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Regulation of gene transcription in diverse cell types is determined largely by varied sets of cis-elements where tran-
scription factors bind. Here we demonstrate that data from a single high-throughput DNase I hypersensitivity assay can
delineate hundreds of thousands of base-pair resolution in vivo footprints in human cells that precisely mark individual
transcription factor–DNA interactions. These annotations provide a unique resource for the investigation of cis-regulatory
elements. We find that footprints for specific transcription factors correlate with ChIP-seq enrichment and can accurately
identify functional versus nonfunctional transcription factor motifs. We also find that footprints reveal a unique evolutionary
conservation pattern that differentiates functional footprinted bases from surrounding DNA. Finally, detailed analysis of
CTCF footprints suggests multiple modes of binding and a novel DNA binding motif upstream of the primary binding site.

[Supplemental material is available for this article. The sequence data from this study have been submitted to the NCBI
Gene Expression Omnibus (http://www.ncbi.nlm.nih.gov/geo) under accession nos. GSE19622 and GSE25442.]

Demarcation of transcription factor binding is key to the under-

standing of gene expression and whole regulatory networks within

a cell. This is a particularly daunting task since it is estimated that

there are approximately 1500 transcription factors in the human

genome (Vaquerizas et al. 2009). A number of methods have been

developed to identify the location of transcription factor binding,

such as chromatin immunoprecipitation with massively parallel

sequencing (ChIP-seq), position weight matrices (PWMs), electro-

phoretic mobility shift assays (EMSAs), and footprinting using

DNase I or dimethylsulfate.

While these methods are extremely powerful and comple-

mentary, each method has limitations. For example, ChIP-seq re-

quires a large number of cells and a high-quality antibody (or

epitope tagged version) and is unable to resolve DNA–protein in-

teractions at base-pair resolution. PWMs model DNA binding site

sequence preferences, commonly referred to as ‘‘motifs,’’ for dif-

ferent transcription factors. Since most transcription factor motifs

are four to eight bases in length, these annotations often include

large numbers of predicted sites with low specificity. In addition,

PWMs are only available for a fraction of factors. EMSAs test

whether any fragment of DNA can bind to nuclear extracts or pu-

rified single proteins. However, this in vitro assay may not be ac-

curate if multiple factors or DNA segments are required for bind-

ing. Traditional footprinting assays accurately identify the precise

binding sites of any factor. However, this low-throughput method

is highly technical and can only analyze a single small region (<1

kb) at a time. Together, this indicates that additional methods are

clearly needed to better understand global gene regulation.

Mapping DNase I hypersensitive (HS) sites across the genome

using a deep sequencing approach (DNase-seq) identifies a broad

variety of active cis-regulatory elements (Wu 1980; Gross and

Garrard 1988; Boyle et al. 2008a). DNase-seq identifies sites of

DNase I digestion at single base resolution, even though these

data are typically smoothed to identify larger DNase I HS sites

(;200 bp). Previously it was shown that similarly derived DNase I

digestion data could identify individual binding sites in Saccharo-

myces cerevisiae based on the protection of short stretches of

nucleotides with the larger HS sites (Hesselberth et al. 2009).

Likewise, in humans we observed that the raw distribution of se-

quence tag locations within each HS site is not uniform reflect-

ing in vivo protection of DNA by individually bound proteins, sim-

ilar to traditional DNase I footprinting assays.

Here, we describe DNase I footprints identified from DNase-

seq data generated from seven similar (lymphoblastoid cell lines)

(McDaniell et al. 2010) and five diverse (K562, HeLaS3, HUVEC,

NHEK, and embryonic stem cell) human cell types (available at

http://www.genome.duke.edu/labs/furey/datasets/). We show that

DNase I footprints are reproducible, robust, and accurate at iden-

tifying and annotating hundreds of thousands of putative protein

binding sites genome-wide. Footprinting data alone cannot an-

notate every site for every known and unknown factor, but they are

an important complement to ChIP-seq and conservation data that

provides valuable protein/DNA interaction information. Together,

these enable an even more comprehensive accounting and char-

acterization of active cis-elements with base-pair resolution.

Results

Transcription factor binding sites are depleted
for DNase I cleavage sites

DNase-seq data was generated and uniformly processed from

multiple independent replicates as part of the human ENCODE

project (Supplemental Table 1A; The ENCODE Project Consortium
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2004). To assess the ability of DNase-seq to identify footprints, we

first investigated general digestion patterns around published

motifs for transcription factors with known PWMs (Matys et al.

2006; Kim et al. 2007; Bryne et al. 2008; Newburger and Bulyk

2009). We determined all positions in the genome matching these

motifs, referred to from here on as motif predicted binding sites.

We then calculated the number of DNase I cuts at each base pair

within and surrounding all motif predicted binding sites for

a particular factor across the genome. At this cumulative level, we

clearly detected a footprint characterized by a lack of DNase I di-

gestion within these sites for many individual transcription factors

(for CTCF, see Fig. 1A; for multiple other factors, see Supplemental

Fig. 1A). These footprints were detected at the cumulative level

even though presumably many of the motif predicted binding sites

were not bound by transcription factors. This aggregate detec-

tion of footprints was only seen for factors with high information

content motifs whose predictions are significantly enriched for

functional sites in the genome (Supplemental Fig. 1A). Approxi-

mately 30% of motif predicted CTCF binding sites corresponded

with a footprint signal. Factors with low information content

motifs (shorter and/or less complex) generate many false positives

that mask the cumulative footprinting signal. For example, less

than an estimated 0.1% of over 40 million short (four bases), in-

formation-poor GATA1 motif predicted binding sites showed evi-

dence of footprinting (data not shown).

To determine whether functional binding sites could be de-

termined based solely on DNase-seq data, we used k-means clus-

tering to divide up motif predicted CTCF binding sites that overlap

or do not overlap a footprint (see Methods). We compared these

sets to CTCF ChIP-seq data collected from the same cell growth.

Motif predicted CTCF binding sites with a footprint signal were

highly enriched for ChIP-seq signal (Fig. 1A), whereas those without

footprint evidence displayed almost no ChIP-seq signal (Fig. 1B).

ChIP-seq signal was significantly stronger in regions that

overlapped footprints compared with ChIP-seq peaks without

footprints (P < 2.2 3 10�16; Supplemental Fig. 1B). Similarly, motif

predicted sites that overlapped footprints had higher PWM scores

than those without footprints (P < 2.2 3 10�16; Supplemental Fig.

1C). It is important to note that the strength of the PWM score

only partially predicts in vivo binding by ChIP-seq (Supplemental

Fig 1D) compared with using footprint data as a guide (Fig. 1A,B).

General correspondence of footprints, ChIP-seq signal, and PWM

strength indicates that all three data describe biologically relevant

and important characteristics of transcription factor binding, which

is likely related to increased protein binding affinity and/or in-

creased occupancy throughout the cell population.

Identification of individual footprints

While cumulative plots provide summary validation for DNase I

footprinting, we also developed a five-state hidden Markov model

(HMM) (see Methods) in order to identify individual footprints

throughout the genome (Supplemental Fig. 1E). This HMM iden-

tified small regions within DNase I HS sites where there was re-

duced DNase I digestion (footprints) compared with adjacent bases

(see Methods). Footprints were identified in individual cell types

as well as in pooled lymphoblastoid data. In general, we found

that signals in all lymphoblastoid cell lines were extremely sim-

ilar (Supplemental Fig. 2). We were conservative in our delineation

of footprints to reduce the number of false positives. The number

of footprints per cell type ranged from 100,000–325,000. Varia-

tion in the number of footprints identified appears to be primarily

due to differences in the number and average size of DNase I HS

sites annotated in each cell line (Supplemental Table 1).

We identified the putative factors bound to each footprint

using STAMP (Mahony and Benos 2007) in conjunction with

motifs that are publicly available in the JASPAR (Bryne et al. 2008),

Figure 1. DNase-seq identifies protein–DNA footprints. All potential
CTCF binding sites were identified genome-wide using motif matching
and compiled such that their 59 end was set at position zero. Cumulative
DNase-seq and CTCF ChIP-seq signals within 500 bp of each site in both
directions were determined. (A) CTCF motifs that have a DNase I footprint
(red) also display high CTCF ChIP-seq signal (green). (B) CTCF motifs that
have no footprint have greatly reduced CTCF ChIP-seq signal. (C ) Foot-
printing using DNase-seq accurately identified footprints within the FMR1
promoter region previously mapped using traditional in vitro DMS foot-
printing. Dips in raw DNase-seq signal and annotated footprints corre-
spond perfectly with previously identified footprints (gray boxes) (Drouin
et al. 1997). The phastCons annotation shows increased levels of evolu-
tionary conservation within called footprints. (D) A representative individual
region displaying a DNase I footprint matching a known CTCF binding
motif (gray box) with a strong corresponding CTCF ChIP-seq signal. See
also Supplemental Figure 1A.
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TRANSFAC (Matys et al. 2006), and UniPROBE (Newburger and

Bulyk 2009) PWM databases. In total, there were 476 PWMs rep-

resenting 398 distinct factors, some of which represent the binding

of multi-protein complexes. We required motif matches with

P-values < 10�6 and allowed footprints to be labeled with multiple

factors if each separate motif matched with scores below this

threshold. Using this strict criterion, only 21%–26% of predicted

footprints were annotated by a currently known motif (Supple-

mental Table 1). Our strict motif criteria and, more generally, the

incomplete knowledge of sequence preferences for all DNA bind-

ing proteins likely contributed to this low rate of annotation. Using

more lenient motif match criteria would increase the number of

annotated sites but would also increase the rate of incorrect an-

notations. We note that these annotations represent candidate

binding factors. Those factors with large, information-rich motifs,

like CTCF and REST, are more likely to be correctly labeled. In

many cases, multiple distinct factors have very similar binding site

motifs (Mahony et al. 2007). Thus, annotations of factors with

smaller, information-poor motifs or whose motifs are similar to

those of other factors may be less accurate.

To demonstrate the accuracy of our model, we show that

predicted footprints from DNase-seq data pooled from seven dis-

tinct lymphoblastoid cell lines perfectly match previously identi-

fied NRF1, SP1, AP-2, and MYC footprints near the FMR1 (fragile

X mental retardation 1) promoter (Fig. 1C; Drouin et al. 1997). We

also found that CTCF footprints corresponded extremely well to

individual CTCF binding sites detected both by ChIP-seq as well as

by motif prediction (Fig. 1D). To more globally determine the ac-

curacy of our model, we used ChIP-seq data for CTCF, REST, GABP,

and SRF and determined the positive predictive value (PPV) of

motifs that were (1) present across the entire genome, (2) found

within a DNase I HS site, or (3) found within a footprint (Fig. 2;

Supplemental Table 2). The motifs with a corresponding ChIP-seq

peak were considered functional (true positives), while the motifs

with no ChIP evidence were considered not functional (true neg-

atives). Predicted CTCF and REST footprints had a PPV of >98%,

while predicted GABP and SRF footprints had a PPV of >50%. The

reduced PPV for GABP and SRF footprints may be due to DNase I

and ChIP data originating from nonmatched cell types (Valouev

et al. 2008) or may be due to these factors having binding motifs

with lower information content. However, we note that for GABP

and SRF, the footprint PPV significantly outperforms the PPV using

a purely sequence-based motif approach by 20- to 50-fold (Fig. 2).

Using stricter PWM criteria to identify positives and negatives does

not significantly affect the PPV for CTCF and REST footprints, but

it does increase the PPV for GABP and SRF footprints to ;80%

(Supplemental Fig. 3). Footprints also are much more accurate at

identifying ChIP-seq peaks compared with simply using motifs

that are present in a DNase I HS site (Fig. 2; Supplemental Fig. 3).

Sensitivity and specificity measurements show similar results

(Supplemental Table 2). These observations indicate that DNase-

seq footprinting accurately identifies active transcription factor

binding sites.

The reproducibility of our DNase I footprinting method is

evident by the footprint annotations across two lymphoblastoid

lines being much more correlated than between cell lines of dif-

ferent lineages (Supplemental Fig. 4A). In fact, these two lines

showed higher correlation based on footprint annotations than

based on gene expression levels (Supplemental Fig. 4B). Addi-

tionally, DNase I footprint annotations and CTCF ChIP-seq data

were also generated for K562, HelaS3, NHEK, HUVEC, and em-

bryonic stem cells. Even though there were less DNase I sequences

generated than for the combined lymphoblastoid data (Supple-

mental Table 1), we found that the accuracy of predicted CTCF

footprints remained high in all cell lines, as evidenced by strong

PPV rates (94%-99%) for CTCF ChIP-seq signals (Supplemental

Table 3).

As mentioned previously, the number of footprints identified

in each cell type is dependent on the DNase I HS site annotation.

Higher numbers of DNase I sequences improves the accuracy of

the footprint annotation within these HS sites. For example, the

PPV for CTCF is higher and more footprints are annotated with

factors by STAMP in the combined lymphoblastoid data compared

with individual lymphoblastoid cell lines (Supplemental Tables

3, 1, respectively).

Preferences in footprint locations relative to genes
and each other

Many transcription factors have been more closely associated with

binding proximal promoter regions, while others have shown

a preference for distal regions. Using the distribution of footprints

from 89 factors that are annotated in at least 100 distinct locations

in the combined lymphoblastoid data, we determined the expected

number and enrichment/depletion of footprinted sites for a single

factor in promoter or nonpromoter categories (Supplemental Table

4). Not surprisingly, several well-known factors, including SP1, AP-2,

USF, and GABPA, were enriched in promoter regions. These have

been previously associated with basal promoter activity in a large

variety of genes with diverse functions. In contrast, other factors are

depleted in promoters and enriched in nonpromoter regions, in-

cluding FOS, STAT1, IRF1, IRF2, HSF, and CTCF. Many of these latter

factors are involved in more specialized cellular functions, in this

case in lymphoblastoid cells, and are often activated in response to

an external stimuli.

Since many factors bind within complexes or work co-oper-

atively, we asked if any two factors were preferentially bound

within the same DNase I HS site more often than chance. When

analyzing each pair of factors, individual footprints labeled with

both factors were discarded to correct for factors with very similar

Figure 2. Accuracy of footprinting model. Positive predictive value
(PPV) was calculated for predictions of four factors: CTCF, REST, GABP,
and SRF. True-positives were determined by ChIP-seq peaks with a
matching motif, while true-negatives were determined by motifs without
corresponding ChIP-seq peaks. PPV is shown for predictions using only
PWMs (all PWMs are considered an actual binding site), PWMs that map
within DHS sites (all PWMs within a DNase I hypersensitive site are con-
sidered actual binding sites, while those PWMs outside of DNase I hy-
persensitive sites are considered negatives), and PWMs that map within
footprints (all PWMs within a footprint are considered actual binding sites
while those PWMs outside of footprints are considered negatives). The
total number of PWMs mapped to the genome for each factor is listed in
parentheses.
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motifs. We found 35 combinations of fac-

tors that significantly colocalize in lym-

phoblastoid cells (Supplemental Table 5).

Colocalization graphs depicting these re-

lationships show that the factors divide

neatly into two clusters. The first, larger

cluster consists of 12 factors, including

SP1, AP-2, MYCN, and GABP (Supple-

mental Fig. 5A). Approximately 87% of

co-occurrences for these factors map

within promoter regions in lympho-

blastoid cells. In addition, on average in

each of the other five diverse cell types,

over 97% of the DNase I HS sites con-

taining these co-occurrences were also

annotated. In contrast, the second, smaller

cluster consists of six factors known to reg-

ulate genes in response to external stim-

uli (Supplemental Fig. 5B). Interestingly,

87% of the second cluster instances are

found in nonpromoter regulatory regions.

Only 33% of the DNase I HS sites con-

taining these colocalized footprints were

similarly identified on average in non-

lymphoblastoid cell types. Therefore, very

distinct combinations of factors appear

to colocalize in ubiquitously open pro-

moters in contrast to cell type–specific

nonpromoter regions.

We repeated these analyses on each

of the five other cells lines. Interestingly,

we found a core set of nine combinations involving seven factors

(SP1, AP-2, MYCN, PAX4, USF, ARNT, RREB1) that significantly colo-

calized in essentially all cell types (Supplemental Table 6; Supple-

mental Fig. 5A, bold lines). Another 22 pairs of factors were com-

monly found in two or more cell lines, and several co-occurrences

were limited to a single cell-type (Supplemental Table 6). As men-

tioned previously, greater sequencing depth appears to influence

the ability to identify footprints and the accuracy of footprint an-

notations. Besides the combined lymphoblastoid data, only the

H1 embryonic stem cells were sequenced to a depth of at least 100

million sequences. Thus, the combined lymphoblastoid and H1

lines had far greater numbers of significantly co-occurring factors.

In the H1 data, we also see colocalized factors for which footprints

for both are primarily found (>89%) in nonpromoter distal regions

(Supplemental Table 6; Supplemental Fig. 5C). Interestingly, these

primarily consist of NFKB or its subunits (REL family, specifically

c-REL) in combination with another factor. Presumably, deeper

sequencing in other cell lines would likewise reveal more cell

type–specific combinations in this and other cell types.

Cell type–specific footprinting patterns

By mapping footprints across various cell lines, we used cumula-

tive plots similar to Figure 1 to detect factors similarly utilized in

all cell types as well as those that differed in a cell type–specific

manner. Factors used in all cell types displayed consistent foot-

printing signals in all cell types, while cell type–specific footprints

showed a diminished or distinct lack of a footprint signal in one

or more cell types. For example, REST showed a footprint pattern

in all cell types (Fig. 3A), while TLX1-NFIC and IRF2 displayed cell

type–specific patterns (Fig. 3B,C). These cell type–specific foot-

printing patterns are highly correlated with gene expression dif-

ferences (data not shown) and are supported by previous studies.

For example, REST is known to repress neuronal genes in all non-

neuronal cell types, and IRF2 is an interferon regulatory tran-

scription factor known to be involved in the development of im-

mune-related cells, including B cells (Tamura et al. 2008). The

homeoprotein TLX1 is known to interact with the CCAAT binding

transcription factor NFIC (N Zhang et al. 1999). We clearly see

footprints for the TLX1/NFIC complex in K562, HeLaS3, HUVEC

and NHEK cells but not lymphoblastoid or embryonic stem cells.

We do not detect a difference in the mean expression of TLX1

across these cell lines (m1 = 5.47 log2 expression for cells with

footprints, m2 = 5.41 for cells without footprints), but we do see

a nearly threefold increase in the expression of NFIC in those cell

types with footprints (m1 = 9.23, m2 = 7.73). This suggests that the

differential binding of the TLX1/NFIC complex in these cell types

identified by the footprinting data is likely mediated by NFIC

expression.

Relationship to gene expression

We compared DNase-seq footprints to gene expression patterns

using RNA isolated from the same growths of the six diverse cell

lines. Transcription factors with low expression signals in a cell

line had fewer predicted footprints, while highly expressed factors

were overrepresented in the number of predicted footprints (Sup-

plemental Fig. 4C). This trend was especially striking in the top

quantile of highly expressed factors where significantly higher num-

bers of footprints were predicted than for factors in the second

quantile (P < 2.381 3 10�15) and even more so compared with

factors in the bottom quantile (P < 8.381 3 10�16) (Supplemental

Figure 3. Identification of cell type–specific footprints. Cumulative DNase-seq footprinting signals
were determined across seven different cell lines for REST (A), TLX1-NFIC (B), and IRF2 (C ). For each
factor, the same set of motifs was used for all seven cell types. DNase-seq read counts were calculated in
the regions surrounding these motifs, similar to Figure 1. Regions shaded in gray represent cell types that
display reduced footprinting signal. HUVEC IRF2 shows moderate footprinting signal (light gray). Note
that for REST, all cell lines display consistent signals.
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Fig. 4D). Interestingly, CTCF was one of the most highly expressed

genes and displayed the most footprints in all cell types (Supple-

mental Fig. 4C). However, we find that high levels of transcription

factor expression do not necessarily imply a corresponding high

number of annotated footprints.

Evolutionary conservation of footprints

Previous studies have shown that many functional binding sites

are more conserved than background at the sequence level (Liu

et al. 2004; Hesselberth et al. 2009). Many computational pre-

dictors of novel regulatory elements often attempt to incorporate

this information (Boffelli et al. 2003). To date, this has proved dif-

ficult, likely due to the short, degenerate nature of binding motifs

for many factors and the inability to precisely locate their positions.

To assess patterns of evolutionary conservation within our

predicted footprints, we analyzed the conservation profiles using

phastCons (Siepel et al. 2005) for sites corresponding to each

specific factor. We found a significant increase in conservation

directly within the footprint, which is above the average level of

conservation across an entire DNase I HS site (Fig. 4A). For most

factors, we detected a marked drop in conservation ;10 bp im-

mediately flanking the footprint. Beyond this drop, conservation

increased again before gradually decreasing to background levels,

creating a ‘‘shoulder’’ in this signal. This unusual conservation

pattern was not observed in footprints identified by DNase-seq in

S. cerevisiae (Hesselberth et al. 2009) and was detected for most

individual factors (Fig. 4B; Supplemental Fig. 6C; data not shown).

This shoulder is notably absent from CTCF, which only displays

a single peak at the footprint (Fig. 4C). This is not an artifact of the

large number of annotated CTCF sites as the shoulder is still absent

when considering only CTCF footprints at promoters or a small

fraction of random CTCF sites (Supplemental Fig. 6D). The sharp

conservation pattern in footprints can also be seen for individual

footprinted regions (Fig. 1C–D). The drop in conservation between

the footprint and shoulder can also be seen by analyzing conser-

vation patterns in the DNA that corresponded to each state in our

footprint HMM model (Supplemental Fig. 1E). DNA labeled by

the ‘‘footprint’’ state (‘‘FP’’) is highly conserved, whereas DNA ad-

jacent to footprints but still within regulatory regions (‘‘UP’’ and

‘‘DOWN’’) shows much lower conservation (Supplemental Fig. 6A).

In general, higher evolutionary conservation in DNase I HS regions

(Supplemental Fig. 6B) is likely due to the presence of multiple

functional sites in the larger cis-regulatory modules or promoter

regions. The drop in conservation immediately adjacent to most

footprints suggests that steric hindrance prevents the binding of

nearby factors and may have resulted in relaxed selection pressure

for those bases.

CTCF footprints display unique binding characteristics

CTCF is a unique transcription factor that has been shown to

display diverse regulatory roles including insulator, enhancer, and

repressor activity (Phillips and Corces 2009). CTCF contains 11

zinc fingers, and several studies have discovered a highly con-

served GC-rich 20-bp motif associated with many, but not all,

detected CTCF binding sites (Kim et al. 2007). Mutational studies

have demonstrated that in at least some instances, additional zinc

fingers contact sequence upstream of this GC-rich core that may be

necessary for binding (Filippova et al. 1996) or appear to stabilize

binding (Quitschke et al. 2000) of CTCF. A significant fraction of

CTCF binding sites do not contain this primary motif or any other

motif, indicating that CTCF binds indirectly to some regions of the

genome.

It has been demonstrated that footprint digestion patterns

can reflect the actual structural interaction of a factor with the

DNA (Hesselberth et al. 2009). Orienting and aligning CTCF foot-

prints based on the direction of the 20-bp motif, we found that

CTCF has a very unique footprinting profile (Fig. 5A). CTCF foot-

prints were extremely depleted for DNase I digestion in the 20-bp

region that corresponds to the previously characterized GC-rich

binding motif. Unlike other factors where the frequency of DNase I

cuts rises sharply at the boundaries of the motif, the signal upstream

region of the CTCF motif increases more gradually, indicating that

CTCF protection extends beyond the 20-bp motif. A similar phe-

nomenon was detected to a lesser extent in the 39 downstream di-

rection. The total length of these combined protected regions

agrees with a single footprinted CTCF site that displayed 50–60

bases of general protection (Phillips and Corces 2009).

Interestingly, we detected a 10-bp spike in DNase I hyper-

sensitivity immediately upstream of the primary motif that is only

present on the positive strand (Fig. 5B). This spike was previously

reported by traditional DNase I footprinting on a single CTCF

binding site in the promoter of the Amyloid precursor protein

gene but was not shown to be strand-specific (Quitschke et al. 2000).

We found that this spike was not present in all footprints. Of the

4122 CTCF footprints where we additionally required the footprint

to overlap 95% of the 20-bp motif, ;80% showed evidence of a

Figure 4. Conservation of sequence in and around DNase I footprints. (A) In general, footprints contain a strong sequence conservation signal with
a nearby ‘‘shoulder’’ of conservation around all footprinted regions (black). Between the conservation peak and shoulder is a region with a marked
decrease in conservation. This conservation pattern is not detected when the signal is centered on DNase I hypersensitive sites (red). The average
conservation signal across the genome is shown in green. (B) The conservation pattern for a single factor, NFYA, displays the characteristic drop in
conservation surrounding the footprint. (C ) This conservation pattern is not detected around CTCF footprints, which shows relatively little conservation
outside the highly conserved footprint. See also Supplemental Figure 6.
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spike in hypersensitivity, while the remaining 20% did not (Fig.

5A). Approximately 60%–80% of CTCF footprints that contained

the spike in lymphoblastoid cells also contained the spike in the

other five diverse cell types. DNA strand-specific footprint analysis

displays very distinct patterns of digestion within and across these

two sets of footprints (Fig. 5B,C) and suggests alternative ways that

CTCF associates with DNA.

We analyzed different portions of the larger CTCF footprint

for secondary motifs and identified SCTGCAST, a motif similar to

that recently described for the zinc finger protein ZBTB3 (Badis

et al. 2009), ;10 bp (or one DNA helical turn) upstream of the

59 end of the CTCF motif (Fig. 5A). This motif appears in 10%–20%

of sites with the spike in hypersensitivity but is not present in the

set of CTCF footprints lacking the upstream spike. Excluding

CTCF motifs that have an adjacent ZBTB3 motif does not eliminate

the upstream footprint, indicating that ZBTB3 is not the only pu-

tative factor that binds upstream of CTCF, and it is not likely

contributing to the spike digestion pattern upstream of the main

CTCF motif.

Discussion
We have shown that genome-wide in vivo DNase I footprinting

can precisely identify a large number of specific cis-regulatory

protein binding events in human in a single experiment. DNase-seq

works well with as little as 1 million cells, which will be useful in

studying rare primary cell types that are limited in number. We

have generated publicly available footprint annotations for seven

similar and six diverse cell lines for which DNase-seq data was

generated as part of the ENCODE project. Even though compre-

hensiveness of footprint annotations is likely dependent on the

number of sequences from DNase-seq and the level of background

noise in the experiment, we show evidence that even a relatively

small number of sequences provide a good initial annotation. This

indicates that high-throughput DNase-footprint identification is

possible for genomes much larger than yeast. As sequencing con-

tinues to get less expensive, we expect to be able to obtain even

more accurate footprint maps.

Since the binding affinity of a factor to DNA can affect the

relative amount of protection from DNase I digestion, this may

affect our ability to annotate all transcription factor binding sites.

This is supported by our observation that ChIP-seq sites that do not

overlap DNase I footprints have weaker ChIP signals. Relative in-

tensity of footprints may therefore provide another source of data

to measure binding affinity and occupancy for various factors

across the genome. We have also shown that DNase-seq footprints

can distinguish more precisely how factors like CTCF may interact

with DNA in different ways and may bind in conjunction with

other novel factors. These types of information are distinctly dif-

ferent than that typically extracted from ChIP-seq data.

Figure 5. High-resolution analysis of CTCF binding sites. (A) Cumulative footprinting signal at all CTCF motif predicted sites that includes sites with and
without a large increase in DNase I digestion upstream of the CTCF motif. The light gray bar indicates the location of the known CTCF motif. The dark gray
bar represents the location of a novel binding motif. The novel binding motif was only detected in CTCF footprints that contain the small upstream region
with a spike in DNase I hypersensitivity (HS). Note that the entire protected region is approximately 50–60 bases. (B) Strand-specific DNase-seq signal for
the subset of CTCF motif identified sites that contain the upstream DNase I HS spike. The DNase I HS spike is only detected on the positive strand. (C )
Similarly for the CTCF motif identified sites without the upstream DNase I HS spike. The diagram below each plot in B and C illustrates the estimated strand-
specific protected regions surrounding the CTCF motif predicted sites.
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DNase I footprint annotation relies on known PWMs to pre-

dict what individual factors are bound within each footprint.

Since DNA binding preferences are available for only a fraction of

known factors in the public JASPAR (Bryne et al. 2008), TRANSFAC

(Matys et al. 2006), and UniPROBE (Newburger and Bulyk 2009)

PWM databases, we believe this contributes to our ability to only

annotate 25% of footprints. We anticipate that continued PWM

discovery using both in vivo and in vitro assays (ChIP, SELEX,

dsDNA arrays, etc.) will increase our knowledge of binding pref-

erences for factors, enabling a more accurate and complete anno-

tation of DNase I footprints. We believe that identifying de novo

computational motifs in unlabeled footprints will also be an im-

portant part of this endeavor.

While DNase-seq footprinting offers a powerful method to

identify transcription factor binding sites, it has a number of lim-

itations. For example, it will not likely be able to precisely identify

different transcription factors that bind to the same motif. It will

also not identify proteins that indirectly bind DNA via interactions

with other DNA binding proteins. This indirect binding likely ex-

plains why many binding sites identified by ChIP experiments

often lack a recognizable motif. Therefore, to more fully identify

and understand how complexes bind DNA, future studies will need

to integrate multiple complementary genome-wide data sets, in-

cluding DNase I footprints, ChIP-seq for many factors, PWMs, and

other data sets such as those that have recently identified combi-

natorial binding interactions between large numbers of transcrip-

tion factors (Ravasi et al. 2010).

DNase-seq footprinting represents a significant advance to-

ward the better understanding of the location, identity, and af-

finity for hundreds of thousands of cis-regulatory elements ge-

nome-wide. For most footprints identified here, it is unknown

what trans factor binds to each site. While these data provide a

scaffold to more fully annotating the genome, other complemen-

tary methods will be required for complete annotation. However,

regardless of their identity, we now have evidence of specifically

where factors are interacting with the DNA, which is an important

step in understanding the components that regulate global gene

expression.

Methods

Cell line growth
The source of cells, catalog numbers, and extensive cell growth
protocols for all cell types described here can be found on the
UCSC Genome Browser ENCODE website (http://genome.ucsc.
edu/ENCODE/cellTypes.html).

RNA expression

Total RNA was isolated from these cells using trizol extraction
followed by cleanup on RNEasy column (QIAGEN) that included
a DNase I step. The RNA was checked for quality using a nanodrop
and an Agilent Bioanalyzer. RNA (1 mg) was then processed
according to the standard Affymetrix Whole Transcript Sense
Target labeling protocol that included a riboreduction step. The
fragmented biotin-labeled cDNA was hybridized over 16 h to
Affymetrix Exon 1.0 ST arrays and scanned on an Affymetrix
Scanner 3000 7G using AGCC software. The resulting cell files were
analyzed for quality using Affymetrix Expression Console soft-
ware. All expression data were submitted to the Gene Expression
Omnibus (GSE15805).

DNase I assay

DNase-seq was performed as previously described (Song and
Crawford 2010). Briefly, cells were lysed with NP40 and digested
with optimal amounts of DNase I enzyme. DNase I ends were made
blunt and ligated to biotinylated linkers containing an MmeI re-
striction site. After digesting with MmeI, DNase I digested ends
were enriched on streptavidin magnetic beads (Invitrogen) and
ligated to a second set of linkers. DNA was lightly amplified and
sequenced using the Illumina GAII. All DNase-seq data have been
made publicly available on the UCSC Genome Browser (Regula-
tion Group, Open Chromatin track, March 2006 [hg18] assembly).

CTCF ChIP-seq assay

We fixed 108 cells for 10 min at room temperature by adding
formaldehyde (1% final concentration). Formaldehyde was deac-
tivated with 2.5 M glycine (125 mM final concentration). The
cross-linked cells were lysed and sonicated three times for 10 min
with a Bioruptor (Diagenode), which generated an average size of
500-bp DNA fragments. Chromatin immunoprecipitation was per-
formed with the sonicated cell lysate to purify CTCF-DNA com-
plexes, using an anti-CTCF antibody (Millipore 07-729). Crosslinks
in the immunoprecipitated DNA protein complexes were reversed
by incubation overnight at 65°C. These samples were then treated
with RNase A (Ambion) and proteinase K (Invitrogen), followed by
a phenol-chloroform extraction and ethanol precipitation. Thirty
nanograms of immunoprecipitated DNA was used to construct the
library for Illumina sequencing.

Raw sequence processing

Raw sequence data from technical replicates for each cell type were
combined and aligned to the March 2006 (hg18) assembly with
MAQ (Li et al. 2008). We retained all sequences that aligned to, at
most, four genomic locations and that contained, at most, two
mismatches. Those sequences that aligned to multiple genomic
locations were randomly assigned one of these locations by MAQ.

Aligned sequences were filtered using three different methods.
First, all sequences that fall into regions where the human ge-
nome assembly underrepresents the true amount of a particular
sequence, namely, satellites in pericentromeric and subtelomeric
regions, were removed. These locations can be found on the UCSC
browser (table wgEncodeDukeRegionsExcluded). Next, when more
than five sequences aligned to a single location, this count was
reduced to five as based on fitting the sequence data to a Poisson
distribution; it is highly unlikely that more than five of the same
sequence would be present and likely represents experimental ar-
tifact. Finally, we removed all sequences from regions where 70%
of sequences in a 31-bp region fall in a 5-bp window. We believe
these represent experimental artifacts likely due to incorrect PCR
amplification.

DNase I HS regions identified by DNase-seq

Regions of significant enrichment of DNase I tags were identified
using the F-seq peak caller (Boyle et al. 2008b). F-seq identifies re-
gions of high density of sequence reads as compared to a random
background distribution of reads. We adjusted the background of
F-seq based on input sequence from each cell line and an alignability
background (UCSC Browser, table wgEncodeDukeUniqueness20bp).
The distribution of base pair F-seq scores was fit to a gamma distri-
bution, and the score corresponding to a P-value of 0.05 was used to
discretely define DNase I HS sites.
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CTCF, SRF, REST, and GABP binding sites identified
by ChIP-seq

CTCF binding sites defined by significant enrichment of sequences
from ChIP-seq were similarly identified as for DNase-seq using
F-seq. A P-value cut-off was also used to define discrete binding
regions, and the maximum F-seq score was assigned to each peak.
Factor binding sites for SRF, REST, and GABP defined in their orig-
inal publication within Jurkat human T lymphoblasts were used for
these factors (Valouev et al. 2008).

Mapping motif binding sites

PWMs from the JASPAR (Bryne et al. 2008), free TRANSFAC (Matys
et al. 2006), and UniPROBE (Newburger and Bulyk 2009) data-
bases, as well as the Ren laboratory CTCF motif (Essien et al. 2009),
were used to initially annotate potential factor binding sites. There
is redundancy between these sets, but because of slight motif dif-
ferences, all PWMs were used.

Each mapping produced a bit-score that was used to filter
the motif matches. We set the cutoff for matches as the lowest of
either 70% of maximum possible bit score or 90% of functional
depth, where the functional depth is defined as the difference
between the maximum possible and minimum possible score for
a particular PWM. Finally, if the PWM had a 0 value for any base
(AGCT) in a particular position, this was respected, meaning no
mappings for this motif may contain this 0-scored base in this
position.

Clustering CTCF motifs based on footprinting data

For each base 6200 bases surrounding the 20-bp CTCF motif, we
determined the number of DNase I cut sites. Using this 420-value
vector, CTCF motifs were split into two clusters using k-means
clustering implemented in R (kmeans package, k = 2).

HMM to identify footprints

Prior to input to the HMM, aligned raw sequence data were pre-
processed by normalizing and smoothing the input sequences as
follows. First, the number of sequence tags at each base was nor-
malized. This normalization consisted of dividing counts at each
base by the mean of all non-zero sequence counts in a 1-kb region
surrounding that base. Next, these values were fit to a second-order
polynomial based on the eight surrounding bases using the
Savitzk-Golay filter. In this way, these values corresponded to the
slope of a curve representing the relative change in the density of
DNase I cuts.

The HMM consisted of five states where emissions from
each state corresponded to features of the values described above
(Supplemental Fig. 1E). Each footprint was expected to be in a re-
gion of low DNase I digestion with a reduced density of DNase I
cuts surrounded by increased densities of cuts to either side. This
pattern was captured by a path through the model states starting
with the background DNase I HS state (‘‘HS’’), transitioning to
the state with increasing DNase I digestion (‘‘UP’’), followed by the
state with decreasing DNase I digestion (‘‘DOWN’’) and then the
footprint state (‘‘FP’’) and again through the UP and DOWN states.
The transition and emission probabilities were initially trained for
the combined lymphoblastoid cell lines with experimental data
from the previously studied promoter of the FMR1 gene. The
footprinting of the FMR1 region was small and specific to lym-
phoblastoid cells; therefore, we chose to use a set of predicted sites
from the combined lymphoblastoid data to train each additional
line. Footprints from the 1000 highest scoring DNase I HS sites

from chromosome 6 were chosen with the assumption that these
strong sites will primarily consist of ubiquitous regulatory features
based on our analyses of DNase I HS sites across cell lines (data not
shown). Emission probabilities for all other cell lines were trained
using these sites using maximum likelihood training. Emission
and transition probabilities for all models are listed in Supple-
mental Table 7. HMM software used to implement these models
can be found at http://www.kanungo.com/software/software.html
(Kanungo 1999).

Each identified DNase I HS region were annotated with
footprints using posterior decoding based on the trained HMM
model. For display purposes, 3 bp was added to either side of the
called footprint. STAMP was then used to label each footprint
based on known PWMs. Each motif label required a STAMP cal-
culated P-value match of <1 3 10�6 to be labeled with a particular
factor. All factors meeting this threshold were included in the
factor label and sorted by significance. Note that the motif was
required to be fully contained within the footprinted region in
order to be annotated by STAMP.

Conservation values and plots

The first base of all footprints was set to the 0 position. Footprint
conservation scores were then down-sampled or up-sampled to cre-
ate 20 bp of discrete values for each footprint (essentially shrinking or
spreading each footprint conservation scores to the same genomic
size). The upstream values were then calculated starting at the be-
ginning of the footprint, and the downstream values were calculated
starting at the end of the footprint. Vertebrate plots were created
using the UCSC table phastCons44way, mammal plots were created
using the UCSC table phastCons44wayPlacental, and primate plots
were created using the UCSC table phastCons44wayPrimates.
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