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Activity-dependent dendritic Ca 2� signals play a critical role in multiple forms of nonlinear cellular output and plasticity. In thalamo-
cortical neurons, despite the well established spatial separation of sensory and cortical inputs onto proximal and distal dendrites,
respectively, little is known about the spatiotemporal dynamics of intrinsic dendritic Ca 2� signaling during the different state-dependent
firing patterns that are characteristic of these neurons. Here we demonstrate that T-type Ca 2� channels are expressed throughout the
entire dendritic tree of rat thalamocortical neurons and that they mediate regenerative propagation of low threshold spikes, typical of, but
not exclusive to, sleep states, resulting in global dendritic Ca 2� influx. In contrast, actively backpropagating action potentials, typical of
wakefulness, result in smaller Ca 2� influxes that can temporally summate to produce dendritic Ca 2� accumulations that are linearly
related to firing frequency but spatially confined to proximal dendritic regions. Furthermore, dendritic Ca 2� transients evoked by both
action potentials and low-threshold spikes are shaped by Ca 2� uptake by sarcoplasmic/endoplasmic reticulum Ca 2� ATPases but do not
rely on Ca 2�-induced Ca 2� release. Our data demonstrate that thalamocortical neurons are endowed with intrinsic dendritic Ca 2�

signaling properties that are spatially and temporally modified in a behavioral state-dependent manner and suggest that backpropagat-
ing action potentials faithfully inform proximal sensory but not distal corticothalamic synapses of neuronal output, whereas corticotha-
lamic synapses only “detect” Ca 2� signals associated with low-threshold spikes.

Introduction
Active dendritic conductances are critical for many complex cellular
activities, including coincidence detection, dendritic Ca2� spike ini-
tiation, local synaptic integration, and synaptic plasticity (Häusser et
al., 2000; Holthoff et al., 2006). In particular, they permit active back-
propagation of axosomatically initiated action potentials (bAPs) to
different extents throughout the dendritic trees of various neurons
(Stuart et al., 1993, 1997; Häusser et al., 1995; Magee and Johnston,
1995; Markram et al., 1995; Schiller et al., 1995; Spruston et al., 1995;
Bischofberger and Jonas, 1997;) with significant physiological con-
sequences. For example, the timing relationship between bAPs and
near-coincident excitatory synaptic activity has been demonstrated
to confer a range of nonlinear dendritic signaling properties
(Holthoff et al., 2006; Kampa et al., 2007).

Sensory thalamocortical (TC) neurons sit in a pivotal position
for signal integration within thalamocortical circuits because
they receive both sensory and corticothalamic (CT) afferents
(Sherman and Guillery, 1996). Significantly, these glutamatergic
inputs are spatially separated in the TC neuron dendritic tree,

with sensory input arriving on stem dendrites close to the first
dendritic branch point (�50 �m) and CT fibers forming syn-
apses mainly onto sparsely spiny intermediate or distal dendrites
(�70 –150 �m) (Wilson et al., 1984; Liu et al., 1995; Sherman and
Guillery, 1996). Indeed, up to 50% of all synaptic connections
onto TC neurons are formed by CT afferents onto distal dendrites
(Wilson et al., 1984; Liu et al., 1995). Furthermore, GABAergic
afferents onto TC neurons are also differently distributed across
their dendrites, with local interneuronal inputs preferentially tar-
geting perisomatic regions and reticular thalamic neurons (nRT)
making synapses throughout the entire dendritic tree.

Despite such intricate dendritic synaptic architecture, how-
ever, our understanding of the cellular physiology of TC neurons
is still restricted to a mainly somatic view. In particular, the non-
linearity in TC neuron output that is linked to a behavioral state-
dependent recruitment of T-type Ca 2� channels (Llinás and
Jahnsen, 1982; Steriade et al., 1993) and expression of low-
threshold Ca 2� spikes (LTSs) has only been studied in the soma
and very proximal dendrites. As such, the presence T-type Ca 2�

channels, as well as voltage-gated Na� and K� channels and
high-voltage-activated (HVA) Ca 2� channels in TC neuron den-
drites has been demonstrated previously by several imaging, elec-
trophysiological, and anatomical studies (Munsch et al., 1997;
Zhou et al., 1997; Budde et al., 1998; Williams and Stuart, 2000).
However, these studies were limited to somatic and proximal
(�50 �m) dendritic regions, and although computer simulations
suggest that high levels of T-type Ca 2� conductance throughout
the dendritic tree are necessary for LTS-dependent activities
(Destexhe et al., 1998; Emri et al., 2000; Rhodes and Llinás,
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2005), no experimental confirmation of this prediction has
been made.

Here, by investigating the dynamics of intrinsic dendritic
Ca 2� signaling across the full TC neuron dendritic tree, we found
that LTSs generate near-instantaneous global Ca2� influx, whereas
bAPs evoke Ca2� transients that temporally summate to produce
Ca2� accumulations that are linearly related to AP frequency but are
spatially restricted to proximal dendrites.

Materials and Methods
Electrophysiology. Coronal slices (300 �m) containing the dorsal lateral
geniculate nucleus (dLGN) were prepared from postnatal day 21–24
Wistar rats of either sex in chilled (1–3°C) cutting solution bubbled with
carbogen (95% O2/5% CO2) (in mM: 60 sucrose, 85 NaCl, 2.5 KCl, 1
CaCl2, 2 MgCl2, 1.25 NaH2PO4, 25 NaHCO3, 25 D-glucose, 3 kynurenic
acid, and 0.045 indomethacin) in accordance with the Home Office An-
imals (Scientific Procedures) Act 1986, United Kingdom. Slices were
stored for 20 min at 35°C in sucrose-containing solution and then main-
tained at room temperature in artificial CSF (aCSF) [in mM: 125 NaCl,
2.5 KCl, 1 CaCl2, 2 MgCl2, 1.25 NaH2PO4, 25 NaHCO3, and 25 D-glucose
(305 mOsm)] and used within 4 – 6 h. For recording, slices were trans-
ferred to a submersion chamber continuously perfused with warmed
(35°C) aCSF [in mM: 125 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 1.25
NaH2PO4, 25 NaHCO3, and 25 D-glucose (305 mOsm)] at a flow rate of
2–2.5 ml/min. Somatic whole-cell patch-clamp recordings were per-
formed on TC neurons (visually identified by infrared video microscopy)
using pipettes with resistances of 4 – 6 M� when filled with internal
solution containing 135 mM K-methylsulfonate, 10 mM HEPES, 10 mM

Na-phosphocreatine, 4 mM MgCl2, 4 mM Na-ATP, 0.4 mM Na-GTP, pH
7.3, 300 mOsm, supplemented with 25 �M Alexa Fluor 594 and 300 �M

Fluo 5F or 500 �M Fluo 4FF (Invitrogen) for Ca 2� imaging. Electrophys-
iological data were acquired at 20 kHz and filtered at 6 kHz using a
Multiclamp 700B patch-clamp amplifier and pClamp 10 software (Mo-
lecular Devices). Series resistance at the start of experiments was between
11 and 15 M� and varied �20% during recordings.

bAPs and LTS were evoked by somatic current injection from membrane
potentials of approximately �50 and �70 mV (held by constant direct cur-
rent injection), respectively, using either 1–1.5 nA, 2 ms square pulses (bAPs)
or 100–140 pA, 50 ms pulses (LTS). bAP trains were evoked using the same
pulse delivered at frequencies between 10 and 120 Hz for 500–700 ms, and
stimulus trials were delivered with 10–20 s intervals. Focal dendritic appli-
cation of drugs was achieved by placing a “puffer” patch pipette containing
HEPES-buffered aCSF (in mM: 145 NaCl, 2.5 KCl, 2 CaCl2, 1 MgCl2, 10
HEPES, and 25 D-glucose, pH 7.3) close (�10–15 �m) to the dendrite of
interest using infrared-scanning Dodt contrast. Gentle pressure was applied
using a syringe, and data were collected during drug application. Trial exper-
iments were performed using blank aCSF supplemented with Alexa Fluor
594 to confirm the lack of effect of vehicle solution on Ca2� transients and
spatial distribution of the “puff.” During the course of the experiment, the
diffusion of locally applied drugs was restricted to �60 �m. Local synaptic
stimulation by activation of putative CT axons was achieved in the presence
of the GABAA antagonist SR-95531 [2-(3-carboxypropyl)-3-amino-6-(4-
methoxyphenyl)pyridazinium bromide] (10 �m) using a glass pipette filled
with HEPES-buffered aCSF (as above) placed within 15 �m of a selected
distal dendrite. Trains of three small (0.1–10 V), brief (200 �s) stimuli were
delivered at intervals of 30 ms.

Imaging. Two-photon laser-scanning microscopy (2P-LSM) was per-
formed using a Prairie Ultima (Prairie Technologies) microscope pow-
ered by a titanium:sapphire pulsed laser (Chameleon Ultra II; Coherent)
tuned to � � 810 nm. Image acquisition was controlled using Prairieview
software, and laser intensity was modified using a Pockels cell electro-
acoustic modulator (ConOptics). Prior to commencing imaging experi-
ments, neurons were loaded with indicators for 20 min to allow complete
equilibration and reduce nonlinearities during stimulus-evoked Ca 2�

influx. Dendrites were then imaged using a 40�/0.8 numerical aperture
objective lens and fluorescence signals from Alexa Fluor 594 (red, R) and
Fluo (green, G) indicators were collected simultaneously in the epicol-
lection mode using multialkali photomultiplier tubes (Hamamatsu Pho-

tonics). Dendritic fluorescence signals were recorded by performing line
scans (500 Hz) (Fig. 1 B) across dendrites at selected regions of interest
(ROIs) (0.042 �m/pixel, 7.2 �s pixel dwell time). For calculation of
distance-dependent differences in AP-evoked changes in intracellular
Ca 2� (�Ca 2�), dendrites were selected that were limited to a single
optical plane (�20 �m Z variance). Distances were approximated by
measuring along the dendrite from the somatic center to the dendritic
ROI on a two-dimensional maximum intensity projection of each neu-
ron (Fig. 1 A). Maximum intensity projections were constructed from Z
series of 120 –150 images (512 pixels, 0.66 �m/pixel) taken with 1 �m
focal steps. To prevent photodamage during line scans, most data pre-
sented represent averages of 10 trials, but to obtain signal-to-noise (S/N)
ratios sufficient for successful exponential fitting, some experiments re-
quired 20 repetitions (e.g., single APs). Fluorescence signals were mea-
sured by integration of the signal over a region in which the intensity of
the red channel was 	80% of the peak fluorescence (Fig. 1 B, white bars).
Offsets from the photomultipliers and preamplifier were measured in the
dark and subtracted from all measurements. No other background cor-
rection was applied because autofluorescence is insignificant in 2P-LSM
and care was taken to minimize indicator spill into the extracellular space
during patching. The ratio of the Ca 2�-sensitive fluorescence signal (G)
to the Ca 2� insensitive signal (R) was used as a measure of stimulus
evoked dendritic [Ca 2�]. The amplitude of the stimulus evoked den-
dritic �[Ca 2�] �G/R was determined by subtracting baseline G/R values
(50 ms period before stimulus) from the peak G/R signal (20 –50 ms
interval). To estimate indicator saturation for Fluo 5F and Fluo 4FF, we
measured G/Rmax (0.7 and 0.95) in 10 mM Ca 2� and G/Rmin (0.02 and
0.05) in 10 mM EGTA in a patch pipette in our microscope. During
experiments, typical maximum �G/Rsignals were 0.23 and 0.1 for Fluo 5F
and Fluo 4FF, and �G/Rrest was 0.05 and 0.04, resulting in nonlinearity
errors [�G/Rsignals/(�G/Rmax � �G/Rrest)] of �36 and �9%, respec-
tively. Although the maximum nonlinearity error associated with 300 �M

Fluo 5F measurements is larger than would typically be desired, we found
that this was the best Ca 2� indicator and concentration to measure the
relatively small dendritic AP-evoked signals and larger LTS-evoked sig-
nals in the same neurons in the near-linear range. Therefore, in experi-
ments in which �[Ca 2�] evoked by different firing modes or firing
frequencies were compared or decay time constants were measured, ef-
fects of saturation were routinely compensated by correcting traces using
the following equation (Scheuss et al., 2006):

(G/R)corr � (G/R)/(1 � (G/R)/(G/R)max). (1)

After correction, fluorescence signals (G/R) were converted into Ca 2�

concentrations using the following:

[Ca 2�]/Kd � (G/R) � (G/R)min/(G/R)max � (G/R)min. (2)

Under our conditions, the Kd of Fluo 5F was measured as 0.8 �M, which is
similar to previously reported values (Yasuda et al., 2003), and we used
values reported in the literature to calculate Ca2� concentration for Fluo 4FF
experiments (8.1 �M). The exogenous buffer capacity (KB) was estimated
using the incremental Ca2� binding ratio (Neher and Augustine, 1992):

KB � Kd[B]total/(Kd � [Ca2�]0)(Kd � [Ca2�]0 � �[Ca2�]), (3)

where [B]total is the total concentration of added buffer, [Ca 2�]0 is the
resting calcium level, and �[Ca 2�] is the evoked Ca 2� increment.

Analysis. Line-scan analysis was performed offline using MetaMorph soft-
ware (Molecular Devices). Decay time constants (�decay) were measured by
fitting monoexponentials (Prism 5; GraphPad Software) to the decay phase
of �[Ca2�] with fits constrained by peak G/R and baseline G/R values. In
thin dendrites, such as those found in TC neurons, AP-evoked Ca2� dynam-
ics is well described by a single compartment model with the transient am-
plitude determined by the amount of Ca2� influx and the decay reflecting
the rate of Ca2� extrusion. To determine whether these factors are modu-
lated by activity in TC neurons, �[Ca2�] measured during tonic firing at
different frequencies were compared with those predicted based on the dy-
namic properties of single spike-evoked �[Ca2�]. During a stimulus train,
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such as tonic AP firing, the steady-state Ca2�

level is attained when influx and extrusion are
balanced:

�[Ca 2�]steady-state � �[Ca 2�]AP��AP,

(4)

where �[Ca 2�]AP is the �[Ca 2�] per action
potential, � is the measured decay time con-
stant for a single bAP-evoked �[Ca 2�], and
�AP is the inverse of the interspike interval
(Helmchen et al., 1996; Scheuss et al., 2006).
These analyses were performed on data that
were corrected for nonlinearity as described
previously because time integrals of �[Ca 2�]
can be affected significantly by indicator satu-
ration. Some predictions of activity-evoked
dendritic Ca 2� changes were made using the
linear sum of the exponentials fitted to single
AP transients offset to match the relative spike
timing.

All averaged data are shown as mean 
 SEM,
and n refers to the number of cells tested unless
otherwise indicated. Statistical significance was
verified using tests indicated in the text with
� � 0.05.

Results
Spatial distribution of LTS- and
AP-evoked Ca 2� transients in TC
neuron dendrites
We used a combination of whole-cell re-
cording and two-photon laser-scanning mi-
croscopy to examine Ca2� signals evoked
by bAP and LTS throughout the entire den-
dritic tree of TC neurons of the dLGN. Neu-
rons were loaded through a patch pipette
with a green fluorescent Ca2�-sensitive in-
dicator (Fluo 5F or Fluo 4FF) and a red
Ca2�-insensitive morphological tracer (Al-
exa Fluor 594) revealing short (�150 �m),
spherically radiating (stellate) and mostly
aspiny dendrites (Fig. 1A) typical of rodent
TC cells. First, we investigated dendritic
LTS-evoked Ca2� influx (�[Ca2�]LTS) in
TC neurons as a function of distance from
the soma. By evoking LTS using brief depo-
larizing current injection at the soma (Vm of
�72.4 
 0.3 mV; n � 8) while simulta-
neously performing line scans at various
dendritic locations, we observed a global
Ca 2� influx throughout the entire TC
neuron dendritic tree (Fig. 1A,C1,F).
�[Ca 2�]LTS were relatively fast rising
(�30 – 40 ms), even in the presence of
added Ca 2� buffer, were temporally coin-
cident with the somatically recorded
LTS, and occurred quasi-synchronously
throughout the entire dendritic tree (Fig.
1F) (supplemental Video S1, available
at www.jneurosci.org as supplemental
material). Imaging pairs of distal (100 –
110 �m) dendritic locations revealed
simultaneous-evoked �[Ca 2�]LTS whose
amplitudes and decay time constants were

Figure 1. State-dependent firing determines differences in spatial distribution of �[Ca 2�] in TC neuron dendrites. A, Maximum
intensity projection of a typical dLGN neuron illustrating the dendritic sites (also shown in increased magnification, right) where line scans
shown in C were performed. Proximal, intermediate, and distal dendritic locations are color coded red, blue, and green, respectively. B, A
typical experiment illustrating increase in green fluorescence relative to red fluorescence (G/R) in a TC neuron dendrite resulting from a
somatically elicited LTS. C, Dendritic�[Ca 2�] evoked by LTS (1), single bAP (2), three bAP (200 Hz) burst (3), and 15 bAPs at 30 Hz (4 ) are
shown overlaid onto somatically recorded voltage traces. A single AP transient is shown enlarged for clarity in 2. Black line represents a
monoexponential fit to the data. D, Summary of �[Ca 2�] amplitudes grouped by dendritic location. *p � 0.05 versus proximal
�[Ca 2�]LTS; #p � 0.001 versus proximal �[Ca 2�]LTS; �p � 0.001 versus �[Ca 2�]LTS for each dendritic location. n � 6 –11 cells. E,
�[Ca 2�] amplitudes, �decay, and time integrals (A�) for LTS-evoked signals as a function of distance from the soma. The plot of A� versus
distance reveals a more uniform distribution suggesting comparable Ca 2� influx throughout the entire dendritic tree. F, Somatically
evoked LTSs produce synchronous Ca 2� transients throughout the entire dendritic tree. Two different pairs of distal dendrites (100 –110
�m from the soma) lying in the same focal plane but originating from different stem dendrites (colored tracings constructed from three-
dimensional Z series) were imaged separately during evoked LTS activity. In both pairs of dendrites,�[Ca 2�]LTS occurred simultaneously,
and in all four dendrites the amplitude and �decay of the evoked Ca 2� transients were identical (n � 4 dendrite pairs from 3 neurons).
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nearly identical (n � 4 pairs from 3 neu-
rons) (Fig. 1F). On average, pooled data
from all our experiments showed that
measured �[Ca 2�]LTS were �1.6 times
larger (�G/R proximal, 0.153 
 0.01, n �
37; �G/R distal, 0.247 
 0.01, n � 21; p �
0.001, unpaired t test) and decayed more
rapidly (�decay proximal, 185.7 
 8.3 ms,
n � 37; �decay distal, 97.4 
 8.4 ms, n � 21;
p � 0.001) in thinner distal dendrites
compared with proximal stem or second-
ary dendrites (Fig. 1C1,E). However,
complications can arise where one wants
to compare �[Ca 2�] in different parts of
the dendritic tree because Ca 2� indicator
concentration may not be equal at all sites.
Thus, if dye concentration is lower at dis-
tal sites, �[Ca 2�] may appear larger (and faster) because of re-
duced exogenous buffering. During our experiments, we allowed
a loading period of 20 min and experimentation time of �30
min. After this time, the health of TC neurons deteriorates and
changes in electrical properties become apparent presumably at-
tributable to dialysis of the cell interior. Although we varied the
tested dendritic locations randomly over time for different neu-
rons, it is possible that equal dye concentrations are not achieved
in the extensively branched fine distal dendrites over the duration
of our experiments or that the dye is distributed as a steady-state
concentration gradient along the dendrite. To account for this
possibility, we compared the time integrals (A�) of �[Ca 2�]LTS as
a function of distance from the soma because this measurement is
independent of buffer concentration (Helmchen et al., 1996).
The time integrals of the �[Ca 2�]LTS showed a uniform distribu-
tion along the dendritic axis (Fig. 1E) without significant differ-
ences between �[Ca 2�] in proximal and intermediate/distal
dendrites. This analysis demonstrates that, even accounting for
this possible source of experimental error, TC neurons have
global all-or-none dendritic Ca 2� influx during LTS and that
distal Ca 2� influx is, at least, comparable with that observed
proximally (not accounting for potential differences in surface
area-to-volume ratios).

In marked contrast to �[Ca 2�]LTS, �[Ca 2�] resulting from
single bAPs (�[Ca 2�]bAP) evoked by brief current pulses (1–1.5
nA, 2 ms) in the same TC neurons depolarized by direct current
injection (�51.7 
 0.2 mV; n � 9) were spatially restricted to
proximal regions of the dendritic tree (Fig. 1C2). Amplitudes of
�[Ca 2�]bAP in proximal dendrites were 7–10 times smaller than
those of �[Ca 2�]LTS ( p � 0.001; n � 6) and showed marked
attenuation with increasing distance from the soma (length con-
stant of �24 �m) (supplemental Fig. S1A, black circles, available
at www.jneurosci.org as supplemental material). Because APs
that crown an LTS in rodent TC neurons have typical instanta-
neous frequencies of �200 –250 Hz, we also tested the possibility
that distal �[Ca 2�] observed during LTS were the result of den-
dritic Ca 2� spikes triggered by bursts of bAPs when TC cells fire
above a certain “critical” frequency as has been demonstrated in
other neurons (Larkum et al., 1999, 2007; Kampa and Stuart,
2006). As for �[Ca 2�]bAP and unlike �[Ca 2�]LTS, �[Ca 2�]
evoked by a burst of three APs at 200 Hz (�[Ca 2�]3APs) were
strongly dependent on distance from the soma (Fig. 1C3). At
proximal locations, the amplitude of �[Ca 2�]3APs was �G/R �
0.06 
 0.007, but this dropped strikingly with distance (length
constant of �43 �m) (supplemental Fig. S1A, light gray dia-
monds, available at www.jneurosci.org as supplemental material)

such that, in distal dendrites, meaningful �[Ca 2�]3APs were not
observed ( p � 0.001; n � 8) (Fig. 1C3). Together with the obser-
vation of considerable LTS-evoked fluorescence changes in distal
dendrites, the lack of any Ca 2� increase evoked by three bAPs
appears to rule out poor S/N ratio (Fluo 5F; Kd of �0.8 �M) as a
factor that might confound our ability to observe evoked
�[Ca 2�] in thin dendrites during single bAPs.

Given that in vivo during wakefulness TC neurons do not
typically fire single APs or short high-frequency bursts of APs but
instead produce sustained “tonic” AP firing, we also character-
ized spatial differences in dendritic Ca 2� elevations during a
train of 15 APs at 30 Hz (bAP30Hz). In proximal dendrites,
�[Ca 2�]bAP30Hz reached plateau levels that were marginally
less than the peak �[Ca 2�] observed during LTSs, but at distal
locations, even relatively long trains of 15 spikes were unable
to produce significant Ca 2� elevations above rest, seemingly
confirming the inability of APs to effectively backpropagate
into distal dendrites (Fig. 1C4,D).

LTSs regeneratively propagate throughout the entire TC
neuron dendritic tree
It is well established that actively backpropagating Na�-
mediated APs can produce transient increases in dendritic
[Ca 2�] in many neurons. Therefore, we next tested the extent to
which dendritic �[Ca 2�] in TC neurons, evoked by either bAPs
or LTS, relied on active backpropagation of Na � spikes. To do
this, we first made a quantitative comparison between
�[Ca 2�]LTS (2.3 
 0.1 APs/burst; range of 1–5; n � 11) and
�[Ca 2�] generated by a similar number of bAPs at comparable
frequencies in the same TC neurons (1–5 bAPs, 200 Hz). We
found that the amplitudes of �[Ca 2�] evoked by high-frequency
bAP bursts were linearly proportional to the number of bAPs
(Fig. 2A), whereas their decay time constants (�decay) were inde-
pendent of bAP number ( p 	 0.05) (Fig. 2B). Furthermore,
despite the fact that �[Ca 2�] evoked by bursts of three or five
bAPs were nearly identical to those predicted by the linear sum of
�[Ca 2�] evoked by single bAPs ( p 	 0.05), they were always
significantly less than �[Ca 2�]LTS (three bAPs, p � 0.001; five
bAPs, p � 0.01, one-way ANOVA; n � 11) (Fig. 2B) recorded at
the same proximal dendritic locations. Thus, the �[Ca 2�] ob-
served during LTS did not result from high-frequency AP-
dependent Ca 2� spike initiation as is the case in other neurons
types. The sizeable supralinearity of �[Ca 2�]LTS compared with
bursts of evoked APs alone (approximately threefold for bursts of
three APs) implied that �[Ca 2�]LTS incorporated Ca 2� influx via
a mechanism that does not rely on Na�-mediated bAPs. To test
this hypothesis, we blocked bAPs using bath application of tetro-

Figure 2. LTSs produce supralinear dendritic �[Ca 2�]. A, Traces depicting the linear summation of �[Ca 2�] evoked by one,
three, and five bAPs (light gray) compared with �[Ca 2�]LTS (dark gray) in proximal TC neuron dendrites (20 –30 �m). Colored
lines represent the modeled linear sum of single bAP �[Ca 2�] (red) offset for spike timing. B, Plot of amplitude (red) and �decay

(black) for �[Ca 2�] evoked by bAP (200 Hz) and LTS in the same neurons (n � 11).
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dotoxin (TTX). In the presence of TTX (0.5 �M), �[Ca 2�]LTS

were as predicted, observed at both proximal and distal (	100
�m) dendritic locations, suggesting that LTSs are able to propa-
gate throughout TC neuron dendrites. In proximal dendrites, the
absence of APs resulted in a small but significant reduction of the
�[Ca 2�]LTS compared with pretreatment levels (G/R control,
0.156 
 0.016; TTX, 0.107 
 0.016; p � 0.01, paired t test; n �
9) (Fig. 3A2). Interestingly, the decrease in amplitude of
�[Ca 2�]LTS was similar in magnitude to the Ca 2� signal evoked
by three bAPs alone (n � 11 different cells) (Fig. 2A,B). This
implies that, although LTSs can produce dendritic �[Ca 2�] with-
out bAPs, in regions of the dendritic arbor in which bAPs effec-
tively propagate, they contribute to the overall �[Ca 2�] during
burst firing. As expected, however, at distal locations in which
bAPs fail to invade, we did not see a significant reduction in the
amplitude of �[Ca 2�]LTS in the presence of TTX (G/R control,

0.223 
 0.017; TTX, 0.196 
 0.025; p 	
0.05; n � 9) (Fig. 3A3). In fact, compari-
son of the number of APs per LTS with the
dendritic �[Ca 2�]LTS revealed a correla-
tion between the number of spikes and
Ca 2� transient amplitude for proximal
but not distal dendrites (supplemental
Fig. S1B, available at www.jneurosci.org
as supplemental material). Finally, in con-
trast to �[Ca 2�]LTS, TTX completely oc-
cluded Ca 2� elevations produced by
trains of APs, confirming that active back-
propagation through voltage-gated Na�

channels was absolutely necessary for
these signals (Fig. 3A1). In fact, brief pas-
sive depolarization of the electrotonically
compact TC neurons in the presence of
TTX using 3 ms voltages steps (60 mV)
from �50 mV at 50 Hz (700 ms) to mimic
AP trains did not result in significant
[Ca 2�] elevations above rest even in prox-
imal dendrites (n � 3) (Fig. 3B2). This is
consistent with previous dendritic record-
ings in TC neurons (Williams and Stuart,
2000, their Fig. 5). In the presence of TTX,
dendritic voltage changes in response to
injection of an AP waveform at the soma
were significantly smaller than those ob-
served with actively backpropagating APs.
Despite the fact that dendritic AP width
is increased compared with the somatic
spike, this prolongation is insufficient to
allow summation of the dendritic voltage
responses at most physiological pertinent
firing rates. Thus, the passive dendritic re-
sponses to our brief 60 mV steps are likely
to be markedly decreased in amplitude
compared with the soma and insufficient
to activate HVA Ca 2� channels and per-
mit Ca 2� entry. In contrast, when contin-
uous 60 mV steps were applied for 700 ms,
the effects of passive depolarization were
sufficient to induce very large dendritic
Ca 2� influx (Fig. 3B3). Note, however,
the lag between the onset of the somatic
voltage step and the onset of dendritic
Ca 2� accumulation.

Linear summation of dendritic Ca 2� transients during
tonic firing
As described previously, during wakefulness, TC neurons typi-
cally fire prolonged trains of APs in response to integrated sen-
sory and CT inputs, and these can vary over a wide range of
frequencies depending on the level of synaptic excitation (typi-
cally up to 80 Hz). Therefore, we measured activity-dependent
accumulation of Ca 2� in dendrites during APs trains at several
physiologically relevant firing rates. We found that single bAPs
evoked instantaneous �-function like �[Ca 2�] (Fig. 4A) in prox-
imal dendrites (20 –30 �m) whose decay phases (�decay) were well
fit by a monoexponential function, consistent with description by
a single compartment model in which �[Ca 2�] amplitude (A) is
a measure of near-instantaneous Ca 2� influx and �decay reflects
the rate of Ca2� extrusion (Helmchen et al., 1996). During repetitive

Figure 3. LTS-evoked dendritic �[Ca 2�] are essentially AP independent. A, Representative �[Ca 2�] (top) evoked in a prox-
imal TC neuron dendrite before (gray) and after (black) bath application of TTX (bottom). 1, bAPs (500 ms, 30 Hz) are blocked by TTX
along with their corresponding proximal dendritic�[Ca 2�]. 2, In the absence of Na � spike bursts,�[Ca 2�]LTS is slightly reduced
at proximal dendritic locations. 3, Distal �[Ca 2�]LTS is not altered by the addition of TTX. Summary data (n � 9) in inset
histograms. B, 1, In current-clamp recording mode, trains of evoked APs produce �[Ca 2�] that linearly summate and are blocked
by TTX. 2, In voltage-clamp recording mode, in the presence of TTX, voltage steps from �50 to �10 mV for 3 ms at a frequency of
50 Hz (to mimic AP firing shown in A) failed to elicit significant Ca 2� accumulation in proximal (20 –30 �m) TC neuron dendrites.
3, In contrast, a 700 ms depolarizing step to �10 mV evoked very large Ca 2� influx (sufficient to nearly saturate the Ca 2�

indicator), presumably through direct opening of HVA Ca 2� channels.
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stimulation, using AP trains at different
frequencies, dendritic Ca 2� accumula-
tion reached a steady-state plateau level
reflecting balance between Ca 2� influx
per AP and Ca 2� extrusion. In TC neu-
rons loaded with 300 �M Fluo 5F, we
found a linear relationship between
dendritic plateau Ca 2� concentration
([Ca 2�]plat) and AP firing at frequencies
up to 50 Hz (Fig. 4B). The time to reach
steady-state Ca 2� levels was not signifi-
cantly different for bAP trains at 10, 30, or
50 Hz with monoexponential fits to the
rising phase of the signals giving time con-
stants of 237.5 
 18.42, 234.1 
 16.49,
and 267.8 
 17.84 ms, respectively (Fig.
4F). Under our conditions, the [Ca 2�]
levels at the end of 10, 30, and 50 Hz AP
trains were �0.042, 0.12, and 0.23 �M. A
regression line fitted to mean [Ca 2�]plat

versus AP frequency yielded a slope of
4.46 nM/Hz (Fig. 4G), a value that closely
agrees with the mean proportionality con-
stant A� (4.63 
 0.36; n � 18) calculated
using the amplitude and �decay of single
bAP-evoked �[Ca 2�] for individual TC
neurons. In addition, when expected
[Ca 2�]plat levels, calculated using Equa-
tion 4, were plotted against measured
train-evoked Ca 2� elevations values did
not deviate from equality, confirming a
linear relationship under these conditions
(Fig. 4D). Moreover, as expected for lin-
early superimposed transients, we did not
see significant ( p 	 0.05, repeated-
measures ANOVA; n � 18) differences
between �decay for single bAPs (201.5 

17.6 ms) or trains at any of the tested fre-
quencies (10 Hz, 223.1 
 13.4 ms; 30 Hz,
226.6 
 10.0 ms; 50 Hz, 224.9 
 8.8 ms).
These findings suggest that activity-
dependent changes in Ca 2� extrusion, as
have been demonstrated in other neurons
(Scheuss et al., 2006), are not a feature of
TC neuron dendritic Ca 2� signaling dur-
ing tonic firing at physiological rates. Even
during prolonged (5 s) trains of 250 APs at
50 Hz, [Ca 2�]plat were not significantly
larger ( p 	 0.05; n � 3) than those attained
during our 700 ms stimulus trains and �decay

were nearly identical (supplemental Fig. S2,
available at www.jneurosci.org as supple-
mental material).

Nonetheless, elegant studies in CA1
hippocampal pyramidal neurons have re-
vealed that activity-dependent changes in
Ca 2� extrusion rate resulting in supralin-
ear Ca 2� accumulations during AP trains
are Ca 2� dependent and can be masked
by the addition of high levels of exogenous
Ca 2� buffers (Scheuss et al., 2006). In our
experiments, using Fluo 5F, we estimate
an added buffer capacity of KB of �300

Figure 4. Dendritic Ca 2� accumulation is linearly related to AP firing frequency. A, Typical �[Ca 2�] evoked in an individual TC
neuron proximal dendrite (light gray) by a single bAP and 700 ms spike trains at 10, 30, and 50 Hz (traces truncated for clarity).
Overlays (dark gray) show the average [Ca 2�]plat pooled from 18 different TC neurons. Decay phases are fitted with monoexpo-
nential functions (red lines) to yield �decay. Dashed lines show baseline and [Ca 2�]plat levels. B, Summary of �decay (black open
squares) and �G/R (red filled circles) for single bAPs and bAP trains in TC neurons filled with Fluo 5F. �decay are not significantly
( p � 0.05) slowed at firing frequencies up to 50 Hz. C, As in B for Fluo 4FF (500 �M; n � 13). D, Comparison of measured
[Ca 2�]plat amplitude for individual neurons versus predicted [Ca 2�]plat amplitude based on the amplitude and �decay of the
�[Ca 2�] evoked by a single bAP. Simulations based on �decay of single �[Ca 2�]bAP (black symbols) or �decay for each train evoked
[Ca 2�]plat (red symbols) showed little deviation from equality (black solid line). Under these conditions, [Ca 2�]plat levels are
linearly related to firing frequency. E, As in D for Fluo 4FF (n � 8). F, Plot depicting the time constants for Ca 2� accumulation to
plateau (�plat) for all frequencies tested. Monoexponential fits to the rising phase of trains evoked �[Ca 2�] showed little depen-
dency of �plat on firing rate in neurons filled with either Fluo 5F (black) or Fluo 4FF (red). In the presence of lower added buffer,
�[Ca 2�] more rapidly reached steady-state levels. G, [Ca 2�]plat is plotted against AP firing frequency for experiments performed
using Fluo 5F (Kd of 0.8 �M; black circles) and Fluo 4FF (Kd of 8.1 �M; red squares). Red and black lines represent linear fits
to the data for each indicator. The gray line represents a linear fit to the pooled data (excluding 120 Hz, which showed small
nonlinearity).
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and therefore cannot rule out the possibility that this could per-
turb normal Ca 2� dynamics during AP trains. We therefore per-
formed experiments using the low-affinity indicator Fluo 4FF
(500 �M; KD of 8.1 �M) and estimated [Ca 2�]plat during AP trains
at 30, 60, and 120 Hz (supplemental Fig. S3, available at www.
jneurosci.org as supplemental material). Under conditions of low
added buffer (KB of �60), we found that the linear relationship
between Ca 2� and AP frequency in TC neurons was maintained
up to 120 Hz (Fig. 4C). At 120 Hz, Ca 2� plateaus were very
slightly larger than the expected level, based on Fluo 5F data,
suggesting small nonlinear accumulation of Ca 2� during very
high-frequency trains. However, even at 120 Hz, we estimate that
the plateau Ca 2� level remains �0.8 �M, which is markedly lower
than that observed in dendrites and spines of other neurons. In
addition, even in the absence of significant levels of added buffer,
�decay of train-evoked Ca 2� signals did not significantly differ
with AP frequency (95–115 ms) (Fig. 4C) (supplemental Fig. S3,
available at www.jneurosci.org as supplemental material) and
were relatively fast, signifying that TC neuron dendrites may have
robust mechanisms for Ca 2� clearance [i.e., high expression of

sarcoplasmic/endoplasmic reticulum
Ca 2� ATPases (SERCA), plasma mem-
brane Ca 2� ATPases (PMCA), and Na�/
Ca2� exchanger and/or comparatively low
endogenous buffering capacity].

Role of CICR and SERCA in TC neuron
dendritic Ca 2� signaling
Previously, it has been suggested that
Ca 2�-induced Ca 2� release (CICR)
though ryanodine receptors (RyRs) plays
a pivotal role in supporting tonic firing in
TC neurons (Budde et al., 2000). Given
that dendritic �[Ca 2�] associated with
single bAPs are typically insufficient to
induce CICR and our previous experi-
ments showed a linear relationship be-
tween spike frequency and dendritic Ca 2�

buildup, we decided to assess the potential
contribution of CICR from endoplasmic
reticulum (ER) stores to bAP- and LTS-
evoked �[Ca 2�] in TC neuron dendrites.
Inclusion of ryanodine (20 �M) in the
patch pipette solution to block RyR-
mediated Ca 2� release did not produce
significant changes in amplitude or �decay

of �[Ca 2�] evoked in proximal dendrites
by LTSs, single bAPs, five bAPs at 200 Hz,
and bAP trains (700 ms, 50 Hz) or in distal
dendrites by LTSs ( p 	 0.05; n � 7–9)
(Fig. 5A,B) (supplemental Fig. S4, avail-
able at www.jneurosci.org as supplemen-
tal material) when compared with control
neurons (n � 18). In the absence of
activity-dependent dendritic Ca 2� re-
lease, we next sought to determine
whether uptake into ER stores played a
role in Ca 2� clearance during both LTSs
and bAPs in TC neuron dendrites. In a
separate group of neurons, inhibition of
SERCA by bath application of cyclopia-
zonic acid (CPA) (10 �M) produced sig-
nificant slowing of �[Ca 2�] evoked by

bAPs ( p � 0.01; n � 10) (Fig. 5A1,B1) and by LTS in both
proximal ( p � 0.001) and distal ( p � 0.01) (Fig. 5A2,B2) den-
drites without significant changes in �[Ca 2�] amplitude ( p 	
0.05). Consequently, the increase in �decay of single bAP-evoked
transients by SERCA inhibition also resulted in significantly ( p �
0.01) larger Ca 2� accumulations during 50 Hz (700 ms) trains of
APs (supplemental Fig. S4, available at www.jneurosci.org as sup-
plemental material).

LTS evoked dendritic Ca 2� transients are mediated by T-type
Ca 2� channels
Global dendritic Ca2� influx during LTS is not reliant, to a large
extent, on actively backpropagating Na�-mediated APs. To test the
hypothesis that �[Ca2�]LTS requires dendritic propagation of LTS
and Ca2� influx through T-type channels, we used the novel, potent
and highly selective antagonist TTA-P2 (3,5-dichloro-N-[1-(2,2-
dimethyl-tetrahydro-pyran-4-ylmethyl)-4-fluoro-piperidin-4-
ylmethyl]-benzamide) (Dreyfus et al., 2010). Bath application of
TTA-P2 (10 �M) abolished both somatically evoked LTS and their
corresponding dendritic �[Ca2�] ( p � 0.001, paired t test; n � 8)

Figure 5. Net Ca 2� uptake into ER stores by SERCA during LTS- and bAP-evoked dendritic�[Ca 2�]. A, Amplitudes of�[Ca 2�]
evoked by a burst of five bAPs (200 Hz) (1) or LTS (2) are not changed by ryanodine (n � 9) or CPA (n � 10), but �decay is
significantly slowed for both in the presence of the SERCA blocker compared with control (n � 11). Traces represent pooled
averages of �[Ca 2�] for each different group of cells. B, 1, Histograms summarize the effects of ryanodine (RYD) and CPA on
amplitude and �decay of�[Ca 2�]bAP or�[Ca 2�]5bAPs compared with control neurons (CON) (n �18, single bAPs; n �11, 5bAPs)
in proximal dendrites. 2, As in 1 for �[Ca 2�]LTS in proximal and distal dendrites.
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(Fig. 6C1) but had no effect on the Ca2�

signal evoked by a train of bAPs (30 Hz; p 	
0.05; n � 8) (Fig. 6B,C2). Moreover, injec-
tion of large currents into the soma (300 pA,
50 ms), sufficient to passively depolarize
neurons to a level similar to that achieved
during an LTS, did not evoke �[Ca2�] at
dendritic locations �30 �m from the soma
when T-type channels were blocked (Fig.
6A). This confirmed the absolute require-
ment of T-type Ca2� channels for active
propagation of LTS into dendrites. To in-
vestigate the presence of T-type channels in
distal dendrites and assess their contribu-
tion to�[Ca2�]LTS, TTA-P2 was applied fo-
cally using a puffer patch pipette placed
adjacent (�15 �m) to a selected distal den-
drite (Fig. 6D). This allowed selective block
of T-type channels in a relatively short
length of the dendrite of interest but pre-
served the ability to somatically initiate LTS.
In these experiments, somatically elicited
distal �[Ca2�]LTS were markedly reduced
by puffed application of the drug (84.6 

3.5%; p � 0.001, paired t test; n � 7) (Fig.
6E2,F). In contrast, the somatic voltage sig-
nal was unaltered in the presence of TTA-
P2, confirming that T-type channels outside
the focal region were still able to generate
LTS. Importantly, LTSs still evoked
�[Ca2�]LTS in distal dendrites contralateral
(	150 �m away) to the dendrite to which
TTA-P2 was applied (Fig. 6E3).

Local distal synaptic excitation induces
global dendritic Ca 2� accumulations
Finally, we determined whether LTSs trig-
gered by distal synaptic excitation were
able to evoke global Ca 2� signals similar
to those produced by somatic current in-
jection. CT afferents were focally stimu-
lated by placing a glass electrode adjacent (�15 �m) to a selected
distal dendrite and delivering brief low-intensity stimuli (200 �s,
1–10 V). Delivery of three subthreshold stimuli with varying in-
terstimulus intervals in the presence of the GABAA blocker SR-
95531 (10 �M) resulted in facilitation of EPSP amplitude (Fig.
7A,B1). When the interstimulus interval was sufficiently short
(30 ms), electrical stimulation resulted in significant facilitation
of EPSPs (second/first EPSP amplitude, 2.28 
 0.50; p � 0.01,
repeated-measures ANOVA; n � 5) (Fig. 7B2), as shown previ-
ously in vitro (Turner and Salt, 1998; Pedroarena and Llinás,
2001), thus confirming selective activation of CT fibers. Further-
more, the first EPSP amplitude was typically small (1.33 
 0.15
mV), suggesting that our synaptic stimulations involved activa-
tion of perhaps only a few CT terminals. In hyperpolarized TC
neurons (less than �70 mV), increasing stimulus intensity suffi-
ciently to evoke an LTS resulted in �[Ca 2�] being observed at
both proximal (20 –30 �m) and distal (	100 �m) locations on
dendrites contralateral (	150 �m away) to the stimulated region
(Fig. 7D2,E2). Synaptically evoked �[Ca 2�]LTS at both proximal
and distal locations had amplitudes that were not significantly
( p 	 0.05, unpaired t test) different from those evoked by so-
matic current injection as well as similar �decay (Fig. 7E3). In

contrast, when neurons were depolarized and single bAPs were
synaptically evoked, �[Ca 2�] were only observed on proximal
contralateral dendrites and not at distal locations (Fig. 7D1,E1).
These results suggest that, regardless of where they are initiated,
regenerative LTSs force the entire TC neuron dendritic arbor to
behave as an all-or-none Ca 2� signaling unit.

Discussion
The major finding of this study is that both spatial and temporal
dynamics of intrinsic dendritic Ca 2� signaling in TC neurons are
determined in a behavioral state-dependent manner. Thus, LTSs,
which are predominantly associated with slow-wave sleep (e.g.,
1– 4 Hz � waves, �1 Hz slow oscillations) and anesthesia
(Crunelli and Hughes, 2010), can actively propagate throughout
the entire dendritic tree of TC neurons, permitting near-
instantaneous global Ca 2� influx that requires dendritic T-type
Ca 2� channel expression. Indeed, for the first time, we have dem-
onstrated the presence of T-type Ca 2� channels in fine interme-
diate/distal TC neuron dendrites and their recruitment by CT
synaptic inputs. In clear contrast, APs typical of TC output dur-
ing wakefulness evoke significantly smaller Ca 2� influxes that
temporally summate to produce Ca 2� accumulations that are

Figure 6. Global LTS-evoked �[Ca 2�] are mediated by dendritic T-type Ca 2� channels. A, LTS were blocked by bath applica-
tion of TTA-P2, and their corresponding dendritic �[Ca 2�] were abolished. Current injection sufficient to produce somatic depo-
larization similar in magnitude to LTS could not passively induce increases in dendritic [Ca 2�]. B, Action potential trains and their
corresponding proximal dendritic [Ca 2�]plat were unaffected by TTA-P2. C, Summary histograms of data in A and B. CONT, Control.
D, Maximum intensity Z-projection of a dLGN neuron showing placement of a puffer pipette near a distal dendrite for focal
application of TTA-P2. Red and blue boxes correspond to the dendritic regions where line scans shown in E were performed. E, 1,
�[Ca 2�] recorded in the dendrite close to the application pipette under control conditions in response to a somatically elicited LTS.
2, During focal application of TTA-P2, the distal �[Ca 2�] (red) is blocked without changes to the somatic LTS. 3, The �[Ca 2�] in
a contralateral dendrite (blue) is unaffected by the focal application of TTA-P2 at 	200 �m away. F, Summary histogram of data
in E1 and E2.

14850 • J. Neurosci., November 3, 2010 • 30(44):14843–14853 Errington et al. • Dendritic Ca2� Signaling in Thalamocortical Neurons



linearly related to firing frequency but are spatially restricted to
more proximal dendritic regions.

The placement of T-type channels throughout the entire den-
dritic tree may have several implications for signaling in TC neu-
rons. First, it could allow graded and more subtle modulation of
bursts by synaptic currents, in particular by distal modulatory CT
EPSPs. For example, distal dendritic placement of these channels
may be required to allow phosphorylation-dependent potentia-

tion of IT in response to corticofugal in-
puts, thus enhancing burst probability
and temporal precision of burst associ-
ated AP firing (Bessaïh et al., 2008). Sec-
ond, because TC neuron dendrites are
also extensively covered by GABAergic
nRT terminals, colocalization of T-type
channels with these inhibitory synapses
may enhance the genesis of rebound
bursts in response to IPSPs. Third, den-
dritic distribution of T-type Ca 2� chan-
nels [along with Na� and K� channels
(Williams and Stuart, 2000)] may permit
finer and more spatially specific modula-
tion by neuromodulatory systems (i.e.,
cholinergic brainstem inputs) either di-
rectly or through modulation of other
dendritic voltage-dependent channels (i.e.,
hyperpolarization-activated cation current,
Ih, or voltage-activated K� channels). Fi-
nally, dendritic LTS propagation may pro-
duce global resetting of synaptic integration
by shunting effects on membrane resis-
tance. This is particularly interesting in light
of the fact that LTSs are not exclusively re-
served for periods of sleep but are also, albeit
rarely, detected during wakefulness (Guido
and Weyand, 1995; Reinagel et al., 1999;
Alitto et al., 2005).

Our data demonstrate that Ca 2� clear-
ance in TC neuron dendrites, both proxi-
mally and distally, during LTS relies in
part on net uptake of Ca 2� into intracel-
lular stores via SERCA. Coupled with other
putative Ca2� clearance mechanisms such
as Na�/Ca2� exchangers and/or PMCA,
expression of SERCA throughout TC neu-
ron dendrites contributes to rapid decay of
global LTS-evoked Ca2� signals. Interest-
ingly, in our experiments, �decay, and thus
Ca2� extrusion rates, in proximal TC neu-
ron dendrites were strikingly similar both
during evoked LTSs and bAPs (single or
trains), suggesting that buffering and extru-
sion mechanisms operate at comparable
levels during both state-dependent firing
modes. Significantly, such fast extrusion of
Ca2� during LTSs coupled with the refrac-
toriness of CaV3.1 T-type Ca2� channels is
likely to permit global dendritic Ca2� oscil-
lations during rhythmic LTS activity at low
frequencies. In fact, in the absence of added
Ca2� buffer, we expect that �decay of LTS
evoked �[Ca2�] would be markedly faster
than reported here (�180 ms in proximal

dendrites with Fluo 5F), thus resulting in very little (if any) temporal
summation of �[Ca2�] during repetitive LTSs at up to �4 Hz (the
upper range of intrinsic � oscillations). In fact, in distal dendrites,
even accounting for possible errors in our measurements attribut-
able to uneven Ca2� indicator distribution, it seems that Ca2� ex-
trusion is more rapid than at proximal dendritic locations. This may
be important because the local amplitude and time course of Ca2�

signals can be critical in determining dynamic modulation of Ca2�-

Figure 7. Distal synaptic inputs evoke LTS and trigger global dendritic Ca 2� influx. A, Traces depicting EPSPs typical of activa-
tion of CT afferents by focal synaptic stimulation close to distal dendrites. Varying degrees of synaptic facilitation are observed at
different interstimulus intervals. B, 1, Summary plot showing the range of interstimulus intervals that produce marked facilitation
of synaptic potentials. 2, Plot describing the degree of paired-pulse facilitation between the first two stimuli of each train. C,
Maximum intensity projection of dLGN cell showing proximal (red) and distal (blue) locations imaged on a dendrite contralateral
to the stimulated dendrite (white asterisk indicates placement of stimulating electrode). D, 1, An AP evoked by stimulation of local
CT afferents produces Ca 2� influx at the proximal dendritic location but not distally. 2, An LTS synaptically triggered from a more
hyperpolarized membrane potential evoked Ca 2� influx at both proximal and distal locations. E, Averaged Ca 2� transients (n �
5 cells) in proximal (20 –30 �m) and distal (	100 �m) segments of TC neurons resulting from synaptically evoked bAP (1) or LTS
(2). Black lines represent monoexponential fits to the data. 3, Summary of the experiments depicted in B. Amplitudes of synapti-
cally evoked �[Ca 2�]LTS and �[Ca 2�]bAP are not significantly different from those produced by somatic current injection (n �
5–9; p 	 0.05, unpaired t test).
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dependent signaling processes. For example, repetitive Ca2� influx
through T-type channels has been shown to result in increased
cAMP production and a dynamic upregulation of Ih that contributes
to periodicity and termination of spindle wave activity (Lüthi
and McCormick, 1998, 1999). Furthermore, in nRT neurons,
T-channel-mediated rhythmic dendritic Ca 2� influx can shape
oscillatory activity through a dynamic interaction with Ca 2�-
dependent small-conductance potassium channels and SERCAs
(Cueni et al., 2008).

We have shown that, during prolonged AP firing, TC neuron
dendrites experience sustained activity-dependent rises in intra-
cellular [Ca 2�]. The near-instantaneous Ca 2� influx produced
by single bAPs and lack of effect of T-type channel block indicate
that these train-evoked Ca 2� accumulations are mediated by
HVA Ca 2� channels as have been identified previously in TC
neuron proximal dendrites (Munsch et al., 1997; Zhou et al.,
1997; Budde et al., 1998; Williams and Stuart, 2000). The precise
magnitude of Ca 2� accumulation in TC neuron dendrites during
AP firing is primarily dependent on two critical factors. First, and
in marked contrast to �[Ca 2�]LTS, we found that the size of
dendritic �[Ca 2�] produced by actively bAPs or bAP trains was
greatly influenced by distance from the soma. This finding can be
explained by the failure of bAPs to invade intermediate and distal
dendrites owing to the extensively branched morphology of TC
neurons and a significant reduction in dendritic Na� channel
density (Williams and Stuart, 2000), although heterogenous ex-
pression of HVA Ca 2� channels may also contribute. Second, the
extent of Ca 2� buildup was governed by linear summation of
single bAP-evoked �[Ca 2�] and thus linearly related to AP firing
across a wide range of physiologically pertinent frequencies. Un-
der our conditions, activity-dependent linear accumulation of
Ca 2� coupled with activity-independent Ca 2� extrusion rates
during AP trains and lack of effect of intracellularly applied ryan-
odine demonstrates that CICR from internal stores does not con-
tribute to dendritic Ca 2� signals as has been suggested by others
(Budde et al., 2000) (see supplemental data, available at www.
jneurosci.org as supplemental material). Indeed, our study places
the role of SERCA and the involvement of CICR in intrinsic
dendritic Ca 2� signaling in TC neurons, in line with studies in
other neuronal types, including CA1 hippocampal pyramidal
neurons (Scheuss et al., 2006), neocortical pyramidal neurons
(Markram et al., 1995) and fast-spiking interneurons of cortical
layer V (Goldberg et al., 2003).

Because bAPs can act as retrograde messengers providing vital
information to the input to a neuron (i.e., the synapse) about the
status of the cells output, understanding the extent of AP back-
propagation and distribution of subsequent Ca 2� signals is of
considerable importance. This is particularly fascinating in TC
neurons because of the preferential innervation of proximal and
intermediate/distal dendrites by sensory and CT afferents, re-
spectively, as well as the differential dendritic distribution of
GABAergic afferents from local interneurons and the nRT (Wil-
son et al., 1984; Liu et al., 1995; Sherman and Guillery, 1996). Our
results suggest that, in TC neurons, bAPs may exercise a greater
influence over (and conversely be influenced by) those synaptic
inputs that are distributed on proximal dendrites compared with
those found on more distal portions of the cell. For example,
bAP-mediated dendritic �[Ca 2�] may provide a mechanism that
allows coincidence detection at proximal sensory but not distal
CT synapses. This may be necessary for robust relay of sensory
information or in determining receptive field properties. Fur-
thermore, in contrast to global LTS signals, decrementing AP
backpropagation may permit spatially restricted resetting of syn-

aptic integration, thus allowing distal processing of modulatory
CT inputs to proceed uninfluenced by neuronal output. This has
been proposed previously as a mechanism to allow parallel pro-
cessing of spatially segregated inputs (Häusser et al., 2000) such as
the two major glutamatergic afferents found in TC neurons. Fi-
nally, frequency-dependent linear Ca 2� buildup during sus-
tained AP firing at physiologically relevant rates suggests that
[Ca 2�] can dynamically encode spike frequency, providing a bio-
chemical feedback signal that could control dendritic activity-
dependent processes in a spatially graded manner. Indeed,
because we predict that �decay for AP-evoked �[Ca 2�] would be
�100 ms in the absence of exogenous Ca 2� buffers (Fig. 4), our
results suggest that changes in firing rate could be rapidly de-
tected by this dendritic “Ca 2� code” in TC neurons (Helmchen,
2008).
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croscopy. Pflügers Arch 423:511–518.

Stuart G, Schiller J, Sakmann B (1997) Action potential initiation and prop-
agation in rat neocortical pyramidal neurons. J Physiol 505:617– 632.

Turner JP, Salt TE (1998) Characterization of sensory and corticothalamic
excitatory inputs to rat thalamocortical neurones in vitro. J Physiol
510:829 – 843.

Williams SR, Stuart GJ (2000) Action potential backpropagation and
somato-dendritic distribution of ion channels in thalamocortical neu-
rons. J Neurosci 20:1307–1317.

Wilson JR, Friedlander MJ, Sherman SM (1984) Fine structural morphol-
ogy of identified X- and Y-cells in the cat’s lateral geniculate nucleus. Proc
R Soc Lond B Biol Sci 221:411– 436.

Yasuda R, Sabatini BL, Svoboda K (2003) Plasticity of calcium channels in
dendritic spines. Nat Neurosci 6:948 –955.

Zhou Q, Godwin DW, O’Malley DM, Adams PR (1997) Visualization of
calcium influx through channels that shape the burst and tonic modes of
thalamic relay cells. J Neurophysiol 77:2816 –2825.

Errington et al. • Dendritic Ca2� Signaling in Thalamocortical Neurons J. Neurosci., November 3, 2010 • 30(44):14843–14853 • 14853


