicating that they were indeed specific

interactions. Finally, as they were observed by two independent

Y2H screenings, we considered them as high-confidence interac-

tions. Most of the identified preys interacted with a single bait, while

only two were observed up to four times as independent clones

interacting with three different baits (ST13 and UMPS prey genes).

Gene linkage analyses and genome-wide association studies

have suggested that several chromosomal regions contain sus-

ceptibility loci involved in the etiology of late-onset Alzheimer’s

disease (LOAD) and familial AD with unknown genetic cause,

confirming that additional AD genes remain to be identified

(Lambert et al. 2006). As annotated in the Online Mendelian In-

heritance in Man database (OMIM) (McKusick 2007), an associa-

tion to AD has been demonstrated for four chromosome loci

(7q36, 10q24, 19p13.2, and 20p), but very few associations have

been unequivocally established with specific genes in these re-

gions. Accordingly, to identify genes in these chromosomal loci

potentially implicated in AD disease mechanisms, we decided to

profit from our observation that AD causative and susceptibility

genes tend to be physically connected. After discarding the 20p

region, since it corresponds to an entire chromosome arm, we

identified the 185 candidate genes within the three remaining loci

and prioritized them according to their coexpression with known

AD genes across a compendium of normal tissues and cell types.

We estimated coexpression in terms of correlation coefficients

computed using an expectation-maximization (EM) algorithm,

and forced it to always consider all the brain related tissues

to obtain the most relevant correlation for AD (see Fig. 1 and

Methods). This procedure filtered out 60 candidate genes that did

not coexpress with any of the known AD-related genes. With the

aim of maximizing the use of genes suitable for Y2H screens, we

discarded genes annotated as transcription factors (37 in total)

from the original candidate gene list, as early studies indicated that

they could behave as self-activators and trigger the expression of

the reporter genes in the absence of a direct interaction with the

prey protein, although this observation has been recently chal-

lenged. We also rejected genes encoding proteins that were highly

glycosylated (one), extracellular (five), or containing several

known/predicted transmembrane regions (29), as these might

fold improperly, as well as nine genes for which the ORFs were

unavailable. Finally, we ended up with 2809 binary interactions to

be tested involving nine seed and 44 candidate genes, with the

hope of finding clusters of interacting proteins involving known

and candidate genes that could unveil novel AD causative or sus-

ceptibility elements.

Table 1. Alzheimer’s Disease genes

Gene symbol Gene name

A2M Alpha-2-macroglobulin
ACE Angiotensin-converting enzyme
APOE Apolipoprotein E
APP Amyloid beta A4 protein
BLMH Bleomycin hydrolase
MPO Myeloperoxidase
NOS3 Nitric oxide synthase, endothelial
PAXIP1 PAX-interacting protein 1
PLAU Urokinase-type plasminogen activator
PSEN1 Presenilin-1
PSEN2 Presenilin-2
SORL1 Sortilin-related receptor

We extracted the AD causative/susceptibility genes from the OMIM da-
tabase (McKusick 2007) following the criteria illustrated in the Methods
section. The genes that were tested in our work are underlined.
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We performed systematic matrix-based Y2H screens, by both

cotransformation and mating approaches, to test pairwise in-

teractions between seed and candidate genes (seed–seed, seed–

candidate, and candidate–candidate combinations). We generated

53 preys (nine seeds and 44 candidates) and 43 baits (nine seeds

and 34 candidate genes) from our gene selection list (see Methods),

since we could not convert 10 of the prey vectors into baits. We

excluded from the analyses six bait plasmids (one seed and five

candidates) that resulted to be self-activating

in the presence of empty prey clones. Out

of the remaining 2050 pairwise protein

interactions that we examined, we iden-

tified 246 nonredundant interactions be-

tween 19 baits and 52 prey proteins. In-

terestingly, we did not identify common

protein–protein interactions to both ma-

trix and library screens, revealing the ad-

vantage of performing pairwise and pool

screens in parallel. All the detected inter-

actions and putative susceptibility genes

are reported in Supplemental File 1.

Based on the outcome derived from

the Y2H screens, we generated a high-

confidence (HC) interaction core set con-

taining all the confirmed library interactions

and those matrix interactions that were able

to activate at least two reporter genes, as they

required a more solid transcriptional acti-

vation. The definitive HC protein–protein

interaction network comprises 200 non-

redundant interactions among 74 genes:

eight seeds (no HC interactions found in-

volving PLAU), 27 library-identified, and

39 matrix-verified candidates (Fig. 1). Only

four of these interactions had been repor-

ted previously, three between seed proteins

(A2M–APOE, A2M–APP, and APP–PSEN1)

and one involving one candidate (PSEN1–

CDK5), meaning that the vast majority

are entirely novel (Table 2). In addition,

our screens did not recapitulate two

other seed–seed interactions that had been

found in other studies. This low overlap

between different interactome networks is

a well-known effect, and it is mainly at-

tributed to the limited sampling of the

interactome space and the detection capa-

bilities of the different techniques (Russell

and Aloy 2008; Venkatesan et al. 2009). In

our case, this is particularly pronounced

since we specifically chose our candidate

genes to maximize the number of novel

interactions added to the AD-related net-

work and for which little interaction in-

formation was known (i.e., picking genes

in susceptibility regions for which no direct

proof of their implication in AD had been

reported).

Although it is well-documented that

different interaction discovery techniques

are able to identify interactions of a differ-

ent nature (i.e., binary/multimeric, tran-

sient/dedicated, etc.) (Venkatesan et al. 2009) we sought to validate

some of our interactions derived from Y2H screens with comple-

mentary strategies previously employed in the identification of in-

teractions involving AD proteins (Xia et al. 1997; Hughes et al.

1998). To this end, we randomly selected a subset of genes and

protein interactions from our HC set, hoping that the results

obtained would represent the general trends of the whole experi-

ment (Fig. 2A). We first tested 11 HC protein–protein interactions,

Figure 1. Flow strategy of the approach. Five major steps: (1) identification of potential and causative
genes in AD; (2) characterization of the network by a Y2H screening; (3) generation of the AD protein
interaction network; (4) experimental and computational assessment of the network coherence; and
(5) functional module analysis of the generated AD-PIN.

Soler-López et al.
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involving 11 genes, with GST pull-down assays (see Methods),

and were able to validate seven positive interactions (Fig. 2B).

We also tested 17 HC interactions, involving 12 proteins, by

coimmunoprecipitation (co-IP) binding experiments in SH-SY5Y

neuroblastoma cells, using specific antibodies against endoge-

nously expressed proteins. Strikingly, all the tested interactions

resulted positive, and most in the respective reverse co-IP exper-

iment as well, hence confirming the interaction specificity (Fig.

2C). Overall, using both co-IP and GST-affinity binding methods,

we could confirm 21 out of the 24 protein interactions we selected

from our Y2H core set, yielding a verification rate of 87%. Of the

four interactions analyzed by both techniques, one was posi-

tive by co-IP although negative in the pull-down assay (PSEN1-

CDC37), while the remaining three interactions were confirmed as

positive by both methods (IFIT3–CDC37; NOS3–CDC37; PSEN1–

ECSIT). In addition, we also tested ten of the detected interactions

that were not included in the HC set (seven in pull-downs, four

in co-IPs), and we could only validate four of them. This verifi-

cation rate of 40% indicates that, indeed, there are some real

interactions among the 155 that we flagged as low-confidence,

but in a much lower proportion than the ones contained in the

HC set.

Additionally, we analyzed the in vivo colocalization of pro-

teins involving nine HC interactions in mammalian cells, where

endogenously expressed proteins were labeled by double immu-

nofluorescence staining and visualized using confocal microscopy

(see Methods). We were able to detect the colocalization of three

interactions: ECSIT–PSEN2, ECSIT–APOE, and GCDH-–NOS3,

which were also validated by co-IP assays. Moreover, we also ana-

lyzed the subcellular distribution of the interactions by a double

immunofluorescence staining of the respective partners in addi-

tion to the mitochondrial marker and, as expected, the GCDH–

NOS3 interactions did both present a mitochondrial localization

(Fig. 2D).

While the accuracy achieved is very high (i.e., very few false-

positive interactions), the coverage is indeed low, meaning that

we expect many more interactions involving the tested proteins

than the ones detected in this study. It would be tempting to at-

tribute this limited coverage to the intrinsic properties of many

AD-related proteins which, due to their transmembrane or secreted

nature, are experimentally difficult to handle. To check whether

this was the case, we compared the number of interactions de-

tected for each of the nine seed proteins employed (three se-

creted, three transmembrane, and three intracellular), and found

no significant difference (10.3, 11.7, and 10.3 interactions per

protein on average, respectively), although the use of different

Y2H setups specially designed to deal with transmembrane pro-

teins might indeed increase the coverage (Snider et al. 2010).

Thus, in this particular study, failure to detect interactions is likely

to be the result of the high stringency applied to our Y2H assays,

particularly designed to minimize false-positives, although this

criterion might penalize detection of some weak or transient

interactions.

Functional and gene expression analysis of the obtained
AD-related interactions

The first analysis that we applied to our HC set of interactions was

to look for enrichment of particular functional terms as defined in

the Gene Ontology (GO) database (Ashburner et al. 2000) (see

Methods). In total, we identified 14 significantly enriched terms

(adjusted P-value < 0.05) comprising three biological processes,

five molecular functions, and six cellular component terms (see

Table 3). Some of these are related to AD seed proteins (e.g., redox

signaling or cytoskeletal proteins) and are consistent with current

knowledge of the biological functions and compartments impli-

cated in AD (Reddy 2009). However, more interestingly, we also

found significant enrichments for certain unexpected functions or

subcellular localizations that are not associated to known AD genes

(e.g., regulation of apoptosis or actin binding activities).

We also checked whether the genes present in our HC set had

been found to be related to the AD phenotype based on microarray

data (Fig. 3; Blalock et al. 2004). In this study, Blalock and col-

leagues analyzed hippocampal gene expression of nine controls

and 22 individuals suffering from AD of varying severity (in-

cipient, moderate, and severe) and tested the correlation of each

gene expression with MMSE (mini-mental status examination)

and NFT (neurofibrillary tangles) scores across all 31 subjects re-

gardless of the diagnosis (see Methods). We found that 17 of the 66

genes in our HC interactors are either up- or down-regulated in AD

subjects compared to control, which represents a 25.7% of the

total. This figure is comparable to the one observed for the known

seed genes and their direct interactors, where 26 out of 97 genes

(26.8%) are dysregulated, and significantly higher than expected

by chance when comparing the percentage with altered expression

in AD within the human genome (2508/24210; P-value < 3 3 10�4

in a two-sided Fisher’s test) and the genes present in the microarray

employed by Blalock et al. (2004), although statistically insig-

nificant (2508/13,030; P-value < 0.12). Curiously, the fraction of

AD down-regulated genes in our HC gene set (0.53) is slightly

higher than the fraction detected in the original study (0.43), but

doubles the one found among the AD-related genes and interactors

curated from the literature (0.23), which suggest a small bias to-

ward the study of up-regulated genes in directed experiments

(P-value < 0.057 in a two-sided Fisher’s test). In any case, the dis-

covery of direct interactions between dysregulated genes in AD

subjects and well-characterized seeds could certainly trigger fur-

ther functional studies to investigate their potential role in the

disease phenotype.

Finally, we investigated whether any candidate from the HC

set was listed in the AlzGene database (November 2010 download)

(Bertram et al. 2007). We found that six out of the 58 genes that we

identified as direct interactors of the AD-seed proteins are present

in the AlzGene database, three candidates (CYP2C8, CDK5, LIPF)

and three coming from the library screens (EFEMP1, GAPDH, TCN2).

In addition, there are two more (DYNC1H1, EID1) that are located

next to the linked regions identified by recent GWAS experiments

(Bertram and Tanzi 2009). Interestingly, none of the candidates that

do not interact with seeds is present in AlzGene, which reinforces the

message that the genes identified in our interaction discovery pipe-

line might certainly play a role in AD.

Direct interaction partners among AD seed proteins

To date, the experimental difficulties associated to the majority of

AD proteins has resulted in a very limited number of literature

reported interactions among AD seed proteins, a number that is

Table 2. Overlap between the HC set of interactions and those
previously reported

Interaction type HC set Human interactome Common

Seed–seed 7 5 3
Seed–candidate 97 1 1
Candidate–candidate 96 0 0

Interactome mapping of Alzheimer’s disease
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Figure 2. (Legend on next page)
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further reduced for direct interactions (Xia

et al. 1997; Krimbou et al. 1998; Hesse

et al. 1999). Interestingly, we identified

seven direct interactions among AD caus-

ative genes, four of which correspond to

novel interactions that might provide new

insights into the molecular pathways un-

derlying this disorder (Fig. 3). For instance,

we found an interaction between alpha2-

macroglobulin (A2M) and APP, which cor-

roborates the finding that A2M is a strong

and specific interactor of Ab peptide in AD

plasma (Mettenburg et al. 2002). But,

more interestingly, we also found A2M

to interact with PAXIP1, a gene that was

identified by linkage and association

studies as a novel locus for AD at 7q36

in a Dutch population-based sample

(Rademakers et al. 2005). However, its

functional role in AD still remains un-

clear, and this novel interaction with A2M can be used as a starting

point for further investigations. In addition, we also detected an

interaction between A2M and NOS3, found in close proximity to

amyloid plaques (Probst et al. 1982), which supports the suggested

link between plaque formation and inflammatory processes (Luth

et al. 2001). However, the most interesting link is between APOE

and PSEN1, which had not been reported to date. PSEN1 is pri-

marily localized to the endoplasmic reticulum and it is required

for efficient proteolysis of APP within their transmembrane do-

mains. Mutations in PSEN1 increase the production of b-amyloid,

strongly supporting the hypothesis that mutant PSEN1 interacts

with APP in a way that enhances the intramembranous proteolysis

(Vetrivel et al. 2006). Therefore, our direct evidence of APOE and

PSEN1 binding could provide insights into the intracellular path-

ogenic role of APOE as a regulator of PSEN1 in APP cleavage. Fur-

thermore, we also detected an interaction between PSEN1 and

PSEN2, previously suggested to intimately cooperate as part of the

gamma-secretase complex in APP cleavage. The direct binding of

APP with both PSEN1, which we confirmed by co-IP, and PSEN2

had been previously suggested (Xia et al. 1997); however, there was

not reported evidence of a direct PSEN1-PSEN2 binding (Haass and

De Strooper 1999).

Collectively, these four novel interactions detected among

central proteins in AD strengthen our initial observation that, as

for other neurodegenerative disorders (Lim et al. 2006), AD caus-

ative and susceptibility proteins are, directly or indirectly, highly

interconnected.

Interactome network associated to AD

To contextualize the 200 novel AD-related interactions between 74

proteins that our study has revealed, we integrated them with all

the interaction data reported in the literature to build the most

complete interactome associated to AD with the data that is cur-

rently available (see Fig. 1 and Methods). This network view will

permit the undertaking of functional analyses that reflect the

global properties of the network, and not only single proteins or

interactions. We thus retrieved from the databases all the proteins

identified as direct interactors of the group of seeds considered

in our study and merged them with our HC set of interactions,

making a total of 403 interactions between 183 proteins. Addi-

tionally, we further extended this initial network to the next level

(i.e., we included all the direct interactors, the initial set and the

interconnections among them), obtaining a network of 5881 in-

teractions among 1704 proteins, which we call the AD protein

interaction network (AD-PIN). The general topology of the AD-PIN

shows a path length of 3.7 and a characteristic node degree dis-

tribution that approximates a power law (g = 1.65, R2 = 0.911).

We next studied the structure of the AD-PIN to detect the

presence of potential functional modules, defined as groups of

proteins that are densely interconnected and that are functionally

homogenous (i.e., functional annotation shared by the maximum

number of module proteins). To identify these modules we used

the MCL algorithm (van Dongen 2000), since it has proved to be

more robust and tolerant to noise than other modules detection

Figure 2. Validation of Y2H interactions by downstream binding assays. In vitro binding experiments: (A) schematic diagrams showing the interactions
examined by co-IP or pull-down experiments, for the high-confidence (HC) and low-confidence (LC) sets, respectively; (B) by GST pull-down, blotting
with anti-MYC antibody to detect the bound partner; (C ) by coimmunoprecipitation (CoIP), blotting with a specific antibody for the bound partner,
respectively. (Input) Cell lysate, used as loading control; (IP) immunoprecipitated protein; (IB) immunoblotted protein; (NIgG) nonimmune rabbit or
mouse immunoglobulins, used as negative IP controls. When using NIgG as IP agent, no precipitation lines were detected against IB antibodies, indicating
that CoIPs were protein-specific. Furthermore, reverse CoIPs using IB antibodies as IP agents, followed by IP antibodies for blotting, led to the same results
in almost all cases, hence confirming the interactions. Expected molecular weights are also indicated. (D) In vivo colocalization of interacting partners by
double immunofluorescence staining using confocal microscopy. (Upper panel) Double immunofluorescence confocal micrographs, labeled with a rabbit
anti-ECSIT antibody and a secondary Alexa488-labeled anti-rabbit IgG (visualized in green pseudocolor), and with a mouse anti-PSEN2 visualized in red
pseudocolor with a secondary Alexa568 labeled anti-mouse IgG (Invitrogen). Colocalized immunolabeling (merged window) appears as yellow staining in
some areas (a framed area is also displayed in greater detail, see white arrows). Nuclei are displayed in blue by Hoechst staining. (Second panel) Double
immunofluorescence of ECSIT and APOE following the same procedure. APOE was labeled with a mouse anti-APOE and an Alexa568 (visualized in red
pseudocolor). (Third panel) Double immunofluorescence of GCDH labeled with a rabbit anti-GCDH and an Alexa488 (visualized in green pseudocolor),
and NOS3 labeled with a mouse anti-NOS3 and an Alexa568 (visualized in red pseudocolor). (Bottom panel) Mitochondria staining with MitoTracker Deep
Red stain (visualized in red pseudocolor). Merging with GCDH and NOS3 labeling, respectively, appears as yellow staining, indicating their mitochondrial
localization.

Table 3. Functional enrichment in the HC set; list of GO annotations enriched in the HC set

Branch GO name P-value
Adjusted
P-value

Seed
term

Process Oxidation reduction 1.24 3 10�6 4.27 3 10�4 Yes
Process Regulation of apoptosis 2.20 3 10�5 7.58 3 10�3 No
Process Negative regulation of cell motion 2.39 3 10�5 8.26 3 10�3 No
Function Protein binding 7.39 3 10�11 2.55 3 10�8 Yes
Function Mono-oxygenase activity 1.00 3 10�6 3.46 3 10�4 No
Function Oxygen binding 2.57 3 10�5 8.86 3 10�3 No
Function Actin binding 5.51 3 10�5 1.90 3 10�2 No
Function Integrin binding 7.19 3 10�5 2.48 3 10�2 No
Component Cytoplasm 2.56 3 10�13 8.82 3 10�11 Yes
Component Pseudopodium 1.33 3 10�7 4.59 3 10�5 No
Component Platelet alpha granule lumen 3.90 3 10�5 1.35 3 10�2 Yes
Component Cytosol 5.05 3 10�5 1.74 3 10�2 Yes
Component Cytoskeleton 7.11 3 10�5 2.45 3 10�2 Yes
Component Internal side of plasma membrane 1.30 3 10�4 4.49 3 10�2 No

Enriched terms are grouped by GO branch, sorted by adjusted P-value, and for each of them we report
if it is associated with at least one of the AD seeds.

Interactome mapping of Alzheimer’s disease
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methods (Brohee and van Helden 2006; Vlasblom and Wodak

2009).

With this procedure, we identified 172 modules in the AD-

PIN, of which 117 showed a high degree of functional homoge-

neity, roughly containing 55% of the proteins in the network.

Additionally, we found that 68 of them were significantly enriched

for one or more GO biological process annotations, the most

frequent ones being related to signal transduction, transcription

regulation, proteolysis, apoptosis, protein transport, and oxidative

stress. If we look for the positioning of the seeds and proteins in

our HC set in the AD-PIN, we find that most of them have been

grouped into 38 distinct modules (69% and 80%, respectively), 24

of which are homogenous for, at least, one GO annotation (Fig. 4).

If we compare these figures to the results obtained without in-

cluding our 200 newly discovered interactions, we see that the

number of clusters has risen from 146 to 172, and the number of

homogeneous and enriched groups have also increased in nine

and 14 modules, respectively. Perhaps more relevant to AD is the

fact that the functional modules containing the seeds now in-

clude 13 new proteins, which are serious candidates to play a role

in AD. All the AD-PIN modularity data is reported in Supplemental

File 2.

Globally, the integration of our HC set of interactions into

the larger AD-PIN, together with the analyses and visualization of

the functional modules, have issued many hypotheses that might

trigger novel lines of research. In the following paragraphs, we

present some of the most interesting ideas

that spanned out of the novel interactions

reported and the AD-PIN analyses. These

potential roles are mainly sustained on lit-

erature references and would indeed need

further experimental validation.

Putative role of PDCD4 as neuronal
death regulator in AD

Amongst the most promising interac-

tions, there are two that relate the seed

proteins PSEN2 and APOE with the pro-

grammed cell death 4 (PDCD4) candidate

gene (on chromosomal region 10q24),

which encodes a protein localized to the

nucleus under normal growth conditions,

but it can also shuttle to the cytoplasm

(see Fig. 2B showing the experimental

validation by co-IP). It is thought to be

involved in apoptosis, although the spe-

cific role has not yet been determined

(Lankat-Buttgereit and Goke 2003). Ex-

pression of this gene is modulated by cy-

tokines in natural killer and T cells, in-

hibiting protein translation. In addition,

PDCD4 has been found to inhibit AP-

1-mediated transactivation and to induce

expression of the cyclin-dependent kinase

inhibitor p21. As a result, loss of PDCD4

confers growth advantages to the cells by

several means (Talotta et al. 2009).

In the constructed AD-PIN, PDCD4

is present in a network module function-

ally homogeneous and enriched for ‘‘trans-

lation elongation,’’ which is consistent

with its ability to inhibit protein translation (Yang et al. 2003).

Notably, this gene is up-regulated in AD human brain tissues

and thereby our observations suggest that PDCD4 could play a role

in Ab neurotoxicity in conjunction with APOE and PSEN2 (see

Fig. 5).

Hypothetical role of ECSIT as molecular link between oxidative
stress, inflammation, and mitochondrial dysfunction in AD

Chronic Ab exposure increases protein oxidation in cultured neu-

rons and in AD brains, indicating that mitochondria play a critical

role in Ab cytotoxicity and thereby in the pathogenesis of AD

(Cumming et al. 2007). In the AD-PIN network we detected sev-

eral modules linking redox signaling and immune responses. The

most interesting one includes the candidate gene ECSIT (evolu-

tionarily conserved signaling intermediate in Toll pathway), located

in the susceptibility region 19p13.2 and presenting 13 interaction

partners within the two modules (see Fig. 2 and Supplemental

File 1). Based on this data, we hypothesize that ECSIT might con-

stitute a molecular link between mitochondrial processes and AD

lesions.

The ECSIT gene is an adapter protein involved in NFKB acti-

vation and also plays a role in the BMP signaling pathway required

for normal embryonic development (Kopp et al. 1999). Although

ECSIT acts as a cytoplasmic signaling protein in these two path-

ways, an N-terminal targeting signal directs ECSIT to mitochondria

Figure 3. The HC interaction network. Visual representation of the relationships between AD seeds
and HC interactors. Seeds are depicted in pale orange whereas HC matrix and library interactors are
colored in dark and light blue, respectively. The AD dysregulated interactors are highlighted in red (up-
regulated) and green (down-regulated). Dark violet lines denote those interactions confirmed by pull-
down and coimmunoprecipitation experiments, whereas lilac lines represent interactions confirmed
only by coimmunoprecipitation. Candidate–candidate interactions are removed for clarity.
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as well (Vogel et al. 2007). In fact, cell knockdowns present a dis-

turbed mitochondrial function that supports a role for ECSIT in

linking assembly of oxidative phosphorylation complexes to in-

flammatory response (Vogel et al. 2007).

Our AD interaction map shows the association of ECSIT with

the mitochondrial proteins Lon protease homolog (LONP1), re-

quired for intramitochondrial proteolysis as a cellular response to

oxidative stress, and glutaryl-CoA dehydrogenase (GCDH), in-

volved in redox signaling, which also interacts with the AD seed

NOS3 (Fig. 2D). In addition, we observe ECSIT interactions with

other endoplasmic reticulum redox proteins, like the lysyl-oxidase

homolog 4 (LOXL4) and the CYP2C18 (cytochrome P450 2C18),

involved in an NADPH-dependent electron transport pathway.

Although an altered ECSIT gene expression has not been reported

in AD patients to date, its expression is significantly up-regulated

in Huntington’s patients (Borovecki et al. 2005), and we found it to

physically interact with genes altered in AD brain, namely perox-

iredoxin-2 (PRDX2) and interferon-induced protein with tetra-

tricopeptide repeats 5 (IFIT5) (see Supplemental File 1). This gives

further support to the hypothesis that ECSIT might modulate the

energetic requirements upon inflammatory response by regulating

the rate of complex I synthesis (Vogel et al. 2007).

Figure 4. The modular structure of the AD-PIN. Representation of the network modules identified in the AD-PIN by the MCL algorithm. Functionally
homogeneous modules are depicted as square nodes, and nonhomogeneous modules as circle nodes. Homogeneous modules that are enriched are in
pale orange. Modules containing HC interactors have a thin red border, while those modules including AD seeds have a thick red one. Node labels
correspond to the module identifiers provided in Supplemental File 2. The thickness of the edges is proportional to the number of interactions connecting
two given clusters (max: 22; avg: 1.61; edges with at least two interactions: 257, 26.96%). Green edges (20.56% of the total, connecting 116 clusters)
indicate if two clusters have at least one enriched/most abundant GO term in common.
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Most interestingly, we observed a novel association of ECSIT

with the AD gene APOE (Fig. 2C,D), which was shown to bind

Ab in its oxidized form (Strittmatter et al. 1993). In AD affected

neurons, APOE is proteolysed and associates with neurofibrillary

tangle-like structures and mitochondria, although it still remains

unclear how the fragments associate and cause mitochondrial

dysfunction (Nakamura et al. 2009). The physical interaction of

APOE and ECSIT could thus highlight an association mechanism

that would place APOE on the mitochondrial membrane for fur-

ther cleavage in AD affected cells. The additional interactions of

ECSIT with cleaving enzymes PSEN1 and PSEN2 (Fig. 2C,D) proves

that ECSIT is involved in several pathways which are functionally

connected, supporting the hypothesis that points ECSIT as a mo-

lecular link among oxidative stress, inflammation, and mitochon-

drial dysfunction in AD (Fig. 6).

Concluding remarks
Network and systems biology strategies offer a global perspective to

explore the molecular mechanisms underlying complex diseases

beyond individual genes and proteins. In this work, we have

shown how a combination of interaction discovery experiments

and the computational analyses of diverse biological data can

provide further evidence for potential causative/susceptibility

genes related to Alzheimeŕs disease, suggesting novel hypotheses

as to their molecular functioning. However, to be most valuable,

these functional hints coming from global analyses will need to be

individually validated. The finding that causative genes are often

highly interconnected, even in complex

heterogeneous disorders, places network

biology strategies in a privileged position

to complement genome-wide association

studies and next generation sequencing

techniques in the quest for novel genes

associated to human pathologies. We

anticipate that large international ef-

forts, such as the ongoing initiatives to

chart disease-related interaction maps

(Charbonnier et al. 2008), will soon per-

mit the generation of the basic wiring

inherent to most physiopathological pro-

cesses and refine systems biology models

to the point where they can be effectively

applied to biomedicine.

Methods

AD-related genes and chromosomal
region selection
We extracted all the disease-related pro-
teins from the OMIM Morbid Map data-
base ( January 2008) and picked as AD
genes those loci with the ‘‘(3)’’ tag, which
showed evidence that at least one mu-
tation is known to be associated with AD
(Table 1). We then identified four chro-
mosomal regions, namely 7q36 (MIM:
609636), 10q24 (MIM:605526), 19p13.2
(MIM:608907), and 20p (MIM:607116)
for which the association with the AD
phenotype was confirmed but that did
not contain any gene directly related to

AD. We discarded the region 20p, since it comprised the whole
short arm of chromosome 20.

Connectivity assessment

We built a human interactome fetching the most recent available
data (September 2009) from DIP, IntAct, and MINT databases
(Salwinski et al. 2004; Aranda et al. 2010; Ceol et al. 2010). We
selected experimentally verified direct interactions and added
those interactions described as binary according to the associated
detection methods (Rual et al. 2005). We further extended the
interactome including the HPRD data set (Keshava Prasad et al.
2009), obtaining a human binary interactome consisting of
22,194 interactions between 8347 proteins.

We then evaluated the interconnectivity of AD-related genes
in terms of average shortest path length. To assess the statistical
significance of the connectivity measure, we defined two reference
distributions: 10,000 instances of size equal to 12 (the number of
AD-related genes) consisting of randomly picked proteins from (1)
the human binary interactome and (2) disease-associated proteins
belonging to distinct disorder classes (Goh et al. 2007) and present
in the human binary interactome. We compared the AD genes
average shortest path length and the random set average shortest
path length using the Mann-Whitney U test.

Correlation in gene expression profiles

We used the microarray data from Su et al. (2004), a compendium
of gene expression profiles from 73 normal tissue and cell types.

Figure 5. Putative role of PDCD4 as neuronal death regulator in AD. The AD candidate gene PDCD4
undergoes a complex regulation by cytokines, which results in the inhibition of protein translation. This
gene is up-regulated in AD human brain tissues and thus the novel associations with AD seeds suggest that
PDCD4 could play a role in Ab neurotoxicity in conjunction with APOE and PSEN2. Literature reported
interactions are depicted with black lines, while novel interactions are depicted with red lines. AD seeds are
displayed as orange ellipsoids, candidates as red, and literature interactors as green ellipsoids.
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We applied a mixture model in order to obtain correlation co-
efficients that are robust under the presence of noise. We fit the
model using the expectation maximization (EM) algorithm
(Dempster et al. 1977). We defined two genes as coexpressed if
their EM correlation coefficient was >0.5 and the probability of
noise <0.5.

Y2H cotransformation screens

We individually transferred the ORFs corresponding to the selected
AD genes into Y2H destination vectors by Gateway recombinational
cloning (ProQuest System, Invitrogen Inc.). We cloned the seed
genes into pDEST32 to generate bait plasmids. Seed and candidate
genes were cloned into pDEST22 to obtain prey plasmids.

We pairwise cotransformed bait and prey plasmids into a
MaV203 yeast strain in a 96-well array format. We plated cotrans-
formed cells onto selective SD2 (lacking Leu and Trp amino acids)
agar media and incubated them for 48 h at 30°C. After a colony
replica clean plating, we then replicated cotransformant arrays onto
different selective media agar plates to detect colony growth.
To assay the activation of the HIS3 reporter gene, SD3 (lacking
Leu, Trp, His) agar plates were supplemented with 12–100 mM
3-aminotriazole (3AT, Sigma-Aldrich), 50 mM 3AT being the op-
timal concentration for positive HIS3 activation colonies. Simi-
larly, we assayed the activation of the URA3 reporter gene by
plating onto SD3 (lacking Leu, Trp, uracil) media or SD2 supple-
mented with 5-Fluoroorotic acid (5FOA, Sigma-Aldrich) for nega-

tive colony selection. Double reporter HIS3/URA3 activation was
evaluated by SD4 (lacking Leu, Trp, His, uracil) agar plates. We
tested the lacZ reporter gene by the beta-galactosidase assay on
a nylon membrane placed onto a SD2 agar plate.

Y2H mating screens

We individually transformed bait and prey clones into MATa or
MATa yeast haploid strains, respectively, in a 96-well array format.
We cultured the single transformants into appropriate selective
liquid medium (lacking Trp for the baits or Leu for the preys) to
ensure the selection of transformants. We mated 43 MATa yeast
cells individually expressing baits against 44 MATa prey-express-
ing cells in a pairwise format. We subsequently incubated the
mates onto YPD (yeast rich media) plates for 48 h at 30°C. We then
replated the coexpressing colonies onto SD2 (without Leu or Trp)
agar medium and transferred the mated cells onto SD3 and SD4
agar plates to assess the activation of HIS3 and URA3 reporter genes.
lacZ reporter gene was evaluated by a beta-galactosidase assay on
a nylon membrane placed on a SD2 agar plate.

Y2H library screens

We performed a Y2H library screen using an adult human brain
cDNA prey library (ProQuest, Invitrogen). We transformed yeast
cells expressing individual baits (generated from the seeds) with
the cDNA prey library and screened them onto selective agar media

Figure 6. Potential contribution of new molecular mechanisms to mitochondrial dysfunction in AD. The AD candidate gene ECSIT, which is involved in
TLR and BMP signaling pathways and also in the assembly of mitochondrial redox complexes, shows additional interactions with several AD causative and
candidate genes that are functionally connected. Thus ECSIT can constitute a molecular link among oxidative stress, inflammation, and mitochondrial
dysfunction in AD. Literature reported interactions are depicted with black lines, while novel interactions are depicted with red lines. AD seeds are
displayed as orange ellipsoids, candidates as red, and literature interactors as green ellipsoids. (ETC) Electronic transport chain.
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to check HIS3 and URA3 reporter gene activation. After 7 d in-
cubation at 30°C, we picked up positive growing colonies and
cultured them in prey selective liquid medium (lacking Trp). In
each screen, we typically tested 6 3 104 auxotrophic transformants
on selective plates, obtaining 1–15 positive colonies in average. We
extracted the prey plasmid DNAs from the cultures and we sub-
sequently carried out the bacterial transformation of each plasmid
in order to enable DNA sequencing and subsequent gene identi-
fication by BLAST search.

We further tested the preys we identified by the library to-
gether with their respective baits in cotransformation assays for
activation of reporter gene expression, in a similar procedure as
explained above.

In vitro pull-down assays

For GST pull-down assays (PD), we selected genes that yielded
detectable protein overexpression in COS-7 mammalian cells. As
several genes encode for membrane proteins, we observed limited
overexpression, which enabled us to only test 12 genes involved in
11 protein–protein interactions. We transferred each partner gene
into a GST- or MYC-expression vector using the Gateway system
(Invitrogen, Inc.), and transfected GST-fused plasmids into COS7
mammalian cells using Lipofectamine 2000 following the manu-
facturer’s instructions. We cultured cells in Dulbecco’s modified
Eagle’s medium (DMEM) supplemented with 10% fetal bovine
serum (FBS) and antibiotics (100 U/mL penicillin and 10–6 mg/mL
streptomycin). All reagents were purchased from Invitrogen Inc.

Two days after transfection, we harvested and lysed cells with
lysis buffer (0.2% NP-40, 0.05% Triton X-100, 50 mM Tris-HCl at
pH 7.85, 50 mM NaCl, 5 mM MgCl2, 50 mM ZnCl2, 0.5 mM EDTA,
10% glycerol, and complete protease inhibitor cocktail [Roche]).
We cleared whole cell lysates by centrifugation for 20 min at
16,000g at 4°C and we purified the soluble protein complexes us-
ing glutathione Sepharose 4B beads (GE Healthcare). We then ex-
tensively washed the beads three times with lysis buffer. We eluted
and analyzed bound proteins by SDS-PAGE and Western blotting.

We detected MYC- and GST-tagged proteins using mouse anti-
MYC monoclonal antibody (mAb) (Invitrogen, cat. 13-2500) and
rabbit polyclonal antibody (pAb) (Invitrogen, cat. 71-7500) or mouse
mAb anti-GST (Invitrogen, cat. 13-6700).

Coimmunoprecipitation (Co-IP) assays

For co-IP assays, we selected those interactions involving proteins
with both commercially available and compatible specific antibodies.

We cultured SH-SY5Y human neuroblastoma cells in DMEM
plus F12 (1:1) supplemented with 10% FBS, 2 mM sodium pyru-
vate, and 2 mM nonessential amino acids (NEAA). After lysis with a
mild buffer (0.5% Triton X-100, 50 mM HEPES at pH 7.50, 150 mM
NaCl, 1 mM MgCl2, 1 mM EGTA, and complete protease inhibitor
cocktail [Roche]), we cleared whole cell lysates by centrifugation
for 20 min at 16,000g at 4°C.We then precleared the lysates by
adding protein A/G Sepharose beads (GE Healthcare) (10% of the
total lysate). After 30 min of rotation at 4°C, we removed the beads
by centrifugation at 16,000g at 4°C for 10 min. We added the ap-
propriate antibody (1ug) to the lysate. After incubation for 1 h at
4°C on a rotating plate, we added 30 mL of protein A/G bead slurry
and incubated under rotation at 4°C overnight. We collected and
washed the beads extensively three times with lysis buffer, we
eluted the complex and after SDS-PAGE separation, we detected
the binding partner of the precipitated protein using the corre-
sponding specific antibody.

Commercially available antibodies were mouse anti-PSEN1
mAb (cat. ab15456), mouse anti-NOS3 mAb (cat. ab2801), mouse

anti-APOE mAb (cat.ab1906), mouse anti-IFIT3 mAb (cat.
ab76818), mouse anti-PSEN2 mAb (cat. ab15549), rabbit anti-APP
pAb (cat.ab15272), rabbit anti-ECSIT pAb (cat. ab21288), rabbit
anti-CDC37 pAb (cat. ab61773), rabbit anti-GCDH pAb (cat.
ab75324), rabbit anti-PDCD4 pAb (cat. ab45124), and rabbit anti-
ST13 pAb (cat. ab73917). We purchased those antibodies from
Abcam Inc.

Double immunofluorescence and confocal microscopy

COS-7 cell monolayers were harvested at 24 h post-infection, fixed
with 4% paraformaldehyde in phosphate buffered saline (PBS) and
permeabilized in 0.1% (v/v) Triton X-100 in PBS. Cells were
blocked with 1% BSA in PBS (PBS-BSA) and reacted with a protein
specific polyclonal rabbit antibody (1:200 in PBS-BSA) and Alexa
Fluor 488-labeled goat anti-rabbit IgG (Invitrogen), and a protein
mouse monoclonal antibody (1:200 in PBS-BSA) and Alexa Fluor
568-labeled goat anti-mouse IgG antibody (Invitrogen). Samples
were treated with Hoechst stain (Invitrogen) for nuclei staining
and with MitoTracker Deep Red stain (Invitrogen) for mitochon-
drial staining. They were subsequently mounted on slides. Samples
were analyzed using a Leica TCS SP2 confocal microscope.

Gene Ontology annotation

We used the human GO annotation extracted from the Entrez
gene2go file (NCBI, September 2009) and assessed the statisti-
cal significance of GO term enrichment using the Fisher’s exact
test. We adjusted the P-values for multiple testing, applying the
Bonferroni correction.

Overrepresentation of AD-dysregulated genes

We downloaded the lists of AD-dysregulated genes from the The
Molecular Signatures Database (Subramanian et al. 2005; http://
www.broadinstitute.org/gsea/msigdb/). We assessed the overrep-
resentation of AD-dysegulated genes in the AD genes interactor
sets using the Fisher’s exact test.

Identification of functional modules within the AD-PIN

We applied the MCL algorithm (van Dongen 2000) to identify the
cluster representing putative functional modules. Since the gran-
ularity of the clustering depends on one parameter, the inflation
coefficient, I, we ran MCL on the AD-PIN exploring a wide range of
I (from 0.1 to 10.0 by steps of 0.1).

We chose the value of I that maximized the number of func-
tionally homogenous clusters, i.e., modules, containing at least
three proteins. We evaluated the functional relatedness of modules
in terms of GO homogeneity (Goh et al. 2007), GH, defined as the
maximum fraction of proteins in the same module that have the
same GO terms from the biological process branch. For the GH
computation, we required that 50% of the proteins be present in the
module to be annotated with at least one GO term.

We then assessed the statistical significance of each homo-
geneous module, comparing its GH to the mean GH of a reference
distribution obtained by computing the GH for 10,000 randomly
generated sets of the same size of the module. We picked proteins
for the randomization from the human binary interactome.
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Suñé for assistance with the in vitro binding assays.
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