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The main way of analyzing biological sequences is by comparing and aligning them to each other. It remains difficult,
however, to compare modern multi-billionbase DNA data sets. The difficulty is caused by the nonuniform (oligo)nu-
cleotide composition of these sequences, rather than their size per se. To solve this problem, we modified the standard
seed-and-extend approach (e.g., BLAST) to use adaptive seeds. Adaptive seeds are matches that are chosen based on their
rareness, instead of using fixed-length matches. This method guarantees that the number of matches, and thus the running
time, increases linearly, instead of quadratically, with sequence length. LAST, our open source implementation of
adaptive seeds, enables fast and sensitive comparison of large sequences with arbitrarily nonuniform composition.

[Supplemental material is available for this article. LAST software is freely available at http://last.cbrc.jp.]

Biomedical research is being revolutionized by multi-gigabase DNA

data sets. This began with the sequencing of whole large genomes,

such as the human (;3 billion bases), allowing us to see our species’

genetic blueprint. More recently, new sequencing technologies have

enabled small-scale laboratories to produce gigabases of DNA se-

quence. These technologies have been used to explore DNA from

environmental samples, transcribed RNA in tissues and cell lines,

chromatin structure, and personal genomes, to name just a few

applications (Metzker 2010).

In all cases, the data largely remain an uninterpretable sea of

As, Cs, Gs, and Ts, unless we make connections by comparing the

sequences to each other. For example, we can predict the taxon-

omy and function of environmental DNA reads by comparing

them to all known protein sequences (via the genetic code). We

can interpret DNA reads from an extinct organism (e.g., the saber

tooth tiger) by mapping them to the genome of a surviving or-

ganism (e.g., the cat). In all cases, the initial task is to find similar

regions between huge sequence data sets.

The classic tool for this task is BLAST (and similar methods

such as PatternHunter, BLAT, BLASTZ, YASS, and many others)

(Altschul et al. 1997; Kent 2002; Ma et al. 2002; Schwartz et al.

2003; Kucherov et al. 2006). These methods rely on a seed-and-

extend heuristic. They rapidly find similarities between the ‘‘query’’

sequence and the ‘‘target’’ sequence by using short matches called

seeds. These seeds act as starting points for the subsequent time-

consuming alignment extensions. The simplest kind of seed con-

sists of exact matches of a fixed-length (e.g., 12 bases). Short seed

lengths can improve sensitivity, but at a high cost in running time,

because they yield more seed matches and thus more extensions.

On the other hand, long seeds are matched rarely and lead to de-

creased sensitivity.

In this work, we propose adaptive seeds as an alternative to

fixed-length seeds. As implied by the name, fixed-length seeds

have a constant length l. In contrast, adaptive seeds vary in

length—seeds are lengthened until the number of matches in the

target sequence is less than or equal to a frequency threshold

f. Box 1 illustrates these two concepts using familiar English text.

Adaptive seeds are similar to several ideas that have been published

before, including: variable-length seeds (Csurös 2004), maximal

unique matches (Kurtz et al. 2004), and rare exact matches

(Ohlebusch and Kurtz 2008).

Fixed-length seeds perform well on random sequences with a

uniform distribution of bases. Unfortunately, biological sequences

deviate far from this ideal case. For instance, primate genomes

contain more than 1 million copies of the Alu element (Batzer and

Deininger 2002): These alone will produce more than 1012 matches

if we compare two primate genomes. Some malaria genomes have

over 80% A and T bases, which means long A + T-rich matches will

often be less significant than shorter C + G-rich matches.

More specifically, in Figure 1 we demonstrate how seed choice

influences the number of matches. For this example, we identified

the adaptive seeds that occur not more than f = 10 times in the

mouse X chromosome, and we calculated their matches in the

human X chromosome. In total, we observed 777 million matches,

mostly for seed lengths 12–13, with some seeds shorter or much

longer (Fig. 1C). These values can be compared to ones obtained for

fixed-length seeds. In Figure 1A, we present numbers observed for

fixed-length seeds varying from 7–35 bases. For fixed-length-13

seeds, we would expect about 365 million chance matches for

uniformly random sequences, but the actual number is 22 billion.

To reduce the number of matches closer to 777 million, we would

need to use fixed-length-32 seeds, but such long seeds fail to detect

weak similarities. This observation suggests that by using adaptive

seeds, we can achieve the sensitivity of a fixed-length-13 seed with

the run-time of a fixed-length-32 seed.

Similarly, if we compare the genomes of Plasmodium falcipa-

rum (the most dangerous human malaria parasite) and Plasmodium

yoelii (a rodent malaria parasite), most of the adaptive seeds have

lengths 11–13 and produce in total 106 million matches (Fig. 1D).

Using fixed-length-12 seeds, we expect 28 million chance matches

but actually get 16 billion (Fig. 1B). To get a number of matches

similar to the total observed for the adaptive seeds, we would need

to use fixed-length-29 seeds. Here, we expect adaptive seeds to

offer the sensitivity of a fixed-length-12 seed with the speed of

a fixed-length-29 seed. In both of our examples, adaptive seeds

move the speed/sensitivity tradeoff close to what it is for uniformly

random sequences with fixed-length seeds.

When multiple malaria genomes are compared, P. falciparum

and P. yoelii stand out as being the two most A + T-rich (Carlton
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et al. 2005) and therefore troublesome for fixed-length seeds. As an

example, we consider the MB2 gene of P. falciparum, for which

a gene homolog was reported to exist in P. yoelii (Nguyen et al.

2001; Romero et al. 2004). We used both adaptive and fixed-length

seeds to identify the matches between the P. yoelii contig with

this homologous gene against the entire P. falciparum genome. The

dots in Figure 2 show locations of identified seed matches (the

contig is represented by the vertical axis, while the horizontal

axis represents the region surrounding

the P. falciparum MB2 gene). Varying their

respective f and l parameters yields dif-

ferent numbers of matches, as shown by

the numbers in the figure legends. With

only 168 hits, adaptive seeds are able to

identify the homologous genes (shown in

the blue box). Fixed-length seeds are un-

able to achieve this, even when there are

almost 10 times as many hits. The re-

petitiveness of the two genomes results in

fixed-length seed hits occurring clumped

together, away from the locations of the

genes.

Results

Performance measurement

We quantify the influence of different

seed types on the overall seed-and-extend

procedure by measuring the performance

of adaptive and fixed-length seeds using

three types of data: genomic, proteomic,

and short read sequencing data (for addi-

tional information about these data sets,

see Methods section and Supplemental

material). For each data set, multiple com-

binations of seed type and parameter set-

tings are used to locally align a set of

queries to a target (e.g., genome) sequence.

Each combination is evaluated by the

percentage of queries whose alignment

score equals the highest achieved by any

combination.

The black solid lines of Figure 3

compare adaptive seeds (circles) to fixed-

length seeds for the four data sets. The

graphs show sensitivity versus running time for various parameter

settings for both schemes. In all cases, the sets of points for adap-

tive seeds appear above and to the left of those for fixed-length

seeds, indicating that adaptive seeds perform better. For example,

in panel A, to attain a sensitivity of 67% (dashed blue line), either

adaptive seeds of f = 5 or fixed-length seeds of l = 16 can be used.

However, their respective running times differ greatly: ;10 min for

adaptive seeds and 500 min for fixed-length seeds.

Box 1. An analogy with text that helps explain the concepts of fixed-length seeds, adaptive seeds, spaced seeds, and subset seeds

As an example from a more familiar domain, suppose we wish to align the string ‘‘The Queen of Hearts, she made some tarts’’ with the story ‘‘Alice’s
Adventures in Wonderland’’ by Lewis Carroll. We suppose our smallest atomic unit is words, instead of letters.

A fixed-length seed of length 2 would isolate the positions in the story that contain the words ‘‘The Queen,’’ ‘‘Queen of,’’ ‘‘of Hearts,’’ and so on.
Once these positions are found, an extension in both directions is performed to obtain an alignment score. In contrast, an adaptive seed starting from
the first word of our string would start from ‘‘The’’ and add words to it until the frequency of the phrase drops below a predetermined threshold f. The
frequencies of some of these phrases are as follows: ‘‘The’’ (1621); ‘‘The Queen’’ (49); ‘‘The Queen of’’ (2); ‘‘The Queen of Hearts’’ (2). Suppose we had
set this value to f = 10. Then the seed that would be chosen is the third in this list since it is the shortest with a frequency not larger than 10.

The above describes how seeds operate by default. Spaced and subset seeds allow more flexible definitions of a match. Within the context of our
example, spaced seeds allow searches for phrases where some words are designated as being unimportant. If the above query was used with a seed of
11101110, then the words ‘‘Hearts’’ and ‘‘tarts’’ can be substituted with any word. Subset seeds can be more restrictive than spaced seeds since they
allow users to define a match to be a subset of words. For example, a subset seed might specify that occurrences of ‘‘Hearts’’ in a query can be
substituted with ‘‘diamonds,’’ but nothing else.

Figure 1. Number of exact matches between genomic sequences as a function of match length. (A)
Matches of size 7–35 bases between the human X chromosome (151 million bases) and the mouse X
chromosome (162 million bases). (B) Matches between the genomes of P. falciparum (23 million bases)
and P. yoelii (20 million bases). (C ) Matches between the human X chromosome and the mouse
X chromosome, of seeds that occur at most 10 times in the mouse X chromosome. (D) Matches be-
tween P. falciparum and P. yoelii, of seeds that occur at most 10 times in P. falciparum. Lines show
expected frequencies for uniformly random sequences.
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Spaced and subset seeds

Modern DNA comparison methods achieve increased sensitivity

through the use of spaced seeds (Kent and Zahler 2000; Ma et al.

2002). Spaced seeds are seeds that have fixed ‘‘don’t care’’ posi-

tions that are not required to match. This is in contrast to the

contiguous seeds discussed above, in which every position is re-

quired to match. Fortunately, we do not need to sacrifice spaced

seeds in order to use adaptive seeds; these techniques can be

unified.

Spaced seeds are represented as seed patterns of binary strings

such as 110, where 0s indicate don’t care positions. These patterns

are cyclically repeated as many times as necessary to cover the

length of the seed. (The last copy of the seed pattern may only be

a prefix of the original pattern.)

Figure 3A presents results for the alignment of Homo sapiens

promoters to the Mus musculus genome using contiguous seeds

(black) or a previously identified optimal spaced seed pattern (Ma

et al. 2002), 111010010100110 (red). For this particular seed pat-

tern, spaced seeds improve the performance over the contiguous

seeds for both adaptive and fixed-length seeds, with adaptive seeds

still performing best. Additional results with spaced seeds are

shown in Supplemental Figures S6A, S7A, and S9A.

Subset seeds are a generalization of spaced seeds, in which

position-specific reduced alphabets are used when matching. For

example, purines (A, G) and pyrimidines (C, T) can be considered

equivalent in some positions to account for the rareness of

transversions compared with transitions in genome sequences

(Kucherov et al. 2006). Subset seeds are equally relevant for

protein sequences (Roytberg at al. 2009), where amino acids with

similar properties may be allowed to match each other in some

positions.

Figure 3B summarizes the effect subset seeds have on both

fixed-length and adaptive seeds for aligning Drosophila mela-

nogaster protein sequences to those of Caenorhabditis elegans. In

this case, subset seeds (red) show a slight improvement over exact-

match seeds, for both adaptive and fixed-length seeds. This result is

confirmed by other subset seed tests (Supplemental Fig. S8A,C).

Repeat masking

Multi-gigabase data sets have been com-

pared successfully in the past, using

traditional seed-and-extend methods

(Schwartz et al. 2003). However, this has

been possible only with repeat-masking

(Schwartz et al. 2003). There are special-

ized programs for identifying repetitive

segments, and many alignment tools

identify repeats during alignment. The

treatment of repeats can be divided

into hard-masking, which completely

removes repeats from further consider-

ation, and soft-masking, which forbids

seeds from including repeats but allows

them to participate in extensions. In this

work, we report some results with each

strategy. In any case, repeat-masking is

not an ideal solution: It hides potentially

important parts of the sequence (e.g.,

50% of the human genome), and it can-

not completely solve the problem of

nonuniform composition (e.g., malaria

genomes).

The red symbols in Figure 3, C and D, demonstrate the effect

masking has on fixed-length and adaptive seeds for P. yoelii contigs

versus the P. falciparum genome and for short read sequencing data

for A. thaliana. Masking improves the performance of fixed-length

seeds in both scenarios noticeably, although not enough to reach

the performance of unmasked adaptive seeds. Masking can be

detrimental when using adaptive seeds (e.g., Fig. 3D). Tests with

other genomic, proteomic, and short read sequencing data also

give similar results (Supplemental Figs. S6C, S7C, S9B–D, S10B,C).

Even with adaptive seeds, it is advisable to mask ‘‘simple’’

repeats (e.g., ATATATATATAT) when searching for evolutionarily

related sequences. This is because the simple repeats cause strong

alignments of sequences that are not evolutionarily related. On the

other hand, repeat-masking may be undesirable when mapping

DNA reads to a genome, because the repetitive reads can some-

times be mapped successfully and they can reveal interesting bi-

ology (Faulkner et al. 2009).

Fixed-length seeds in other programs

We have developed LAST in order to provide an unbiased com-

parison of alignment performance when adaptive seeds and fixed-

length seeds are used. Here, we want to verify whether indeed LAST

fixed-length seeds have a similar performance to that of other

alignment programs. In Figure 4, we compare the performance of

LAST, LASTZ (Harris 2007), and BLAST (Altschul et al. 1997) used to

align P. yoelii contigs to P. falciparum chromosomes.

In panel A, we use a scoring system adjusted to the high A + T

content of the genomes (the same as in Fig. 3C). The measured

performance of LASTZ displays a good agreement with the per-

formance of LAST fixed-length seeds. Here, LASTZ was started with

options (up to our best understanding) equal to ones used with

LAST and with fixed-length exact seeds of lengths 10, 12, and 14.

Since LASTZ does not support longer exact seeds, we also used

‘‘half-weight’’ seeds (i.e., subset seeds) of lengths 16–28.

In panel B of Figure 4, we demonstrate BLASTN performance

for fixed seed lengths from 22–30. Since BLASTN does not support

Figure 2. Dot-plots of matches (without extensions) identified by adaptive and fixed-length seeds
when comparing the P. yoelii contig with the region of the P. falciparum genome where the MB2 ho-
mologous genes are known to exist. Their exact locations are indicated by the dashed boxes in blue. The
colored dots in both panels indicate the number of hits in the plot area. As the frequency threshold f for
adaptive seeds increases or the length l for fixed-length seeds decreases, the number of hits increases.
Caveat: the area each color appears to occupy does not exactly correlate with the number of hits—for
each graph, the color with the lower number of hits is drawn over the other color, and also nearby hits
cannot be resolved visually at this resolution.
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scoring systems assigning different match scores to AT and GC, we

used the same match score for all nucleotides in this test. In-

tentionally, in order to provide a fair comparison between LAST

fixed-length seeds and the seeds used by BLASTN, we disabled

masking of repetitive sequences in the query. The slope of the

observed BLASTN points is close to the slope of the LAST fixed-

length seeds, and for all tested lengths, the sensitivities of the seeds

computed with both programs are nearly equal. For equal-length

seeds, LAST is noticeably faster than BLASTN. Presumably this is

due to differences in the degree of optimization at the imple-

mentation or compiler level.

These observations support our belief that our fixed-length

seeds implementation displays performances similar to imple-

mentations provided by other investigators.

Comparing the human and chimpanzee Y chromosomes

A recent study claimed that >30% of the chimpanzee Y chromo-

some has no homologous, alignable counterpart in the human

Y chromosome (Hughes et al. 2010). This is an astonishing level

of divergence, since in the remainder of the genome, less than

2% of the chimpanzee sequence lacks homologous, alignable

counterparts in the human (Hughes et al. 2010). These

Y chromosomes are challenging to compare, however, because

they are rich in repeats and rearrange-

ments (Hughes et al. 2010).

Since our method is suited to repeat-

rich sequences, we used it to compare

these Y chromosomes. In order to find

reliable homologies, we masked simple

repeats and then searched for alignments

strong enough that they are very unlikely

to arise by chance (see Supplemental

material). The alignment took 20 min on

a desktop computer, and we found ho-

mologous counterparts to more than 86%

of the chimpanzee sequence. So these

chromosomes have undergone much less

sequence gain and loss than previously

thought, albeit still much more than the

other chromosomes. We speculate that

the main cause of Y chromosome diver-

gence is a faster rate of rearrangement.

Since most of the Y chromosome does not

need to pair with another homologous

chromosome, we might expect rearrange-

ments to occur more freely on the Y.

Discussion
This is the first method that can find

and align similar regions in gigascale bi-

ological sequences, without certain se-

vere restrictions. All previous methods

can compare such sequences only with

either heavy repeat-masking (exemplified

by BLASTand its cousins), or restriction to

strong similarities (exemplified by DNA

read mapping algorithms). In practice, we

are able to compare two vertebrate ge-

nomes in a few hours (Frith et al. 2010a)

and map 100,000 DNA reads to a genome

in 30 sec (Frith et al. 2010b). This makes such sequence compari-

sons available to the masses.

In recent years, many methods have been developed for

mapping DNA reads to genomes, allowing for small numbers of

differences (Trapnell and Salzberg 2009; Li and Homer 2010).

These methods are ideal for short DNA reads (;20–40 bp), where

alignments with more than a few differences would not be statis-

tically significant. The read lengths of modern DNA sequencing

technologies have, however, increased, often to >100 bp. This

makes it statistically feasible to find weak similarities, which is

useful, for instance, in cross-species mapping. The specialized read

mappers remain valuable because they are fast and they often

guarantee not missing alignments with limited numbers of dif-

ferences. We submit that it is also valuable to have a general-pur-

pose, BLAST-like method for aligning reads with arbitrary length

and divergence.

For genome comparison and other applications, repeat-

masking often remains desirable in practice. This is because low-

complexity repeats cause false homology predictions, and in-

terspersed repeats cause numerous, uninteresting alignments. Our

method at least makes it possible to compare genomes with no or

reduced repeat-masking, as we did when comparing the chimpan-

zee and human Y chromosomes (we did not mask interspersed re-

peats). Furthermore, repeat-masking involves arbitrary thresholds,

Figure 3. Performance comparison of adaptive seeds (circles) versus fixed-length seeds (crosses).
Black denotes results obtained for contiguous seeds and unmasked sequences (l or f parameters are
shown next to each data point). Red shows the effect of spaced seeds, subset seeds, or repeat-masking
for the sequence alignment of: (A) H. sapiens promoters to the M. musculus genome (and spaced seed
111010010100110); (B) D. melanogaster protein sequences to those of C. elegans (and subset seeds);
(C ) P. yoelii contigs to the P. falciparum genome (and soft-masking with Tandem Repeats Finder); and
(D) short DNA reads from 454 Life Sciences (Roche) GS 20 for A. thaliana against its genome (and soft-
masking with WindowMasker).
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since there is no exact definition of a repeat, and our method can

use sequences with less ‘‘heavy’’ masking.

In summary, we dramatically improve the seed-and-extend

heuristics that are indispensable for genome scale comparisons.

Adaptive seeds offer a significant advantage in terms of time over

traditional fixed-length seeds commonly used by other local

alignment systems. Instead of specifying a seed length l, adaptive

seeds are associated with a frequency threshold f, which enable

them to handle the repetitive regions of complex genomes.

Adaptive seeds yield sizable performance gains over their fixed-

length counterparts for genomic, proteomic, and short read data

sets, typically reducing computation time by 10- to 100-fold (the

horizontal difference between the two seed types in each panel of

Fig. 3). In some cases, the performance of adaptive seeds can be

further improved by combining them with the techniques of

spaced or subset seeds.

These results were obtained with our open source software

package LAST available at http://last.cbrc.jp.

Methods
We outline our methods and materials here. Detailed information
can be found in the Supplemental material.

Definition of adaptive seeds

Adaptive seeds are matches of any length between query and target
sequences, such that the matching sequence occurs at most f times
in the target.

It is possible for two adaptive seeds to overlap each other in
a redundant fashion. For example, there might be one adaptive
seed of length l that ends at position X in the query and position
Y in the target, and another adaptive seed of length l + 1 that ends
at the same positions in the query and target. A naive algorithm
would extend alignments from both of these, which seems re-
dundant and slow.

Our seed-finding algorithm partially avoids such redundancy.
In particular, it reports only the shortest seed starting at any pair of

(query, target) positions (X, Y). This does not eliminate redundant
alignment extensions, but it makes them rare enough that the
number of redundant extensions is much less than the total num-
ber of extensions, so they are not significantly time-consuming. We
can imagine more sophisticated algorithms to avoid redundancy
more thoroughly, but these would be more time-consuming.

Although our algorithm performs redundant alignment ex-
tensions, it strictly avoids reporting the same alignment twice by
using a ‘‘diagonal table’’ (see the Supplemental material).

Method for finding adaptive seeds

In outline, our method is as follows. We first construct an ‘‘index’’
of the target sequence. We then scan across the query sequence
and find the shortest string starting at each position that matches
#f times in the target. So the key requirement is an index that al-
lows these shortest matches to be found quickly.

Such an index can be implemented in several ways with dif-
ferent performance tradeoffs. A suffix tree (Gusfield 1997) or
enhanced suffix array (Abouelhoda et al. 2004) would have the
fastest theoretical (asymptotic worst-case) run time, but these
structures need much memory and we are not sure if they can be
adapted to spaced seeds. An FM-index (Ferragina and Manzini
2000) would use minimal memory, although its theoretical run
time is inferior to that of the suffix tree (since it lacks suffix
links). Empirically, our FM-index implementation was several-
fold slower than our main implementation, and we believe the
slowness is inherent in the techniques it uses to reduce memory
consumption.

Our main implementation uses a suffix array of the target
sequence(s). A suffix array for a sequence of length T is simply the
integers 1. . .T, sorted according to the alphabetical order of the
suffixes starting at each position (Table 1, left column; Manber and
Myers 1993). Given any substring of the query, we can find all the
matching locations in the target by a binary search in the suffix
array. If we then lengthen the query substring by one, we need only
search within the bounds found by the previous search. Thus, we
keep lengthening the query substring until there are #f matching
locations.

Figure 4. LASTZ and BLASTN use fixed-length seeds and present similar performance to LAST with fixed-length seeds. (Circles) LAST adaptive seeds;
(crosses) LAST fixed-length seeds. (A) P. yoelii contigs are aligned to P. falciparum chromosomes using the same score matrix as in Figure 3C. Triangles show
performance of LASTZ executed with corresponding parameters for different LASTZ-seed lengths. (B) A simpler match/mismatch scoring scheme is used.
Squares present the performance of BLASTN and the numbers correspond to BLASTN-seed lengths.
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To accelerate this process, we also use a lookup table providing
the locations of all short strings in the suffix array. So binary
searches are needed only for longer strings.

Our method has a balance of moderate memory usage and
enough speed so as not to be the bottleneck. Our index uses 4–5
bytes per indexed position, plus extra memory to store the target
sequence itself. Its theoretical run time is even worse than the FM-
index (because it uses a logarithmic-time binary search instead of
a constant-time backward search), but in practice it takes less time
to find the seeds than to extend alignments from them, so seed-
finding is not the bottleneck.

Fixed-length seeds

Although fixed-length seed based matching is available from
BLAST and other tools, we also implemented them in LAST. This
allows a comparison between fixed-length and adaptive seeds
implemented with a similar level of code optimization. However,
we also report direct comparisons with BLASTN (Altschul et al.
1997) and LASTZ (Harris 2007) and also BLASTP and MEGABLAST
(Morgulis et al. 2008) in the Supplemental material (Supplemental
Figs. S8, S9).

Adaptive spaced seeds

Adaptive spaced seeds are matches that occur at most f times in the
target, where some predefined positions are allowed to mismatch.
In order to find these, we use a ‘‘spaced suffix array.’’ A spaced suffix
array is much like an ordinary suffix array. The only difference is
the sorting criterion: When comparing two suffixes, the prede-
fined positions are skipped or ignored (Table 1, middle column).

Adaptive subset seeds

Adaptive subset seeds are matches that occur at most f times in the
target, where some predefined positions are allowed to match us-
ing reduced alphabets (potentially, a different reduced alphabet at
each position). In order to find these, we use a ‘‘subset suffix array,’’
which is straightforwardly analogous to a spaced suffix array (Table
1, right column).

Suffix array construction

There has been much research on efficient algorithms to construct
ordinary suffix arrays (Puglisi et al. 2007). We have shown that
these algorithms can be adapted to construct spaced suffix arrays
(Horton et al. 2008), and similar techniques would work for subset

suffix arrays. In practice, however, we do not use these algorithms
but instead use radix sort (McIlroy et al. 1993). Radix sort is theo-
retically inferior but is fast in practice (e.g., 1 h for a mammalian
genome), and it has negligible memory overhead (McIlroy et al.
1993).

Human–mouse comparison

We used the UCSC Genome Bioinformatics Site as the source of the
M. musculus genomic sequence (version mm8) and obtained 1870
H. sapiens promoter sequences from the Eukaryotic Promoter Da-
tabase (release 100) (Schmid et al. 2006). We calculated alignments
using a score of 2 for matching nucleotides, a cost of 1 for transi-
tions and a cost of 2 for transversions, and a gap existence cost of
16 and a gap extension cost of 1 (Frith et al. 2010a). We studied
only alignments of score at least 150.

Malaria genomes

The Plasmodium genomic sequences were downloaded from the
5.5 release of the PlasmoDB database. As the query sequences, we
used 2960 contigs of P. yoelii retrieved on November 8, 2009. The
length of the contigs varies from 2000–51,480 nt, with a mean of
6815 nt and 76.1% A + T content. The database was built from 14
chromosomes of P. falciparum retrieved on July 1, 2009. The A + T
content of this genome is 79.3%, and therefore, we used an ad-
justed scoring scheme: The match score for A-A and T-T pairs was
set to 3; for C-C and G-G pairs, 9. We used a mismatch cost of 4,
a gap existence cost of 15, and a gap extension cost of 3. We con-
sidered alignments scoring more than 200. The P. yoelii query se-
quences were masked using Tandem Repeats Finder (Benson 1999).

For a comparison of BLASTN and LAST, we used match score
1, cost 1 for mismatches, cost of 7 for gap existence, and cost of 1
for gap extensions.

Protein data

Adaptive seeds seem promising for protein comparison because
amino acids are not equally abundant. We aligned fly (D. melanogaster)
proteins to a worm (C. elegans) protein database. Protein sequences
were obtained from the files flyBasePep.txt and sangerPep.txt,
downloaded from the UCSC Genome Database on July, 8, 2009.
Sequences with nonstandard amino acids (e.g., X) were excluded.
This yielded 21,228 fly proteins and 23,770 worm proteins. We
aligned the proteins using the Blosum62 matrix, with a gap exis-
tence cost of 11, a gap extension cost of 1, and a minimum gapped
alignment score of 100.

Short read sequencing data

The Arabidopsis thaliana short read data set SRR014005 from the
454 Life Sciences (Roche) GS20 platform was downloaded from the
NCBI Sequence Read Archive. We processed 133,420 unique reads
of median length 105. The genome for A. thaliana was downloaded
from the NCBI ftp site on June 29, 2009. Local alignment was
performed with match and mismatch scores of 1 and �1, re-
spectively. A gap existence cost of 2 and a gap extension cost of
1 were used. The minimum alignment score was set at 30.
WindowMasker (Morgulis et al. 2006) was used for masking repeats.
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Contiguous 110 11[WS]

AAATAACAG AA.AA.AG AASAG
AACAG AA.AG AAWAASAG
AATAACAG AA.TA.CA. AAWTAWCAS
ACAG AC.G ACWG
AG AG AG
ATAACAG AT.AC.G ATWACWG
CAG CA. CAS
G G G
TAACAG TA.CA. TAWCAS

In the subset seed pattern, S denotes equivalence of C and G, and W
denotes equivalence of A and T. Underscore indicates potential seed hits
for f = 2.
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