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Bacterial diversity among environmental samples is commonly assessed with PCR-amplified 16S rRNA gene (16S) se-
quences. Perceived diversity, however, can be influenced by sample preparation, primer selection, and formation of
chimeric 16S amplification products. Chimeras are hybrid products between multiple parent sequences that can be falsely
interpreted as novel organisms, thus inflating apparent diversity. We developed a new chimera detection tool called
Chimera Slayer (CS). CS detects chimeras with greater sensitivity than previous methods, performs well on short se-
quences such as those produced by the 454 Life Sciences (Roche) Genome Sequencer, and can scale to large data sets. By
benchmarking CS performance against sequences derived from a controlled DNA mixture of known organisms and
a simulated chimera set, we provide insights into the factors that affect chimera formation such as sequence abundance,
the extent of similarity between 16S genes, and PCR conditions. Chimeras were found to reproducibly form among
independent amplifications and contributed to false perceptions of sample diversity and the false identification of novel
taxa, with less-abundant species exhibiting chimera rates exceeding 70%. Shotgun metagenomic sequences of our mock
community appear to be devoid of 16S chimeras, supporting a role for shotgun metagenomics in validating novel or-
ganisms discovered in targeted sequence surveys.

[Supplemental material is available for this article. The sequence data from this study have been submitted to the NCBI
Entrez Genome Project database (http://www.ncbi.nlm.nih.gov/genomeprj) under ID nos. 48465, 48471, 53501, and
60767. Software tools and data sets are freely available at http://microbiomeutil.sourceforge.net.]

The analysis of 16S rRNA (16S) genes has become an essential

component of the microbial ecologist’s tool kit to evaluate the

microbial composition of diverse habitats such as soils, oceans, and

our own bodies. The high-sequence conservation of 16S genes

among diverse bacteria allows for the phylogenetic analysis of or-

ganism diversity and the identification of new taxa. The majority

of bacterial phyla are known only from 16S surveys and have no

cultured representatives (Rappe and Giovannoni 2003; Wu et al.

2009). Several online resources host large, curated collections of

16S sequences, including GreenGenes (DeSantis et al. 2006a), the

Ribosomal Database Project (RDP) (Cole et al. 2009), SILVA (Pruesse

et al. 2007), and EZ-Taxon (Chun et al. 2007). Despite efforts by

the curators to remove low-quality sequences from survey data, it is

likely that many of these reference sequences reflect sequencing

artifacts rather than real biological diversity.

A common source of 16S sequence artifacts is the formation

of chimeric sequences during PCR amplification of the 16S genes

(Fig. 1). Prior studies have indicated that ;5% of the sequences

within curated collections are anomalous or suspect, with chi-

meras accounting for the majority of problematic sequences

(Ashelford et al. 2005). Individual sequence libraries vary greatly in

sequence quality and contain few to more than 45% chimeric se-

quences (Huber et al. 2004; Ashelford et al. 2005, 2006; Quince

et al. 2009). Experimental measurements of chimera formation

during PCR coamplification of 16S rRNA sequences from cloned

16S genes or from mixed bacterial genomic DNA have indicated

chimera formation rates of over 30% (Wang and Wang 1996,

1997). Multiple factors including pairwise sequence identity be-

tween 16S rRNA genes, number of PCR cycles, and relative abun-

dance of gene-specific PCR templates have been shown to influence

chimera formation (Wang and Wang 1996, 1997; Thompson et al.

2002; Acinas et al. 2005; Lahr and Katz 2009).

Although chimera formation rates can be lowered experi-

mentally, no method has been shown to eliminate these artifacts

entirely. Hence, the ability to recognize chimeric sequences is criti-

cal in using 16S sequences to profile microbial communities. Several

computational methods have been used to identify chimeric
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sequences: The two algorithms most widely used for 16S chimera

detection are Pintail (Ashelford et al. 2005), used by both the RDP

(Cole et al. 2009) and SILVA (Pruesse et al. 2007), and Bellerophon

(DeSantis et al. 2006a), used by the GreenGenes 16S rRNA sequence

collection (DeSantis et al. 2006a). The 16S-specific Bellerophon al-

gorithm developed at GreenGenes differs from the more general

Bellerophon algorithm published earlier by Huber et al. (2004) and

is referred to herein as BellerophonGG. Although Pintail is a more

general 16S anomaly detection tool rather than a chimera detection

tool, most anomalies detected by Pintail are chimeras (Ashelford

et al. 2005). Although these utilities have been widely used, their

accuracy for chimera detection has not been rigorously examined,

particularly with respect to chimeras between closely related genes.

Critically, their effectiveness when applied to data generated using

newer sequencing technologies such as 454 Life Sciences (Roche)

pyrosequencing has not been examined.

Unprecedented diversity in a range of samples has been

reported using pyrosequencing, and has been interpreted as evi-

dence of an important and pervasive ‘‘rare biosphere’’ (Sogin et al.

2006). However, these technologies may exacerbate the problem of

differentiating between true, novel 16S gene sequences and se-

quence artifacts. For example, the combination of rigorous chimera

checking and eliminating errors from flowgram interpretation have

reduced diversity estimates based on pyrosequencing by a factor of

10 (Quince et al. 2009; Caporaso et al. 2010; Huse et al. 2010;

Turnbaugh et al. 2010). Because next-generation sequencing

technologies are increasingly used for community surveys, it is es-

sential to determine how well these chimera-detection tools per-

form on these datasets.

We introduce a new chimera-detection algorithm, Chimera

Slayer (CS), which can be applied to large datasets, performs well on

short sequences, and is sensitive to chimeras between closely related

16S genes. We have benchmarked CS and existing tools using a

carefully constructed set of simulated chimeric 16S sequences, test-

ing the performance of each algorithm as a function of the diversity

and length of the sequences. Using CS, we explore characteristics of

experimentally derived chimeras from PCR-amplified 16S sequences

leveraging traditional Sanger sequencing of cloned full-length PCR

products and direct 454 FLX Titaninum pyrosequencing of PCR-

amplified windows of the 16S gene. In applying our methods to

a defined mixture of DNA representing 20 bacterial and one archaeal

species we were able to assess the effects of sequence abundance,

cross-taxonomic sequence similarity, and PCR conditions on the

frequency and nature of experimentally derived chimeras.

Results

Evaluation of chimera detection accuracy

We evaluated the accuracy of chimera detection algorithms against

a simulated set of near full-length chimeras generated from refer-

ence 16S gene sequences believed to be largely free of interspecies

chimeric sequences, i.e., type strain sequences and 16S gene se-

quences extracted directly from sequenced bacterial genomes (see

Methods). Simulated chimeras were generated from pairs of refer-

ence sequences to create a set of chimeras that ranged from 1%

to 25% global sequence alignment divergence between parental

pairs of reference sequences (henceforth referred to as chimera-pair

divergence). One hundred chimeras were generated at each 1%

chimera-pair divergence interval with single breakpoints for each

pair positioned randomly. We applied each algorithm to the sim-

ulated chimera set and evaluated the sensitivity of each method

by noting the percent of true-positive (TP) chimeric sequences

identified as being chimeric. False-positive (FP) rates were esti-

mated by applying the algorithms to the nonchimeric reference

sequences, where predicted chimeras represented a FP event.

Published implementations of the Pintail and GreenGenes

Bellerophon (BellerophonGG) algorithms were either not accessi-

ble for evaluation as part of this work or were not designed for

high-throughput automated execution. Therefore, we reimple-

mented the algorithms based on published descriptions and eval-

uated our own implementations (see Methods). Our reimple-

mented versions of these tools perform similarly to the original

tools (Supplementary Fig. S1). WigeoN is our reimplementation of

Pintail.

We developed and evaluated two additional algorithms,

KmerGenus and Chimera Slayer (see Methods). KmerGenus com-

puted a catalog of exact 50-mers unique to each genus within

a reference 16S sequence set. Query sequences found to contain

genus-unique 50-mers matching multiple taxa were flagged as

chimeras.

Chimera Slayer (CS) involved the following series of steps that

operate to flag chimeric 16S sequences: (1) the ends of a query

sequence (30% of the length from each end) were searched against

a database of reference chimera-free 16S sequences to identify

potential parents of a chimera. The top matching reference se-

quences were retrieved in NAST (DeSantis et al. 2006b) multiple

alignment format; (2) candidate parents of a chimera were selected

as those that form a branched best-scoring alignment to the NAST-

formatted query sequence; (3) the NAST alignment of the query

sequence was improved in a ‘‘chimera-aware’’ profile-based NAST

realignment to the selected reference parent sequences; and (4) an

evolutionary framework was used to flag query sequences found to

exhibit greater sequence homology to an in silico chimera formed

between any two of the selected reference parent sequences

(complete details in Methods).

Different chimera-checking methods have markedly different
detection accuracy, especially for chimeras between closely
related sequences

All tested methods identified simulated chimeras derived from

highly divergent 16S sequences (e.g., >15% divergence) with high

sensitivity (Fig. 2A). As the pairwise divergence of the sequences

leading to a chimera decreased, however, differences in the sensi-

tivity of chimera detection became apparent. The sensitivity of

BellerophonGG was limited to chimeras with the highest chimera-

pair sequence divergence, requiring at least 13% chimera-pair

Figure 1. Formation of chimeric sequences during PCR. An aborted
extension product from an earlier cycle of PCR can function as a primer in
a subsequent PCR cycle. If this aborted extension product anneals to and
primes DNA synthesis from an improper template, a chimeric molecule is
formed.
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divergence to flag at least 50% of the chimeric sequences as chi-

meras. The sensitivity of WigeoN largely mirrored that of Kmer-

Genus and both were intermediate between CS and BellerophonGG.

CS exhibited the best overall sensitivity, recognizing the most di-

vergent chimeras while retaining high sensitivity for chimeras

with minimal chimera-pair divergence. CS recognized >87% of

chimeras with a minimum of 4% chimera-pair divergence. In ad-

dition, the FP rate remained low at only 1.6%. The sensitivity of

these algorithms to the level of chimera divergence correlated with

their ability to detect chimeras formed at different taxonomic

levels (Fig. 2B). All methods have excellent sensitivity for intra-

phylum, intra-class, and intra-order chimeras. All but Bellero-

phonGG maintained high sensitivity for intra-family chimeras,

but CS was especially effective for detecting intra-genus chimeras.

Because BellerophonGG exhibited relatively low sensitivity and

a high FP rate (7.1%), we did not pursue it further. KmerGenus was

incapable of detecting intra-genus chimeras due to design con-

straints. Sequence variations due to simulated sequencing error or

sequence evolution adversely impacted chimera detection accu-

racy, but both WigeoN and ChimeraSlayer were largely robust to

these effects (Supplemental Text S1; Supplemental Figs. S2–S6). In

contrast, the accuracy of KmerGenus rapidly deteriorated with

diverged query sequences, exhibiting 57% TP and 26% FP at 5%

sequence divergence (Supplemental Fig. S2). Simple taxon-specific

Kmer methods thus become unreliable when sequencing in-

creasingly novel diversity in biological samples that is not repre-

sented in the reference set, or when sequencing errors are frequent.

It was possible that some sequences flagged as chimeras in our

reference set, and presently designated false-positives, represent

genuine 16S sequences that had recombinant origins or otherwise

unusual evolutionary histories. Of the 4769 presumed nonchimeric,

reference sequences evaluated by CS, 77 were flagged as putative

chimeras, distributed as 40 intra-genus, 28 intra-family, seven intra-

order, one intra-class, and one intra-phylum chimeras. However,

upon close inspection, some of these 77 putative chimeras appeared

to reflect recombined sequences. Of the 40 intra-genus chimeras, 19

corresponded to Actinobacteria. For example, the Mycobacterium

pulveris 16S sequence (S000004105) appears to be a chimera be-

tween the 16S sequences of Mycobacterium elephantis (S000002743)

and Mycobacterium rhodesiae (S000015160) (Supplemental Fig. S7).

We could not rule out the possibility that these sequences were

genuine chimeras, since chimeric/recombinant 16S genes do occur

in nature (Boucher et al. 2004; Harth et al. 2007). If some of these

‘‘false-positives’’ were genuine chimeras, the specificity of CS and

the other tools evaluated here may be higher than estimated, and

predicted intra-genus chimeras among certain taxonomic groups

such as the Actinobacteria would warrant further attention.

Leveraging a controlled community to study effects
of 16S chimeras

One difficulty in analyzing sequences from environmental sam-

ples is that it is not possible to discriminate a priori and with high

confidence between novel but genuine sequences and anomalous

sequences. By sequencing known species assemblages, however,

we could quantify and characterize the performance of a tool in

chimera detection. Thus, we applied these tools to a synthetic (also

known as mock) microbial community created from purified ge-

nomic DNA of bacteria for which finished genome sequences were

available (see Methods). This mock community contained equiv-

alent concentrations of 16S genes for each included species (eMC

[even composition mock community]).

Organisms were chosen to represent a broad range of phylo-

genetic distances, genome sizes, and GC content. We subjected

this community to 16S profiling by both traditional Sanger (Sup-

plemental Text S3, S4) and 454 pyrosequencing methods (described

below) and assessed the frequency of chimeric and anomalous se-

quences. Each sequencing effort involved four technical replicates,

with each replicate performed by four sequencing centers at Baylor

College of Medicine, the Broad Institute, the J. Craig Venter In-

stitute, and Washington University.

Evaluation of chimera content in 454 pyrosequencing surveys

Because read lengths using 454 FLX Titanium pyrosequencing

were limited to ;500 bp, only a portion of the 16S gene could be

targeted for 454 sequencing. Detection of chimeras among these

shorter sequences was crucial for obtaining accurate diversity re-

sults (Quince et al. 2009). Although WigeoN provided effective

chimeric sequence detection with full-length sequences, it lacked

sensitivity at shorter sequence lengths (Supplemental Text S5;

Supplemental Fig. S8). However, CS retained near maximal chi-

mera detection accuracy for sequences with length at least 400

bases (Supplemental Fig. 8A), and therefore was suitable for ap-

plication to 454 sequencing reads.

Although several different regions of the 16S gene have been

targeted for 16S surveys via 454 pyrosequencing, most studies (e.g.,

Figure 2. Comparison of chimera detection sensitivity among
methods. (A) Chimera detection sensitivity as a function of chimera di-
vergence; (B) chimera detection sensitivity according to the shared level of
taxonomy between the proposed parental sequences. Cumulative false-
positive rates were as follows: CS, 1.6%; WigeoN, 0.67%; BellerophonGG,
7.13%; KmerGenus, 0%.
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Liu et al. 2007, 2008; Wang et al. 2007) suggest that several regions

are each adequate for community comparison and taxonomy as-

signment. We have used CS to determine whether the rates of

chimera formation differed when these separate regions were PCR

amplified. These comparisons had not been previously performed,

in part because of the lack of effective methods for detecting chi-

meras in large numbers of short reads. Using our eMC DNA as

a template, we amplified three separate 16S windows, V1–V3, V3–

V5, and V6–V9 (Supplemental Fig. S9).

The amplification of these shorter windows showed differ-

ential bias resulting in non-uniform species abundance estimates

(Supplemental Fig. S10). Only the V3–V5 primer set yielded a de-

tectable number of sequences corresponding to Methanobrevibacter,

with ;100-fold fewer detected than the other organisms in our

mock community.

Sequencing of technical replicate samples demonstrated con-

sistently high chimera rates ranging from ;15% to over ;20%

(Supplemental Fig. S11A). The cumulative chimera rates for the

V6–V9 region were slightly (;3%) greater than the V1–V3 and

V3–V5 regions. Relative chimera pair abundance estimates were

similar across the V-regions; notable exceptions included the high

prevalence of Acinetobacter/Staphylococcus pairs in the V6–V9

window and Deinococcus/Staphylococcus pairs in the V1–V3 win-

dow (Supplemental Fig. S11B). The distribution of chimera break-

points observed in full-length clones did not readily explain the

higher frequency for certain organism pairs and windows. For ex-

ample, the Deinococcus/Staphylococcus pairs in full-length data had

breakpoints enriched in the V6 region (Supplemental Text S4) while

in the 454-sequenced windows, chimera pairs in the V1–V3 window

were almost twofold higher than those obtained with V3–V5 or V6–

V9. Further, among the organisms in our mock community, we do

not find evidence for differential CS sensitivity in detecting chimera

abundance by organism pair or region. However, two notable chi-

mera pairs eluded detection due to insufficient sequence variation:

Staphylococcus aureus/Staphylococcus epidermidis in windows V3–V5

and V6–V9, and Streptococcus agalactiae/Streptococcus pneumoniae in

window V6–V9 (Supplemental Fig. S12).

More similar 16S genes clearly form chimeras more readily.

When we mitigated sequence abundance effects by considering

only cases where a less-abundant species formed chimeras with

a more abundant species, we observed a strong positive correlation

between the percent identities shared by the 16S sequence of

chimera pair species and the percent of chimeras observed. This

correlation (R2 = 0.90–0.94) was best demonstrated with Staphylo-

coccus, Acinetobacter, and Listeria, each of which had a wide range of

sequence identity to alternate organisms within the mock com-

munity (Fig. 3A). The total number of chimeric sequences observed

for a given genus showed a strong positive correlation (R2 = 0.87)

with the total sequence abundance corresponding to that genus

(Fig. 3B). Thus, the abundance of chimeras corresponding to a

given genus appeared to be a reflection of both the degree of 16S

sequence identity and the abundance of sequences from organ-

isms within the genus.

To further test the hypothesis that more abundant organisms

form chimeras more readily, we used another mock community

(sMC [staggered mock community]) containing the same species,

but with 16S template concentrations staggered across four orders

of magnitude (Supplemental Fig. S13). The strong positive corre-

lation between organism abundance and number of chimeras in

the sMC is much more apparent (R2 = 0.97) (Fig. 3B). The eMC data

exhibited a range from ;10% to 53% chimeras in each genus

(Enterococcus, avg. 46%) with the cumulative chimera content of

the eMC at <20% (Fig. 3C). In contrast, the sMC, with its expanded

range of species sequence abundance, exhibited greater disparity

in the amount of chimeras detected in each genus, exceeding 70%

(Enterococcus, avg. 65%) of sequences in a given genus represented

by chimeras.

Interestingly, the same chimera often appeared in multiple,

independent amplifications. For example, we observed a chimera

between Streptococcus and Staphylococcus 16S sequences generated

during PCR across the V3–V5 region (Fig. 4). This chimera pair was

Figure 3. Correlation of chimera content with sequence homology
and organism abundance. (A) Percent of other organism abundance
corresponding to chimeras with the indicated more abundant species
(y-axis), plotted according to percent identity (x-axis) between homol-
ogous 16S genes. (B ) Number of chimeric sequences corresponding to a
given genus were plotted as a function of total genus-level classified reads
for the even (eMC) and staggered (sMC) mock community. Total read
counts were based on best BLASTN match (E # 10�10) to reference se-
quences for nonchimeras in addition to the genus representation within
the CS-predicted chimeras. (C ) Percent of sequences that correspond to
chimeras for each genus plotted according to genus-level sequence
abundance. Error bars correspond to standard error from the mean based
on four technical replicates.
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generated in each of four experimental replicates, and exemplifies

the reproducibility of chimera formation and breakpoint occur-

rence across multiple PCR reactions. Often the appearance of

‘‘novel’’ sequences in multiple independent 16S libraries is viewed

as confirmation of the validity of such sequences (Kunin et al.

2010), but our results cast doubt on this practice.

Exploration of 16S chimeras within 454 whole-genome
shotgun metagenomics

Chimeras are clearly a hindrance to the accurate discovery of novel

organisms in PCR-based 16S surveys. An alternative to targeted

PCR-based surveys is whole-genome shotgun (WGS) metagenomics.

These surveys randomly sample every DNA sequence present, and

sequences corresponding to 16S can be retrieved and analyzed sep-

arately. Although methods involving WGS metagenomic sequenc-

ing can involve PCR amplification steps, they are not directed to

specific gene targets, and so chimera formation would be expected to

be minimal.

To explore 16S chimeras in WGS metagenomic surveys, we

performed 454 WGS metagenomic sequencing on our eMC DNA

(SRR072233). Approximately 1.4 million reads were generated

from which 4273 reads (0.31%) were found to correspond to 16S

based on a BLASTN search of the mock community reference 16S

sequences (E # 10�10), representing each of the included organ-

isms (Supplemental Fig. S14). These 16S reads were examined us-

ing CS and no reads were flagged as potential chimeras.

Discussion
The essential function of the 16S gene, and its highly conserved

sequence and structure, has made it the molecule of choice for

studies of microbial evolution and ecological surveys (Pace 1997;

Tringe and Hugenholtz 2008). The many highly conserved regions

spanning the length of the gene enable the amplification of se-

quences from a broad range of species. These same highly con-

served regions, however, contribute to cross-hybridization and

mispriming events during amplification that create chimeric se-

quences. Although the majority of chimeras form between closely

related sequences, organisms across different phyla can form chi-

meras, and these are most likely to be classified as novel organisms

if not properly identified as aberrant.

Properly identifying chimeric 16S sequences is a challenging

computational problem. In evaluating chimera detection accuracy

of the widely utilized Pintail and BellerophonGG algorithms, we

found them to vary considerably, with BellerophonGG capable of

recognizing chimeras mostly restricted to the most divergent se-

quence pairs. Recently, attention has turned toward sequence

surveys that sample shorter regions of the 16S gene and/or are

applying next-generation sequencing technologies that are cur-

rently limited to short sequence lengths. Although the Pintail al-

gorithm has excellent chimera detection capabilities in full-length

sequences, it has little sensitivity for detecting chimeras in shorter

sequences. Our new CS tool is the only method currently capable

of sensitive chimera detection in short 16S sequence reads. How-

ever, perfect chimera detection is still an unsolved problem. Al-

though CS is largely robust to varying sequence characteristics

including divergence and length, detection accuracy does begin

to degrade with increasing divergence to reference sequences.

This underscores the importance of obtaining and validating se-

quences that represent novel bacterial diversity and continuing

to expand upon the reference database leveraged by CS and ad-

ditional analysis tools. Also, CS is designed to detect only the

simplest form of chimeras, involving two homologous parental

sequences. More complex chimeras and sequence anomalies

may evade detection. Given that chimeric sequences can be rare

and diverse, the problem of identifying rare species correlated

with disease or other important microbial ecosystem function

remains challenging.

Shorter PCR products targeted to windows of the 16S gene

were surprisingly rife with chimeras. Experiments with our syn-

thetic mock community indicated higher chimera rates (;15%–

20%) as compared with our observations with Sanger-sequenced

clones of full-length PCR products, with <10% chimeras (Supple-

mental Text S3). Although breakpoints among chimeras in full-

length PCR products appeared to show bias toward the V6 region

for multiple species pairs, chimeric content of shorter PCR prod-

ucts spanning the V6 region was not significantly greater than

with products spanning the V1–V3 or V3–V5 regions (Welch two

sample t-test, P > 0.05). The high chimera rates within short PCR

products targeted to next-generation DNA-sequencing technolo-

gies indicates the continued importance of chimera screening in

such sequence surveys and the need for tools such as CS that are

capable of detecting chimeras in short reads.

Cumulative chimera rates, as often cited in previous stud-

ies, grossly understate the magnitude of the chimera problem.

Cumulative rates can be heavily biased toward the most abun-

dant species in the sample. Although a cumulative chimera rate

Figure 4. Alignment of sequences corresponding to chimeras between Streptococcus and Staphylococcus 16S rRNA genes. Only columns from the NAST
multiple alignment containing nonidentical nucleotides between the reference sequences (top and bottom) are shown. Nucleotides matching Strepto-
coccus sequences are colored red. Sequence prefixes correspond to the four experimental replicates A–D.
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of ;20% may be observed with our 454 FLX Titanium se-

quences, >70% of sequences representing particular genera in the

sample can be chimeric.

Sequence reads from previously known organisms tend to be

well classified by existing methods (Wang et al. 2007), and these

methods continue to perform accurately in the presence of chi-

meras. However, many new taxa are incorrectly ‘‘discovered’’ due

to chimeric sequences. By restricting evaluation of sample diver-

sity to those sequences classified at high confidence, chimeras

appeared to minimally affect estimates of diversity via taxonomic

binning (Supplemental Text S6, S7), with the caveat that low-

abundance taxa should be treated with skepticism.

Chimera formation between highly divergent species is not

rare; it occurs reproducibly and over both long (;1500 bp) and short

(;500 bp) PCR amplicons. This implies that the often-suggested

criterion for trusting a novel sequence—that it appear in multiple

samples or experiments (Kunin et al. 2010)—may not be suffi-

ciently stringent. Even when applying PCR to harvest 16S se-

quences from clonal species, one must be very careful in analyz-

ing such sequences, since even low levels of contaminating

microbes can result in chimeric PCR products (data not shown).

The goal of chimeric 16S detection tools should be to identify

likely unnatural artifacts, such as chimeras resulting from PCR am-

plification, and to avoid flagging sequences that correctly represent

biology and evolution. Including such naturally occurring chimeric

sequences in the reference set ensures that query sequences with

best alignments to naturally chimeric reference sequences are not

flagged inappropriately. Since the reference collection of 16S se-

quences does not represent all of the bacterial diversity, putative

intra-genus chimeras identified in sequence surveys should be

treated with skepticism since many may represent genuine sequence

diversity and naturally occurring chimeras. The predicted intra-

taxon chimera type is reported in the output of CS so that researchers

can make informed decisions regarding the types of chimeras that

may deserve special attention. For example, retaining intra-genus

chimeras for subsequent analyses such as taxonomic binning may

be warranted, but defining new organisms based on sequence

clustering should proceed with caution, especially given that chi-

meras reproducibly form across multiple experiments.

In addition to pursuing advancements in detection of chi-

meras once they are formed, there is a need to identify experi-

mental conditions that are least conducive to chimera formation

(Wang and Wang 1996; Thompson et al. 2002; Lahr and Katz

2009). Our investigation into the effects of multiple PCR condi-

tions on the observed prevalence of chimeras among 454 pyrose-

quences and Sanger-sequenced clones supports a dominant effect

of amplification cycle number (Supplemental Text S8). By limiting

the number of amplification cycles to the fewest number needed to

produce yields required for sequencing, one can mitigate the rel-

ative yield of chimeric sequences. Although we detect minimal

chimeras formed at 20 cycles, earlier studies observed near peak

chimeras formed at 20 cycles (Wang and Wang 1996). Capturing

the amplification product at a time where yield is maximized and

chimeras are minimized will likely depend on the PCR protocol

utilized. Further exploration of PCR conditions, such as by leverag-

ing single molecule amplification in oil emulsions, could prove

highly advantageous (Williams et al. 2006); our preliminary in-

vestigation into emulsion PCR targeting 16S genes suggests this

may be a promising avenue (data not shown).

We were unable to detect chimeric 16S sequences in our 454

pyrosequencing WGS experiment, suggesting that WGS is relatively

chimera free. However, the concentration of 16S reads in this data

set was very low (0.31% of total reads), which likely minimized the

opportunity for cross-hybridization among 16S sequences. Ulti-

mately, the small number of 16S sequences generated by the WGS

approach suggests that pursuing WGS methods as an alternative to

directed 16S sequence surveys to specifically mine 16S data is nei-

ther efficient nor cost effective. Perhaps, as costs of sequencing

continue to plummet, WGS methods will become a viable alterna-

tive to directed 16S sequence surveys. Until then, optimizing PCR

conditions to mitigate chimera amplification and leveraging tools

such as CS to flag suspect sequences should help minimize the

impact of such artifacts on related microbiota research.

It is also important to note that chimeras are only one source

of diversity artifacts. Even with filtering of chimeras, the appear-

ance of unique sequence clusters occurs at a high rate when

compared with known sample diversity. This is particularly true for

reads generated using 454 pyrosequencing as compared with the

Sanger-generated reads; thus, the effects of sequencing error and

other anomalies cannot be ignored (Quince et al. 2009; Kunin et al.

2010). Additional studies leveraging controlled mock communi-

ties should help clarify insights into the true diversity represented

within the rare biosphere.

Methods
PCR, cloning, sequencing, and analysis of Sanger-sequenced 16S
sequences are described in the Supplemental Methods section of
the Supplemental Text.

Mock communities

The organisms for the mock community included a variety of
different genera commonly found on/within the human body.
The bacterial DNAs were collected from the American Type Culture
Collection (ATCC), the Deutsche Sammlung von Mikroorganism
und Zellkulturen (DSMZ), and our internal repository, with con-
tributions from collaborating scientists. The selection of mock
organisms and preparation of genomic DNAs are to be described as
part of a separate HMP consortium manuscript ( J.F. Petrosino et al.,
in prep.). Information describing the mock community contents
are available on the HMP Data Analysis and Coordination Cen-
ter website (http://www.hmpdacc.org/). The 16S gene content
from each DNA preparation was assayed by qPCR to calculate the
concentration of 16S gene copies. To generate the even and stag-
gered mock communities, DNA from each organism was mixed
according to the calculated 16S concentration. In the even com-
munity, the 16S concentration from all organisms was normalized
so that each organism contributed a calculated number of 100,000
16S molecules to each amplification reaction. In the staggered
mock community, species were present in one of fourconcentrations
calculated to contribute either 103, 104, 105, or 106 16S molecules per
reaction. The strains and the molecules per staggered reaction are
as follows: 103 16S molecules per reaction (Actinomyces odontolyticus
ATCC17982, Bacteroides vulgatus ATCC8482, Deinococcus radiodurans
ATCC20539, Enterococcus faecalis ATCC7077, Streptococcus pneumo-
niae ATCC BAA-334), 104 molecules per reaction (Acinetobacter bau-
mannii ATCC17978, Helicobacter pylori ATCC700392, Lactobacillus
gasseri ATCC20243, Listeria monocytogenes ATCC BAA-679, Neisseria
meningitidis ATCC BAA-335, Propionibacterium acnes DSM16379),
105 molecules per reaction (Bacillus cereus ATCC10987, Clostrid-
ium beijerinckii ATCC51743, Pseudomonas aeruginosa ATCC47085,
Staphylococcus aureus ATCC BAA-1718, Streptococcus agalactiae
ATCC BAA-611), and 106 molecules per reaction (Escherichia coli
ATCC700926, Methanobrevibacter smithii ATCC35061, Rhodobacter
sphaeroides ATCC17023 Staphylococcus epidermidis ATCC12228,
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Streptococcus mutans ATCC700610). Candida albicans ATCC SC5314
was included as a negative control, but limited to only 103 18S
copies (calculated) per microliter.

Amplification and 454 sequencing of targeted 16S gene
variable regions

Amplification primers were designed with FLX Titanium adapters
(A adapter sequence: 59-CCATCTCATCCCTGCGTGTCTCCGACT
CAG-39; B adapter sequence: 59-CCTATCCCCTGTGTGCCTTGG
CAGTCTCAG-39) and a sample barcode sequence where applicable
directly on the 5’ end of the 16S primer sequence: Forward primers
contained the B adapter and the reverse primers contained the
A. The 16S-specific sequence with 454 adapters were as follows:
V1–V3 primers: 454B_27F (59-AGAGTTTGATCCTGGCTCAG-39)
and 454A_534R (59-ATTACCGCGGCTGCTGG-39); V3–V5 primers:
454B_357F (59-CCTACGGGAGGCAGCAG-39) and 454A_926R (59-
CCGTCAATTCMTTTRAGT-39); V6–V9: 454B_U968F (59-AACGCGA
AGAACCTTAC-39) and 454A_1492R-MP (59-TACGGYTACCTTGTT
AYGACTT-39) (Lane 1991; Yu and Morrison 2004; Hamady et al.
2008). Polymerase chain reaction (PCR) mixtures (25 mL) contained
10 ng of template, 13 Easy A reaction buffer (Stratagene), 200 mM
of each dNTP (Stratagene), 200 nM of each primer, and 1.25 U of
Easy A cloning enzyme (Stratagene). The cycling conditions for the
V1–V3 amplicon consisted of an initial denaturation of 95°C for
2 min, followed by 30 cycles of denaturation at 95°C for 40 sec,
annealing at 56°C for 30 sec, extension at 72°C for 1 min and a final
extension at 72°C for 7 min. The cycling conditions for the V3–V5
and V6–V9 amplicons consisted of an initial denaturation of 95°C
for 2 min, followed by 30 cycles of denaturation at 95°C for 40 sec,
annealing at 50°C for 30 sec, extension at 72°C for 1 min, and a final
extension at 72°C for 7 min. The PCR products were purified with
QIAquick PCR purification kit (QIAGEN) according to the manu-
facturer, and size was selected on a 1% agarose gel. The gel bands
were purified with QIAquick gel extraction kit (QIAGEN) according
to the manufacturer’s instructions with one modification: The gel
bands were dissolved at room temperature on a Dynal Bioteck Ro-
tator (Model RKDYNAL, setting 30, Invitrogen, Life Technologies)
for 15 min. DNA was eluted in 25 mL of 13 low TE buffer (pH 8.0).
The DNA was quantified on an Agilent Bioanalyzer 2100 DNA 1000
chip (Agilent Technologies). The number of molecules for each
sample was calculated using size (bp) and concentration (ng/mL)
data from the Agilent. All three PCR products were normalized to the
same molecule concentration (1.0 3 109 molecules/mL), pooled in
equal volumes, and diluted to an emulsion PCR working concen-
tration of 2.0 3 106 molecules/mL. Emulsion PCR and sequencing
were performed according to the manufacturer’s specifications.

Processing of raw sequence data

454 FLX Titanium pyrosequence processing

Pyrosequences were processed using a combination of MOTHUR
(Schloss et al. 2009) and custom PERL scripts. Sequences were re-
moved from the analysis if they were <200 nt or >600 nt, had a read
quality score <25, contained ambiguous characters, had a non-
exact barcode match, or did show more than four mismatches to
one of the three used reverse primer sequences (534R, 926R, and
1492R). Remaining sequences were assigned to samples based on
barcode matches, after which barcode and primer sequences were
trimmed and reads were oriented such that all sequences begin
with the 59 end according to standard sense strand conventions.
Because of sequencing bias likely due to hairpin formations with
the adapter and forward 16S primer, we restricted our analyses to
sequences derived from the reverse 16S primer. Counts of pyrose-

quenced reads analyzed are included in Supplemental Table S1.
Sequence data were deposited under NCBI Genome Project ID 48465
as SRA project SRP002443. Processed data partitioned according to
replicate and 16S region (V1–V3, V3–V5, and V6–V9) are provided as
downloadable FASTA files at http://microbiomeutil.sf.net.

Fixed-width alignment of 16S sequences using NAST-iEr

NAST-formatted alignments (DeSantis et al. 2006b) were generated
using a variant of Needleman–Wunsch dynamic programming
(Needleman and Wunsch 1970). A query sequence was aligned to
a NAST-formatted reference sequence (or set of NAST-formatted
reference sequences), and gap insertion was restricted to the query
sequence in generating the global optimal alignment. End-gaps in
the aligned query sequence were not penalized (because the sub-
ject sequences were usually partial), and regions of the query se-
quence that extended beyond the boundaries of the NAST-for-
matted reference sequence(s) were excluded in order to maintain
the fixed width; this was particularly useful in the case where the
query included unaligned vector or low-quality sequence at its
ends, which in many cases became excluded from the resulting
alignment. When a query was aligned to a set of multiple reference
sequences, a profile was constructed based on the multiple refer-
ence sequences, and alignment scores were computed by summing
all match and mismatch scores within a position of the alignment.
Pre-existing gap characters in the NAST-formatted reference se-
quences were not penalized when aligned to a gap inserted in the
query. The global dynamic programming algorithm with a fixed
width profile P and unaligned query sequence Q was defined by
the following recursion:

F i; jð Þ = max F i�1;ð j�1ð Þ + s Pi;Q j

� �
; # aligned pair

F i; j�1ð Þ� d ið Þ; # gap added in query

Þ
s Pi;Q j

� �
= 0 if i = 0 orð j = 0Þ; # end gaps not penalized

ð
sum matchScore �matches in Pið Þ
+ sum mismatchPenalty � mismatches+gaps in Pið Þ

Þ
d ið Þ= sumðgapPenalty �non gaps in PiÞ# no penalty if Pi is a gap

The optimal scoring alignment was chosen as max[F(i,j)], where i
was the position of the last position in the NASTalignment profile.

Reference NASTalignments were selected by searching a FASTA
formatted database of reference 16S sequences using MEGABLAST.
Those reference sequences with a BLAST E-value $ 10�50 and hav-
ing a BLAST alignment score within 80% of the value of the top
match were selected (maximum of 10 sequences) and an alignment
profile was constructed, tabulating the residue types (including
gaps) at each column of the multiple alignment. The query se-
quence was aligned to this profile as described above. The NAST-iEr
alignment algorithm was written in the C language, and wrapped by
a PERL script that performed the BLASTsearch against the unaligned
reference sequences and extracted the corresponding reference se-
quences from the NAST-formatted database. Generating a NAST
alignment for a single query sequence, including performing the
reference sequence database search, takes on the order of one sec-
ond per sequence on an average desktop computer.

Obtaining a database of chimera-free reference 16S sequences

A database of what was expected to be mostly chimera-free se-
quences was compiled from two sources: 5165 full-length 16S
sequences corresponding to type strains were obtained from the
RDP website (http://rdp.cme.msu.edu/), and 4218 16S genes were
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identified from complete and high-quality draft bacterial genomes.
All available bacterial genomes were downloaded from GenBank
and 16S genes were identified using RNAmmer (Lagesen et al.
2007). A large overlap exists between the sequences derived from
these two sources, and so CD-HIT (Li and Godzik 2006) was used to
retrieve the longest nonredundant reference sequence (requiring
99.5% identity), yielding 5408 sequences. Sequences found to
contain greater than 2% ‘‘N’’ characters were excluded (eliminat-
ing 196 sequences). The remaining sequences were aligned using
NAST-iEr against the GreenGenes ‘‘core’’ NAST alignment database
(http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_
files/core_set_aligned.fasta). Those sequences with <90% of their
length represented within the confines of the NAST alignment
were removed (eliminating 31 sequences). The resulting reference
database consisted of 5181 sequences, 4468 corresponding to type
strains, and the remaining 713 derived from complete or draft
genome sequences. The complete taxonomy of each sequence,
including domain, phylum, class, order, family, and genus was
predicted using the RDP Bayesian classifier (Wang et al. 2007). The
NAST alignments for this reference database were iteratively im-
proved by leveraging NAST-iEr in rounds of realignments until the
alignments stabilized (Supplemental Figure S15).

Construction of a database of simulated 16S chimeras
for evaluation of detection methods

Simulated chimeric 16S sequences were constructed by joining two
immediately adjacent segments of a pair of NAST-formatted refer-
ence sequences. A random breakpoint was selected from the range
of the NAST alignment (7682 columns) between the positions cor-
responding to 200 and 1200 in the E. coli unaligned reference se-
quence. At least 50 nucleotide characters (G, A, T, or C) were re-
quired on each side of the breakpoint. Sequence divergence between
the pair of reference sequences on each side of the breakpoint was
required to differ by <10 % of the global sequence divergence be-
tween the two selected reference sequences. The disparate sequence
regions from each side of the breakpoint were joined to create
a simulated chimera. The pair of reference sequences from which
the chimera was derived is referred to as the parents. The divergence
between the parents is referred to as the chimera-pair divergence.
Pairs of parental reference sequences to be joined into a chimera
were randomly selected based on differences at each level of their
taxonomy (intra-phylum chimeras down to intra-genus chimeras).
Smaller length simulated chimeras were constructed similarly
according to the targeted unaligned sequence lengths.

Simulated sequence divergence was performed by randomly
selecting a position within the NAST-formatted chimera sequence
and introducing a mismatch, insertion, or deletion, as specified.
Point mutations were applied until reaching the targeted level of
sequence divergence, disallowing multiple mutations at the same
site. Mutated positions were selected based on a uniform random
distribution provided by the rand() function in PERL, thus effec-
tively using the Jukes-Cantor one-parameter model of molecular
sequence evolution with no heterogeneity of rates across sites.

Detection of chimeric 16S sequences

GreenGenes Bellerophon

The GreenGenes Bellerophon algorithm (DeSantis et al. 2006a) is
currently available only in the form of a web service offered by the
GreenGenes website (http://greengenes.lbl.gov/cgi-bin/nph-bel3_
interface.cgi). It was not possible for us to examine the accuracy of
the GreenGenes Bellerophon web service with our test regime due
to its special formatting requirements, such as requiring NAST
alignments and associated data generated by the webserver as a

prerequisite to chimera checking. Instead, we reimplemented a
GreenGenes Bellerophon utility based on the published algorithm
description and set parameters according to default settings on the
GreenGenes website. An abridged set of sequences from the test
regime was submitted to the web service for processing and the
results were highly comparable to our reimplemented version
(Supplemental Fig. S1A).

The GreenGenes Bellerophon algorithm was reimplemented
as follows: A whole query sequence was searched against only the
reference 16S database using BLASTN. The top 10 reference database
sequences were retrieved in NAST format. The query was NAST
aligned using NAST-iEr. Each pair of the top 10 matching reference
sequences were considered as potential parents of the candidate
chimeric query sequence. First, the GreenGenes-provided lane mask
(http://greengenes.lbl.gov/Download/Sequence_Data/Fasta_data_
files/lanemask.fasta) was applied to conceal hyper-variable posi-
tions in the alignment. The NAST-formatted query and each pair of
potential parents were examined separately using the GreenGenes
Bellerophon algorithm: The columns of the NAST multiple align-
ment of the three sequences (two parents and query) that exclu-
sively contain gap characters were first removed. A pair of adjacent
windows (left and right window) each of 300 columns of the
resulting alignment was slid from 59 to 39 across the multiple
alignment with a step length of 10 columns, each time reposi-
tioning a putative chimera breakpoint.

Given a candidate chimeric query sequence Q and two pu-
tative parents of the chimera (P1 and P2) and a putative chimeric
breakpoint with 300-bp windows to the left Wl and right Wr, the
percent identities were computed between each pair of sequences
within each window. At the position of a breakpoint, two chimeric
products between the parents were possible: {(P1,Wl), (P2,Wr)} and
{(P2,Wl), (P1,Wr)}.

A divergence ratio was computed as the average percent
identity (PerID) between the two windows corresponding to the
query and a putative chimera, divided by the percent identity be-
tween the two nonchimeric parents:

divergence ratio = maxð
ðaverage PerID P1;W1ð Þ; Q;W1ð Þð Þ;PerID P2;Wrð Þ;Q;WrÞð Þð Þ

=PerID P1;P2ð Þ Þ;
ðaverage PerID P2;W1ð Þ; Q;W1ð Þð Þ;PerID P1;Wrð Þ;Q;WrÞð Þð Þ

=PerID P1;P2ð Þ Þ
Þ

If, at any step, the divergence ratio meets a minimum threshold of
1.1 (default value at GreenGenes), the query sequence was flagged
as a potential chimera.

WigeoN (reimplemented Pintail)

The publicly available version of the Pintail chimera detection
software is a graphical interface-driven software intended for man-
ual analysis of potentially chimeric sequences. It was not designed
for use in a high-throughput setting. In addition, the available
software was not suited for use with NAST-formatted alignments. To
evaluate the Pintail algorithm and to obtain a version of the soft-
ware that was both compatible with NAST-alignments and for use in
a high-throughput environment, we reimplemented the algorithm
as previously described (Ashelford et al. 2005). A query sequence was
searched against the reference 16S database using MEGABLAST. The
top matching reference sequence and the query sequence, both in
NAST format, were compared using the Pintail algorithm, using our
implementation that we named WigeoN. A mask was applied to the
NAST alignment to include only those columns that correspond
to residues in the E. coli reference sequence. The global sequence
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divergence between the resulting reference and query alignment
was computed. A window of 300 columns of the multiple align-
ments was slid from left to right with a step of 25 columns, and the
sequence divergence within each window was calculated. The
standard deviation of sequence divergence among all windows was
computed as the deviation from expected (DE) value. The distribu-
tion of DE values for nonanomalous 16S sequences at a given in-
terval of global sequence divergence was computed a priori by per-
forming an all-vs.-all WigeoN analysis of sequences in the 16S
reference database and binning DE values at every 1% average se-
quence divergence interval between 1% and 30%. The DE value
computed from the query and reference sequence comparison was
compared with the distribution of known reference DE values at
that global sequence divergence, and if it exceeded the 99th per-
centile of known values, it was flagged as a potential anomalous
sequence. To ensure a proper reimplementation of the Pintail soft-
ware, we compared DE values for simulated chimeras between
Pintail and WigeoN and found the values to be nearly perfectly
correlated (R2 = 0.993, Supplemental Fig. S1B).

Taxon-specific Kmers

All overlapping 50 mers (Kmers of length 50) were extracted from
each of the reference sequences in the database corresponding to
those sequences with validated taxonomic predictions and those
used for synthetic chimera construction (as described earlier).
Those Kmers that were identified as unique to a genus were cata-
loged as genus-specific Kmers. Given a query sequence, all over-
lapping 50 mers were examined and those matching taxon-specific
Kmers were identified. If multiple taxon-specific Kmers are iden-
tified in the query sequence and the second most abundant set of
taxon-specific Kmers comprised at least 10% of all genus-specific
Kmers, the query was flagged as a potential chimera.

ChimeraSlayer (CS)

Detection of chimeric 16S sequences by CS occurred in several
stages outlined below:

(1) Search query sequence termini to identify nearest neighbors.
The terminal regions of the query sequence, each corresponding
to 30% of the query length, were independently searched
against the reference 16S database using MEGABLAST. The top
15 matches from each search were extracted in NAST format.

(2) Identification of chimera parent candidates. Potential parents
of a candidate chimeric sequence were identified such that an
in silico chimera among multiple parent reference 16S se-
quences existed that had a higher scoring pairwise alignment
to the query than did any individual 16S reference sequence
across the length of the entire alignment. In the context of the
existing NAST multiple alignment of reference sequences
chosen above in step 1, the highest-scoring alignment of the
query to reference sequences allowing for multiple breakpoints
(chimerization events) was computed. This best alignment
was computed using a dynamic programming alignment al-
gorithm, conceptually similar to the algorithm implemented
in CHECK_CHIMERA (Komatsoulis and Waterman 1997),
penalizing mismatches and breakpoints, like so:

Given a NAST alignment for each of the i top matching reference
sequence and NAST alignment position j:

F i; jð Þ = max F i; j�1ðð Þ+ s i;jð Þ; # no breakpoint

max for x in 1::n; x!= i ð
F x; j 3 1ð Þ + s i; jð Þ + breakpointPenaltyÞ
# breakpoint

Þ

where s(i,j) corresponds to the score between the query sequence at
position j with the NAST-formatted reference sequence i at position
j, valued as a match (+5), mismatch (�4), or zero in the case where
two gaps are aligned. F(i,j) corresponds to the maximum alignment
score between the query and reference sequence i between NAST
alignment positions 1..j, allowing for breakpoints. To minimize
overzealous branching of the alignments (which, given a low
breakpoint penalty, could occur to circumvent most mismatches
in the alignment), the breakpoint penalty was computed at run-
time as described below. CS used the concept of a minimum di-
vergence ratio (minDivR), computed as the minimum value of the
percent identity between a query sequence and putative chimera
(C) divided by the percent identity between the query (Q) and ei-
ther of the parents (P1 or P2):

minDivR = minðPerID Q;Cð Þ=PerID Q;P1ð Þ;
PerID Q;Cð Þ=PerID Q;P2ð Þ

Þ

The default value of 1.007 required that if a query was to be flagged
as a chimera, an alignment between a query and one of the parents
should be, at most, 99.3% identical when the alignment between
the query and a chimera was a perfect alignment. The breakpoint
penalty was set based on this premise. The breakpoint penalty
corresponds to the minimum value required to exceed the cost of
the minimal number of mismatches allowed between a query se-
quence and a nonchimeric parent, according to the minDivR.

allowableMismatches = 1�1=minDivRð Þ � sequence Lengthð Þ

breakpointPenalty =

floorðallowableMismatches + 1Þ �MISMATCH PENALTY

A best alignment that lacked branching (and hence, included only a
single reference sequence) was reported as nonchimeric. The branch-
ed alignments, having one or more breakpoints including two or
more reference sequences, continued on to the next stage of the
chimera detection pipeline. The output of this parent selection step
included the neighboring regions of the alignment that corresponded
to the multiple reference sequences separated by putative break-
points, and their local percent identity compared with the global
percent identity between the query and each reference sequence.
(3) Chimera-aware NAST realignment of the query to the selected

parents. Accurate NAST alignments of chimeric sequences re-
quired a proper set of reference NAST-formatted sequences to
align to. In the standard NAST-iEr alignment approach, the best
matching 16S sequences were chosen. In the case of a chimeric
sequence, an optimal NAST alignment would require represen-
tatives for each corresponding homologous region of the chi-
mera. Depending on the level of chimera divergence or
breakpoint chosen, the top matching database hits may not
contain each of the most informative sequences required for an
accurate chimeric NAST alignment. However, the reference se-
quences identified by parent selection step above provided
a minimal set of sequences to represent the putative regions of
a chimera. To generate such a chimera-aware alignment, se-
lected putative parent sequences were extracted in NAST format,
and NAST-iEr was used to realign the query sequence against
a profile based on these candidate parents.

(4) Chimera prediction in an evolutionary framework. The re-
aligned NAST-formatted query and the candidate parents were
next examined in an evolutionary framework for final chimera
prediction. Given a pair of candidate parents and the single
query sequence in NAST format, the three-sequence multiple
alignment was removed of all columns containing a gap or
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non-{G,A,T,C} character, thus yielding a multiple alignment
where each cell of each column contained a nucleotide (GATC).
The multiple alignment was divided into two parts (left and
right) by a breakpoint, requiring a minimum of 50 unaligned
bases from each end. The breakpoint was slid from left to right
across the multiple alignment with a step of five bases. At each
breakpoint position, the parents were examined to determine
whether a chimera between the two parents formed at that
breakpoint was more similar to the query sequence than either
of the parents. Note that, unlike Bellerophon, the entire se-
quences on both sides of the breakpoint were analyzed (the
corresponding windows extend to each end of the sequence).
If such a putative chimera existed, a bootstrapping operation
was performed to compute a measure of confidence in the
chimera relationship at that breakpoint. Bootstrapping was
performed as follows: Columns of the multiple alignment
containing nonidentical nucleotides and not neighboring a gap
were identified from each side of the breakpoint; for 100 iter-
ations, 10% of the mismatch-containing columns were sam-
pled with replacement and examined in support of the chimera
relationship, as defined using familiar terms:

# chimera upper left;bottom right P1;W1ð Þ; P2;W2ð Þf g
ðPerID P1;W1ð Þ; Q;W1ð Þð Þ > PerIDð P2;W1ð Þ; Q;W1ð ÞÞ
and

PerID P2;W2ð Þ; Q;W2ð Þð Þ > PerID P1;W2ð Þ; Q;W2ð Þð ÞÞ
or

# chimera bottom left;bottom right P2;W1ð Þ; P1;W2ð Þf g
ðPerIDð ðP2;W1Þ; ðQ;W1Þ Þ > PerIDð ðP1;W1Þ; ðQ;W1ÞÞ
and

PerIDð ðP1;W2Þ; ðQ;W2Þ Þ > PerIDð ðP2;W2Þ; ðQ;W2Þ ÞÞ;

where percent identity was based on those columns of the multiple
alignment corresponding to nonidentical residues that were sam-
pled with replacement. In either case, for the relationship to hold,
the query sequence must have been more similar to a chimera be-
tween the two parents than to either of the parents separately.

In addition to computing bootstrap support, the minimum di-
vergence ratio was computed at each breakpoint corresponding to
PerID(Q,C)/max(PerID(Q,A), PerID(Q,B)). The breakpoint having
the highest bootstrap support followed by the highest divergence
ratio was selected as the best evidence for the chimera. If the
maximally scoring breakpoint had at least 90% bootstrap support
and the minimum divergence ratio exceeds the set threshold
(1.007), the query was flagged as a chimera.

CS, in its current implementation, takes ;10 sec per execu-
tion on pyrosequencing reads of approximately 500 bases, and 20–
30 sec per full-length (;1200 bases) 16S query sequence on an
average desktop computer.
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