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Abstract

Recently, the amount of high-dimensional data has exploded, creating new analytical chal-
lenges for human genetics. Furthermore, much evidence suggests that common complex diseases
may be due to complex etiologies such as gene-gene interactions, which are difficult to iden-
tify in high-dimensional data using traditional statistical approaches. Data-mining approaches are
gaining popularity for variable selection in association studies, and one of the most commonly
used methods to evaluate potential gene-gene interactions is Multifactor Dimensionality Reduc-
tion (MDR). Additionally, a number of penalized regression techniques, such as Lasso, are gain-
ing popularity within the statistical community and are now being applied to association studies,
including extensions for interactions. In this study, we compare the performance of MDR, the
traditional lasso with L1 penalty (TL1), and the group lasso for categorical data with group-wise
L1 penalty (GL1) to detect gene-gene interactions through a broad range of simulations.

We find that each method has both advantages and disadvantages, and relative performance is
context dependent. TL1 frequently over-fits, identifying false positive as well as true positive loci.
MDR has higher power for epistatic models that exhibit independent main effects; for both Lasso
methods, main effects tend to dominate. For purely epistatic models, GL1 has the best perfor-
mance for lower minor allele frequencies, but MDR performs best for higher frequencies. These
results provide guidance of when each approach might be best suited for detecting and character-
izing interactions with different mechanisms.
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INTRODUCTION 
 
Fueled by rapid technological advancement, research in the area of genetic 
epidemiology has exploded, creating a wealth of high-dimensional data and new 
analytical challenges for identifying genetic risk factors for disease.  In addition, 
much evidence suggests that common, complex diseases may be the result of a 
complex interplay between multiple genetic and environmental factors and that 
gene-gene and gene-environment interactions, or epistasis, may play an important 
role in the etiology of these types of diseases [Moore 2003].  Detecting these 
interactions in high-dimensional data is a difficult variable selection problem, 
which is exacerbated as the number of markers increases far beyond the sample 
size, as is common in studies of human genetics.  Therefore as an alternative to 
traditional statistical methods, data-mining approaches designed to sift through 
large amounts of data are gaining popularity for association studies, performing 
variable selection and statistical modeling simultaneously [Cordell 2009].   

One of the most commonly used data-mining approaches to evaluate 
potential gene-gene interactions is Multifactor Dimensionality Reduction (MDR), 
designed specifically to select potentially interacting genetic variables that are 
most associated with disease in case/control studies [Ritchie, et al. 2001].  In a 
range of simulation studies, MDR and its various extensions have displayed high 
power as compared to other methods [Motsinger-Reif, et al. 2008] and in the 
presence of genotyping error and missing data [Ritchie, et al. 2003].  MDR has 
been successful in identifying a number of interactions in real data applications, 
including multiple sclerosis [Brassat, et al. 2006; Motsinger, et al. 2007], breast 
cancer [Nordgard, et al. 2007], and HIV immunogenetics [Haas, et al. 2006]. 

Variable selection is also a hot topic in the field of statistics, and a number 
of more general penalized regression techniques have also emerged, like the Least 
Absolute Shrinkage and Selection Operator (Lasso) [Tibshirani 1996].  Lasso has 
exploded in popularity within the statistical community, and is now being applied 
for variable selection in human genetics.  Penalized regression approaches have 
been developed for generalized linear models such as logistic regression [Park 
and Hastie 2007b] and for categorical data [Meier, et al. 2008; Yuan and Lin 
2006]. In the area of genetics, penalized techniques have emerged to detect 
interactions, such as stepPLR [Park and Hastie 2008] with L2 regularization and 
an adaptive group Lasso [Yang, et al.].  Most recently, extensions for Lasso have 
been made for GWA studies, such as a two-stage L1 penalized approach to 
identify additive, dominant or recessive effects [Wu, et al. 2009] and the Screen 
and Clean filter approach to examine marginal and interaction effects [Wu, et al. 
2010]. 

In this study our objective is to directly compare the performance of these 
two very popular data-mining techniques, MDR and Lasso L1-penalized 
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regression, to detect gene-gene interactions in a case/control study with a binary 
disease outcome.  We consider two different Lasso approaches, the traditional 
(ungrouped) L1 penalty for logistic regression (TL1) and the group L1 penalty for 
categorical data (GL1).  MDR has previously been compared to a few penalized 
regression techniques including a brief, but not extensive comparison with an 
adaptive group Lasso algorithm [Yang, et al.].  Additionally MDR was compared 
with stepPLR, focusing on L2 rather than L1 regularization, showing context 
dependent results [He, et al. 2009; Park and Hastie 2008].  In stepPLR, L2 
regularization is utilized because it provides stable parameter estimates as the 
dimensionality increases, even if the number of variables is greater than the 
sample size. Unlike L1 regularization, L2 regularization does not achieve 
smoothing and variable selection simultaneously and selection must be performed 
in a separate step. The comparisons of this study differ from those of Park and 
Hastie [2008] in the use of a single stage penalization method for estimation and 
selection. 

The implementations of our methods in the current study also differ from 
those of previous studies because they come from an end-users perspective, based 
on commonly-used implementations.  Our primary goal in this study is to 
compare the relative performance of MDR and Lasso using easily implementable 
and commonly used versions that are widely available to researchers, with 
minimal modifications to accurately reflect typical utilization in practice.  We 
take this approach so that analysts can see how the methods compare in detecting 
interactions as they would be used in real data applications with available 
software.  MDR is implemented in C and JAVA as in the free software available 
from http://www.epistasis.org [Hahn, et al. 2003], and TL1 and GL1 are 
implemented with the freely available R software using the packages ‘glmpath’ 
and ‘grplasso’, respectively [Meier 2009; Park and Hastie 2007a].  Through 
simulation, we compare the performance of MDR, GL1, and TL1 in regards to 
power to identify gene-gene interactions, the number of identified loci, and true 
and false positive rates under a wide range of genetic models and effect sizes. We 
first describe the three methods considered, followed by our simulation design, 
and then the results for the simulation analysis.   

 
 
METHODS 
 
NOTATION 
 
Suppose we have n i.i.d. observations (xi , yi ), i = 1, . . . , n where xi is a p-
dimensional vector of genotype information at a total of p SNPs; for the jth SNP, 
xij ∈ {0, 1, 2}.  The scalar yi ∈ {0, 1} is a binary response variable corresponding 

2

Statistical Applications in Genetics and Molecular Biology, Vol. 10 [2011], Iss. 1, Art. 4

http://www.bepress.com/sagmb/vol10/iss1/art4
DOI: 10.2202/1544-6115.1613



	
  

to disease status for individual i.  Additionally, assume that the p SNPs are far 
enough apart in the genome such that they can be considered independent.  Let X 
denote the n × p matrix of predictor information and Y denote the n × 1 vector of 
disease status for all n individuals.  
 
 
MULTIFACTOR DIMENSIONALITY REDUCTION  
 
Multifactor dimensionality reduction (MDR) is a nonparametric data-mining tool 
to identify potential gene-gene interactions in case-control genetic association 
studies using data reduction [Ritchie, et al. 2001].  MDR reduces the full 
dimensionality of the data by focusing on combinations of loci that may interact, 
and utilizes these combinations to create a classification rule.  Assume our sample 
consists of n1 cases and n0 controls where n1 = n0 for simplicity, and suppose we 
are considering potential interactions of size 

€ 

k =1,...,K loci. Let model m denote a 

particular combination of k loci where ; model m will be a subset of 

the columns of X pertaining to the k loci.  With 3 possible genotypes per locus, 
define Gm = j to be genotype combination j for the loci of model m with j = 1, . . . , 
3k .  MDR assigns high-risk/low-risk status to the genotype combination Gm = j 
using the following Naïve Bayes classifier Hmj :  
 

        (1) 
 
The classifier Hmj is an indicator variable for high-risk status for Gm = j.  Each 
possible model m classifies an individual i as a case or a control based on the 
characterization of that individual’s genotype combination as high or low-risk; for 
model m, 

€ 

ˆ y i | (Gm = j) = Hmj .  For balanced data, this classification scheme 
maximizes the posterior probability of yi under model m. 
 For a given combination of k loci, the full data is reduced from 3k -
dimensions to a single dimension with two levels, high-risk and low-risk.  MDR 
performs this dimension reduction in an exhaustive fashion over all possible 

models m and selects a best model over these  possible reductions by 

maximizing classification accuracy, the proportion of individuals correctly 
classified by model m; for unbalanced studies with n1 ≠ n0, balanced accuracy, the 
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mean of sensitivity and specificity, is instead utilized [Velez, et al. 2007].  A final 
best model over all possible sizes of interaction k = 1, . . . , K is chosen with 
cross-validation [Ritchie, et al. 2001] and the statistical significance of the 
prediction accuracy estimate can be assessed nonparametrically with permutation 
testing [Motsinger-Reif 2008].  The SNPs identified in the final model m 
represent the active set of predictors, or the subset of loci selected by MDR.  For a 
more detailed explanation of the method see [Hahn, et al. 2003]. 
 
 
TRADITIONAL L1-PENALIZED REGRESSION (LASSO) 
 
Variable selection on a set of SNPs can also be performed under a regression 
framework considering both main effects and gene-gene interactions.  Because 
our response vector Y is binary, this suggests the use of logistic regression.  To 
avoid making any assumptions on the genetic mode of inheritance (similar to the 
nonparametric encoding of MDR), we treat the SNP variables as categorical 
factors, with levels {0,1,2}.   Consider a basis expansion of our predictor matrix 
X such that each SNP j = 1, … , p is encoded as a series of indicator variables for 
each level using reference coding, where without loss of generality we treat 
genotype 0 as the reference level.  This new dummy encoded 

€ 

n × 2p( ) matrix of 
main effects, Z, will therefore consist of a group of (3-1)=2 main effects indicator 
variables (for genotypes 1 and 2) for each of the p predictor variables.  We can 
further partition 

  

€ 

Z = Z1   Z j  Z p[ ]  for j=1,…,p, where Zj  is an 

€ 

n × 2  sub-
matrix 

€ 

Z j = z j1 ,z j2( ) defining the jth group of indicators corresponding to the jth 
predictor locus;   are indicator vectors for genotypes 1 and 2, 
respectively. 

Additionally, consider expanding our predictor matrix to include all 

€ 

q = p ⋅ (p −1) /2 pairwise interactions between SNPs.  For each of q pairwise 
interactions we will create (3-1)*(3-1)=22 indicator variables (for genotype 
combinations 11, 12, 21, and 22), resulting in an  expanded design 
matrix W.  We can further partition 

  

€ 

W = W1   Wk  Wq[ ] for k=1,…,q, where 
Wk  is an 

€ 

n × 22  sub-matrix 

€ 

Wk = wk11
,wk12

,wk21
,wk22( ) defining the kth group of 

indicators corresponding to the j1th and j2th predictor loci; 

€ 

wk11
,wk12

,wk21
,wk22( )  are 

indicator vectors for genotype combinations 11, 12, 21 and 22 respectively.  
Our full 

€ 

n × 2p + 22q( )  design matrix D will consist of both main effects 
and pair-wise interactions, partitioned for ease of notation such that 

€ 

D = Z  W[ ]  
where 

€ 

j =1,..., p refers to the collection of indices for the p groups of main effects 
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and 

€ 

k =1,...,q refers to the collection of indices for the q groups of interactions.  
We could further consider expanding D to include higher order interactions, but 
for simplicity we consider only two-way interactions. 

Similarly, let our 

€ 

2p + 22q ×1 parameter vector

€ 

θ = β γ[ ]  be partitioned 
into sub-vectors for main effects and interactions.  Let

€ 

β = β1,...,β j ,...,βp[ ]  be a 

parameter vector for main effects where 

€ 

β j = β j1
 β j2[ ]  is a sub-vector for the jth 

SNP consisting of components for genotypes 1 and 2 respectively and 
let

€ 

γ = γ1,...,γ k,...,γ q[ ]  be a parameter vector for pair-wise interactions where  

€ 

γ k = γ k11
 γ k12

 γ k21
 γ k22[ ]  is a sub-vector for the kth SNP by SNP interaction 

consisting of components for genotype combinations 11, 12, 21 and 22 
respectively.   We now define the following logistic regression model for 
individual i,  

 

€ 

log pθ (di)
1− pθ (di)
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ = θ0 + di

Tθ = θ0 + z i
Tβ + wi

Tγ = θ0 + z i, j
T β j

j=1

p

∑ + wi,k
T γ k

k=1

q

∑
 
 (2) 

 
where 

€ 

pθ (di) = P(yi =1 |di,θ) .  This model will be used to define the usual log-

likelihood for the model, 

€ 

l(θ) = yi ⋅ log pθ (di) +
i=1

n

∑ (1− yi) ⋅ log(1− pθ (di)) .   

Traditionally, Lasso performs variable selection and model fitting 
simultaneously through penalization.  By penalizing the coefficients associated 
with each of the predictors during model fitting, the unimportant coefficients will 
shrink towards zero, effectively eliminating these variables from the model and 
achieving sparsity [Tibshirani 1996].  Specifically, Lasso fits the regression model 
by minimizing -l(θ) subject to a constraint equivalent to the L1-penalty, based on 
the L1-norm 

€ 

θ 1 = θ ll
∑ . That is, 

€ 

ˆ θ λ = argmin
θ

−l θ( ) + λ θ 1( ) = argmin
θ

−l θ( ) + λ β j ,g
g=1

2

∑
j=1

p

∑ + γ j,g1g2
g2 =1

2

∑
g1 =1

2

∑
k=1

q

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 
   

(3) 

where λ is a tuning parameter.  We refer to this traditional model for L1-penalized 
logistic regression defined in equation [3] as TL1, which is an extension of the 
general model described in Park and Hastie 2007 [Park and Hastie 2007b], and we 
fit this model using the ‘glmpath’ package in R [Park and Hastie 2007a].  For 
computational simplicity, we choose the tuning parameter λ using BIC as 
recommended in [Zou, et al. 2007].  This model penalizes each of the indicator 
variables associated with either a main effect or pair-wise interaction equally, 
allowing each individual indicator to be set to either θl = 0 or θl ≠ 0, for 
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l=1,…,2p+22q.  The set 

€ 

l :θ l ≠ 0{ } defines the variables in the active set, and the 
particular SNPs associated with {l} represent the SNPs select by TL1. 
 
 
GROUP LASSO FOR LOGISTIC REGRESSION 
 
In situations where we have categorical predictors, we may consider variable 
selection on the groups of dummy variables associated with particular main 
effects and interactions rather than the dummy variables themselves.  In the 
traditional Lasso approach (TL1), each indicator variable (and θl) is treated 
individually, and there is no guarantee that all of the indicators corresponding to 
the same main effect or interaction will be either in or out of {l}.  In addition, TL1 
is not invariant to the particular parameterization of genotypes, such as choice of 
reference level, resulting in potentially different sets of factors in {l} [Yuan and 
Lin 2006].  To alleviate these concerns, we also employ group Lasso for logistic 
regression, which instead of the usual L1 penalty that shrinks each indicator 
individually, shrinks groups of predictors corresponding to a single categorical 
factor toward zero together [Meier, et al. 2008; Yuan and Lin 2006].  Suppose we 
fit the logistic regression model of equation [2] considering this grouped structure 
as follows:  

 

€ 

ˆ θ λ = argmin
θ

−l θ( ) + λ df j β j 2
j=1

p

∑ + dfk γ k 2
k=1

q

∑
⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ 

  
(4) 

 

where 

€ 

β j 2
= β j

Tβ j( )
1/ 2

= β j,g
2

g=1

2

∑  and γ k 2 = γ k
Tγ k( )

1/ 2
= γ k,g1g2

2

g2 =1

2

∑
g1 =1

2

∑  with 

€ 

df j = 2 and dfk = 22  ∀j,k .  This penalty is the group-wise L2-norm, intermediate 
between the L1-Lasso and the L2-Ridge penalties, and penalizes main effect 
groups j=1,…,p and pairwise interaction groups k=1,…,q collectively, 
encouraging sparsity between but not within factors [Yuan and Lin 2006].  To 
distinguish this grouped method from the traditional penalization, we refer to this 
method as GL1.   Equation (5) is an extension of the model defined in [Meier, et 
al. 2008], and we fit this model using the ‘grplasso’ package in R [Meier 2009].  
As with TL1, the particular SNPs associated with the set 

€ 

l :θ l ≠ 0{ } define the 
SNPs select by GL1.   
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SIMULATION DESIGN AND ANALYSIS 
 
In order to fairly compare MDR and Lasso (both TL1 and GL1) for variable 
selection, we designed a Monte Carlo simulation study.  Our objective is to 
compare the performance of the three variable selection approaches in detecting 
various patterns of epistasis in data with different sample characteristics, 
including number of total loci p, minor allele frequency, and effect size.  For each 
model scenario, case/control Monte Carlo replicate datasets were generated with 
125 cases and 125 controls to represent a small sample size for an association 
study. 

In order to depict different patterns of epistatic interactions, including 
interactions in both the presence and absence of independent main effects, three 
complex penetrance patterns were utilized.  All three patterns (XOR, BOX, and 
MOD, described below) display two-locus interactions, characterized by the 
penetrance at each of the nine two-locus genotype combinations seen in both 
Table 1 and Figure 1.  The XOR pattern represents a two-locus purely epistatic 
interaction with no marginal effects at either locus; this pattern is a modification 
of a non-linear exclusive OR function first described by [Li and Reich 2000].  In 
the XOR model, low risk of disease is dependent on a heterozygous genotype at 
exactly one of two loci (‘Aa’ or ‘Bb’).  Both the BOX and MOD patterns are two-
locus interactions with main effects at both loci.  The BOX pattern is symmetric 
and is a variation on the dominant-dominant model described by [Neuman and 
Rice 1992].  In the BOX model, low risk of disease is dependent on two low-risk 
alleles (‘AA’ or ‘BB’) at either one or both loci.  The MOD pattern is 
assymmetric, and represents a modifying effect model on an exclusive OR 
function described by [Li and Reich 2000].  In the exclusive OR model, high risk 
of disease depends on two high risk alleles (‘aa’ or ‘bb’) at exactly one of two 
loci, so genotype combination ‘AaBB’ is low-risk; under the MOD model, 
‘AaBB’ is modified from low-risk to high-risk, resulting in both marginal effects 
and a complex interaction.  See Table 1 and Figure 1 for more details on all three 
patterns. 
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Model XOR BOX MOD 

Genotype AA Aa aa AA Aa aa AA Aa aa 

BB y x y x x x x y y 

Bb x z x x y y x x y 

bb y x y x y y y y x 

 
Table 1  - Penetrance patterns for 2-locus epistatic models.  Cells marked x represent genotype 
combinations with lower risk.  The values x, y, and z represent penetrance values with 0 < x < y ≤ 
z< 1 which were chosen to achieve the desired heritability.  The baseline penetrance, x, was fixed 
at 0.05.  For XOR models with MAF=0.5, z = y; for XOR models with MAF=0.25, z > y to 
achieve no marginal effects at either locus.  
 

 
 
Figure 1 – Penetrance function by genotype for XOR, BOX, and MOD patterns. 

 
In addition to the XOR, BOX, and MOD penetrance patterns, simulation 

design factors considered were number of total loci p (either 25 or 100), minor 
allele frequency (0.25 or 0.5), and heritability (1.0, 2.5, 5.0, 7.5, or 10.0%), for a 
total of 60 combinations summarized in the Appendix.  For each model scenario, 
the specific penetrance function was established based on the combination of 
these simulation factors, such that the baseline penetrance was fixed at 0.05 to 
ensure a realistic population prevalence rate, and are available from the authors 
upon request.  100 case/control Monte Carlo replicates were generated under each 
scenario assuming Hardy-Weinberg proportions and case-control status was 
ascribed based on the particular penetrance function using the software 
genomeSIM [Dudek, et al. 2006]. Simulated SNP variables were uncorrelated, 
representing no linkage disequilibrium between them.  While this number of 
potential predictors is much smaller than current typical genotyping studies, even 
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candidate gene studies, the sparsity of exploring higher values made running 
current implementations of the LASSO methodologies impractical. 

All 100 datasets were analyzed with MDR, TL1, and GL1 for each of the 
60 factor combinations, and the performance of each method recorded.  MDR was 
implemented using 5-fold cross-validation [Motsinger and Ritchie 2006] 
considering sizes of interaction k=1,…,4, and the single best model with highest 
accuracy and cross-validation consistency was chosen as the final selected model.  
For both TL1 and GL1, the genotype encoded as “0”, the lower frequency 
homozygote, was treated as the reference level.  The tuning parameter λ was 
chosen with BIC rather than cross-validation because this approach is commonly 
used, easily implemented, and recommended [Zou, et al. 2007] and reduces 
computation time.  Moreover, unlike cross-validation which tends to overfit, BIC 
is selection consistent. [Wang, et al. 2007; Wang and Leng 2007].  The final 
model was chosen based on this

€ 

λ > 0 ; for the case with 

€ 

λ = 0 , where only the 
intercept remains and no loci are selected, the first loci that appear in the solution 
path were chosen as the final model so as to remain comparable with MDR, 
because MDR does not allow for null models to be selected. 

The performance of each method was measured in terms of power to 
detect the interaction, the average size of the model identified (i.e. number of 
active predictor loci), and the true and false positive rates.  Power, the proportion 
of correctly identified models across the 100 replicates, was calculated under two 
definitions, liberal and conservative.  Under the conservative definition, a model 
was considered correct if both true loci were identified, but no false positive loci; 
the liberal definition allowed for the inclusion of false positive loci.  In this case, 
the conservative estimate of power counts the number of correctly identified 
models across the 100 replication when no false positive or false negative loci are 
allowed. The liberal definition estimate counts the number of correctly identified 
models across the 100 replication when false positive loci are allowed, but no 
false negative loci are allowed (representing a situation where models might be 
followed up in a replication set to eliminate false positives). For the MDR 
analyses, the final model for each dataset was chosen based on minimal prediction 
error and maximal cross-validation consistency, where in the case of 
disagreement in these metrics, the final model is chosen based on the rule of 
parsimony.  For the LASSO analyses (both the TL1 and GL1 results), the 
genotypes with significant terms were considered to be included in the final 
model, where to be considered a significant interaction, the interaction term must 
be included in the model.  True positive rate was calculated as the proportion of 
true positives identified out of the total number of true positive identifications 
possible (2*100) and the false positive rate was calculated as the proportion of 
false positives identified out of the total number of false positive identifications 
possible ((p-2)*100).  All simulations were performed on quad-core Core2 Xeon 
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processors (8 processors, each at 3 GHz and with 4GB of memory) using software 
for MDR written in C [Hahn, et al. 2003] and the freely available R software for 
TL1 and GL1 [R Development Core Team 2005].   Final results were statistically 
analyzed for differences in performance between the three methods with a mixed 
effects model and pair-wise contrasts between methods using SAS version 9.1 
[SAS Institute Inc. 2004]. To account for the repeated analysis on the same 
datasets by the three variable selection methods, a random effect was specified for 
each combination of simulation factors. 

 
 

RESULTS 
 
Figures 2 and 3 display the power results (conservative and liberal, respectively) 
for all 60 simulated models.  To test for significant differences among methods, 
after visual inspection, statistical models were fit controlling for number of loci, 
heritability, and the potential main effects, two-way, and three-way interactions 
between type of analysis method, minor allele frequency, and penetrance pattern.  
In general, we see that both conservative and liberal power increase with effect 
size h2 (p<0.0001; p<0.0001) and with total number of loci p (p<0.0001; 
p<0.0001) after controlling for the effects of MAF, model type, and variable 
selection method.  In general, liberal power is slightly higher than conservative 
power for MDR and GL1, but much higher for TL1.  As can be seen in Figures 2 
and 3, for both conservative and liberal power, there is a three-way interaction 
between model type, MAF, and variable selection approach (p=0.0025; 
p<0.0001).  Therefore in order to compare variable selection methods, pair-wise 
contrasts comparing both MDR versus GL1 and TL1 versus GL1 were calculated 
stratified on each of the six combinations of minor allele frequency and 
penetrance pattern, for a total of 12 contrasts per power measure.  As these results 
are meant to help interpret the results of the simulation, p-values reported below 
are unadjusted and adjustment is left to the reader.  First we compare the power of 
GL1 and TL1.  For MAF=0.5, GL1 has higher conservative and liberal power 
than TL1 for all three model types (all three p<0.0004; both p<0.0001 for XOR 
and MOD), with the exception of the liberal power of the BOX model (p=0.1405).  
For MAF=0.25, GL1 had significantly higher conservative and liberal power for 
the XOR model (p<0.0001; p<0.0001), and significantly higher conservative 
power for the MOD model (p=0.0001).  TL1 has higher conservative and liberal 
power only for the BOX model with MAF=0.25 (p=0.8377; p<0.0001).  

Next we compare the power of GL1 and MDR.  For the BOX model, the 
conservative power of MDR is higher than GL1 across MAF although not 
statistically significant; but liberal power is significantly higher for MDR for both 
MAF=0.25 and 0.5 (p=0.0010; p=0.0118).  While the results appear similar for 
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the MOD model, the higher observed conservative and liberal power of MDR is 
not significant (p=0.1654 and p=0.0611 for maf=0.25; p=0.8860 and p=0.8162 for 
maf=0.5).  For the XOR model, MDR has the highest conservative and liberal 
power for MAF=0.5 (p=0.0002; p<0.0001); conservative power is a substantial 
18.5% (SE=0.049) higher for MDR than GL1.  GL1 has higher conservative and 
liberal power for MAF=0.25 (p=0.2536; p=0.0149); under this scenario, we 
estimate that liberal power is 8.5% (SE=0.034) higher for GL1.  Conservative and 
liberal power results for all factor combinations can be seen in Figures 2 and 3. 
 

 
Figure 2 – Conservative power for increasing heritability for MDR, TL1, and GL1. 
Conservative power is plotted for the XOR, BOX, and MOD patterns for MAF=0.25 and P=25 
(top left), MAF=0.5 and P=25 (top right), MAF=0.25 and P=100 (bottom left), and MAF=0.5 and 
P=100 (bottom right).  Standard errors range from 0.017 to 0.050, 0.000 to 0.050, 0.000 to 0.050, 
and 0.000 to 0.050, respectively. 
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Figure 3 – Liberal power for increasing heritability for MDR, TL1, and GL1. 
Liberal power is plotted for the XOR, BOX, and MOD patterns for MAF=0.25 and P=25 (top 
left), MAF=0.5 and P=25 (top right), MAF=0.25 and P=100 (bottom left), and MAF=0.5 and 
P=100 (bottom right).  Standard errors range from 0.000 to 0.050, 0.000 to 0.050, 0.000 to 0.050, 
and 0.000 to 0.050, respectively. 
 

The reported true and false positive rates represent a decomposition of our 
definitions of power into true positive and false positive components. Statistical 
models for both true and false positive rates were fit controlling for the main 
effects of number of loci, heritability and the potential two and three-way 
interactions between type of analysis method, minor allele frequency, and 
penetrance pattern. The estimated true positive rates of all three variable selection 
approaches can be seen in Figure 4.  As expected, we see the true positive rate 
increase with effect size (p<0.0001) and total number of predictors (p<0.0001).  
Like power, we also observe a three-way interaction between MAF, analysis 
method, and penetrance pattern on the true positive rate (p<0.0001, see Figure 4).  
To compare analysis methods, pair-wise contrasts were stratified on each of the 
six combinations of minor allele frequency and penetrance pattern to compare 
both MDR versus GL1 and TL1 versus GL1, for a total of 12 contrasts.  GL1 has 
a higher true positive rate than TL1 for the XOR models (both p<0.0001), BOX 
model with MAF=0.25 (p<0.0001), and MOD model with MAF=0.5 (p<0.0001).  
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In general, MDR and GL1 have similar true positive rates for the BOX and MOD 
models; however, for the XOR model the rate is 17.4% higher for MDR with 
MAF=0.5 (p<0.0001) and 8.8% higher for GL1 with MAF=0.25 (p=0.0018).   In 
terms of false positive rates, we see a decrease with effect size (p<0.0001) and 
total number of predictors (p=0.0005) with can be seen in Figure 5.  Additionally, 
we also observe a three-way interaction between MAF, analysis method, and 
penetrance pattern on the false positive rate (p=0.0040; see Figure 5).  Therefore 
pair-wise contrasts to compare methods were again stratified on each of the six 
combinations of minor allele frequency and penetrance pattern to compare MDR 
versus GL1 and TL1 versus GL1.  False positive rates are quite similar between 
MDR and GL1 for all combinations, with the exception of the XOR model with 
MAF=0.5, where the rate is higher for GL1 (p<0.0001).  Most notably, the false 
positive rates are quite high for TL1, and are consistently higher than GL1 (and 
also MDR) in all cases (all six p<0.0001).  For TL1, the false positive rate 
decreases with heritability, but for even the high effect size of h2=10%, the false 
 

 
Figure 4 – True positive rates for increasing heritability for MDR, TL1, and GL1. 
The true positive rate is plotted for the XOR, BOX, and MOD patterns for MAF=0.25 and P=25 
(top left), MAF=0.5 and P=25 (top right), MAF=0.25 and P=100 (bottom left), and MAF=0.5 and 
P=100 (bottom right).  Standard errors range from 0.000 to 0.050, 0.000 to 0.050, 0.016 to 0.050, 
and 0.016 to 0.050, respectively. 
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positive rate is still much greater than zero (see Figure 5).  True and false positive 
rates for all 60 factor combinations can be seen in Figures 4 and 5. 
 The patterns we observe in both true and false positive rates are validated 
by the results for the average number of active predictors identified by each 
method, detailed in Figure 6.  A statistical model for average model size was fit 
controlling for the main effects of number of loci, heritability, type of analysis 
method, minor allele frequency, and penetrance pattern.  In general, the three 
variable selection methods display significantly different average model sizes 
(p<0.0001).  For all methods, identified model size increases with effect size 
(p<0.0001) and total number of predictors (p=0.0030), consistent with the power 
and true positive rate findings.  There was no observable interaction between 
analysis method and any of the other design factors, so in order to compare 
variable selection techniques, all three pair-wise contrasts were computed 
between methods without further stratification.  MDR and GL1 have similar 
 

 
Figure 5 – False positive rates for increasing heritability for MDR, TL1, and GL1. 
The false positive rate is plotted for the XOR, BOX, and MOD patterns for MAF=0.25 and P=25 
(top left), MAF=0.5 and P=25 (top right), MAF=0.25 and P=100 (bottom left), and MAF=0.5 and 
P=100 (bottom right).  Standard errors range from 0.003 to 0.027, 0.003 to 0.028, 0.000 to 0.029, 
and 0.004 to 0.029, respectively.  
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model size results (p=0.7658), where the average number of active predictors 
approaches the target value of 2, the true number of causative loci, as heritability 
and predictor size increase.  TL1 has significantly higher model size than both 
MDR and GL1 (p<0.0001; p<0.0001), and the observed model size moves further 
from the target 2 as heritability and predictor size increase.  For MDR and GL1, 
the number of active predictors is below 2 in most cases, but is highest (and 
closest to 2) for the XOR model and furthest below 2 for the BOX model.  For 
TL1, the model size is consistently above 2, displaying that TL1 is over-fitting.  
Results for average model size can be seen for all 60 factor combinations in 
Figure 6. 
 

 

Figure 6 – Average number of active predictors versus heritability for MDR, TL1, and GL1. 
The average model size is plotted for the XOR, BOX, and MOD patterns for MAF=0.25 and P=25 
(top left), MAF=0.5 and P=25 (top right), MAF=0.25 and P=100 (bottom left), and MAF=0.5 and 
P=100 (bottom right).  Standard errors range from 0.022 to 0.960, 0.036 to 0.914, 0.026 to 0.870, 
and 0.040 to 0.995, respectively. 
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DISCUSSION 
 
In the current study, we evaluate the relative performance of three variable 
selection techniques for detecting gene-gene interactions in case/control genetic 
association studies: Multifactor Dimensionality Reduction, a commonly-used 
data-mining approach, and two L1-penalized regression methods, the traditional 
ungrouped and the group Lasso for logistic regression.  As expected, we find that 
none of the three approaches is optimal for all genetic models, but rather that the 
highest performing method is context dependent, with interactions based on both 
type of penetrance pattern and minor allele frequency.  By and large, both MDR 
and GL1 identify more true positive loci than TL1.  In terms of the two Lasso 
approaches, we observe that GL1 is frequently superior to TL1, which tends to 
over-fit, identifying false positive as well as true positive loci.  Overall, MDR has 
higher power to detect interactions for models that also exhibit independent main 
effects, such as the BOX and MOD patterns.  Upon further investigation, it 
appears that for both types of Lasso, the main effects of these models tend to 
dominate; often only one of the two loci is identified, and the interaction effects 
are overlooked.  This is not surprising, since for a regression-based approach, 
main effects are typically more easily detectable than interactions because they 
require fewer degrees of freedom and are less affected by the curse of 
dimensionality [Bellman 1961].  The parameters associated with main effects may 
be more precisely estimated since the data is less sparse, resulting in less 
penalization than the less precise interaction.  A constructive induction technique 
such as MDR treats both the main effects and interactions between loci 
collectively rather than separately, so the main effects will be less likely to 
overshadow the presence of the interaction.  

When the model is purely epistatic, such as the case of the XOR model, 
both GL1 and MDR perform better than TL1.  For lower minor allele frequencies, 
GL1 outperforms MDR, whereas MDR outperforms GL1 for higher frequencies.  
For the two Lasso approaches we see an interesting trend of improved 
performance for the lower minor allele frequency of 0.25 for this particular 
model, arising from the parametric nature of the approach.  Typically we expect 
that as the minor alleles become more common in the population, that the 
causative loci would be easier to identify.  However, when the MAF is 0.5 for the 
XOR pattern, a large number of the expected cases and controls have the double 
heterozygous genotype, with few observations having any of the four double 
homozygous genotypes.  Therefore when one of the homozygous genotypes is 
treated as the reference level in the regression parameterization (as would 
commonly be the case), we expect fewer observations in the four multi-locus 
genotypes representing the interactive effects then what we see with MAF of 0.25. 
This results in unstable parameter estimation for these interactive effects, and 
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because of the absence of independent main effects, the causative loci may be 
missed.  A similar phenomenon for this penetrance pattern has been reported in 
other studies [He, et al. 2009].  This challenge could potentially be avoided by a 
direct parameterization of the nine two-locus genotype combinations instead of 
considering the main and interactive effects separately, although this needs further 
investigation. 

In general, MDR and GL1 identify fewer false positive loci than TL1.  
The large false positive rate of TL1 is also reflected in the high average number of 
active predictors, indicating that TL1 is over-fitting.  Because TL1 has a 
reasonable liberal power and rate of true positives, it seems that the correct loci 
are being identified, but that additional nuisance loci are also appearing in the 
final model.   One possible explanation is that TL1 is not properly accounting for 
the categorical structure of the data, increasing the difficulty to distinguish true 
associations from those due to chance alone.  By not penalizing terms dealing 
with the same effect together, we fail to draw strength across groups and the 
individual dummy variables are not penalized enough.  Additionally, the 
‘glmpath’ algorithm employed internally computes the grid of values considered 
for the tuning parameter λ, and these values cannot be easily manipulated by the 
user; potentially, a finer grid of stronger λ values may be more appropriate.   

The results of our study are relatively consistent with those of previous 
comparisons of MDR with the two-stage L2 regularization approach, stepPLR.  
Park and Hastie [2008] explore only four different model scenarios, and find that 
MDR has slightly lower power than stepPLR for a heterogeneity model and a 
purely epistatic model; however their comparisons considered a smaller number 
of simulation factors and their results were based on only 30 replicate datasets.  In 
a more extensive study He et al [2009] found that the comparison of stepPLR and 
MDR depends on allele frequency and model pattern, where stepPLR performs 
better for additive effects and worse for purely epistatic effects, and the results 
were relatively consistent with those of this study. The present comparison of 
MDR with TL1 and GL1 helps us to glean new information on how a non-
parametric data-mining method such as MDR compares with a parametric 
penalization approach, particularly for one-stage variable selection techniques 
implemented in a realistic fashion; these two popular approaches are directly 
compared as they would typically be used by a researcher.  

Based on these simulation results, we provide a few recommendations of 
when each variable selection approach might be most suitable for detecting and 
characterizing interactions with different mechanisms.  For data with lower minor 
allele frequencies, penalized regression approaches such as the Lasso may be 
more appropriate, particularly if main effects are not expected.  For models that 
may exhibit independent main effects within interaction models or for data with 
higher allele frequencies, MDR may be more appropriate.  For categorical 
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genotypic data, such as SNPs, it is important to account for the natural grouped 
structure of the predictors and GL1 may be better suited for detecting interactions 
than TL1, particularly if p is large.   
 While this study is useful in informing researchers about choosing an 
analysis strategy for detecting epistasis under a number of different scenarios, it is 
not a fully comprehensive comparison.  While we consider a broad range of 
scenarios including various penetrance patterns of interaction, heritabilities, minor 
allele frequencies, and number of total SNPs, we only consider complete 
genotype data without error.  The goal of any methods comparison should be to 
guide researchers in how to choose an analysis method for real data application; 
but real data includes various types of error such as genotyping error, missing 
data, phenocopy, and genetic heterogeneity, and these types of error should be 
incorporated into the comparison.  We compare MDR, TL1, and GL1, but as the 
application of penalized regression for variable selection in genetic epidemiology 
becomes more popular, other variations of Lasso and other penalized approaches 
should be considered.  The adaptive Lasso has proved a promising technique with 
attractive theoretical properties [Zou 2006], and while it cannot be directly 
implemented if the sample size is less than the total number of predictors 
(2p+22q), other adaptive strategies could be explored. Additionally, recently 
developed novel data-mining approaches for epistasis should be investigated, such 
as the Evaporative Cooling feature selection technique, based on the 
thermodynamic process of evaporation [McKinney, et al. 2007]. 

In the current study we consider the effect of analyzing datasets with 25 to 
100 SNPs, a small choice of p compared to what is frequently seen in real data.  
All methods become much less computationally efficient as p increases, so 
comparisons in terms of computation time in addition to performance are of 
paramount concern to analysts.  MDR is typically faster than GL1 and TL1, 
particularly if the grid of λ considered is large and tuned with cross-validation 
rather than BIC.  Of course, MDR is written in C, a faster language than R, so a 
thorough comparison of computational efficiency involves additional research.  
On the same note, as genotyping technology improves and p increases, 
approaches for GWAS analysis become more relevant.  In order to reflect this 
trend, expanding our comparison to include scenarios on a genome-wide scale 
rather than a candidate gene study requires further investigation.   Because of the 
high-dimensionality of GWAS data, filter approaches are gaining popularity to 
address this analytical challenge.  Both MDR and penalized regression can be 
used as filters, and recently screening approaches have emerged for Lasso such as 
the Screen and Clean [Wu, et al. 2010].  Future studies should consider 
comparisons at the level of full-genome data. 

In the current study we compare and contrast the performance of three 
variable selection strategies to identify epistatic interactions and provide general 
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recommendations for their usage.  We focus primarily on implementations of 
these techniques that are easily accessible to the general researcher, emphasizing 
relative performance in a realistic as opposed to an ideal setting.  Although these 
comparisons of analytical approaches are extensive but not exhaustive, we do gain 
a better understanding of the strengths and weaknesses of each approach and 
some insight as to when each method might be most appropriate.  No approach 
had consistently high performance, and therefore researchers will need to tailor 
their analysis to the particular application at hand.  In the future, as both 
technological and methodological advancements are made in this area, the 
investigation of gene-gene and gene-environment interactions for common 
complex disease in high-dimensional data will become more widespread; the 
researcher’s selection of an appropriate analytical strategy will be imperative to 
properly identifying these complex genetic etiologies, and comparisons such as 
this will be an important tool towards this end.  
 
 
APPENDIX 

Specifications for the 60 simulated 2-locus epistatic models, including number of 
loci, penetrance pattern, heritability, and minor allele frequency. 
 

Model Number Number of loci (p) Model Type h2 (%) MAF 
1 25 XOR 1.0 0.25 
2 25 XOR 1.0 0.50 
3 25 XOR 2.5 0.25 
4 25 XOR 2.5 0.50 
5 25 XOR 5.0 0.25 
6 25 XOR 5.0 0.50 
7 25 XOR 7.5 0.25 
8 25 XOR 7.5 0.50 
9 25 XOR 10.0 0.25 

10 25 XOR 10.0 0.50 
11 25 BOX 1.0 0.25 
12 25 BOX 1.0 0.50 
13 25 BOX 2.5 0.25 
14 25 BOX 2.5 0.50 
15 25 BOX 5.0 0.25 
16 25 BOX 5.0 0.50 
17 25 BOX 7.5 0.25 
18 25 BOX 7.5 0.50 
19 25 BOX 10.0 0.25 
20 25 BOX 10.0 0.50 
21 25 MOD 1.0 0.25 
22 25 MOD 1.0 0.50 
23 25 MOD 2.5 0.25 
24 25 MOD 2.5 0.50 
25 25 MOD 5.0 0.25 
26 25 MOD 5.0 0.50 
27 25 MOD 7.5 0.25 
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28 25 MOD 7.5 0.50 
29 25 MOD 10.0 0.25 
30 25 MOD 10.0 0.50 
31 100 XOR 1.0 0.25 
32 100 XOR 1.0 0.50 
33 100 XOR 2.5 0.25 
34 100 XOR 2.5 0.50 
35 100 XOR 5.0 0.25 
36 100 XOR 5.0 0.50 
37 100 XOR 7.5 0.25 
38 100 XOR 7.5 0.50 
39 100 XOR 10.0 0.25 
40 100 XOR 10.0 0.50 
41 100 BOX 1.0 0.25 
42 100 BOX 1.0 0.50 
43 100 BOX 2.5 0.25 
44 100 BOX 2.5 0.50 
45 100 BOX 5.0 0.25 
46 100 BOX 5.0 0.50 
47 100 BOX 7.5 0.25 
48 100 BOX 7.5 0.50 
49 100 BOX 10.0 0.25 
50 100 BOX 10.0 0.50 
51 100 MOD 1.0 0.25 
52 100 MOD 1.0 0.50 
53 100 MOD 2.5 0.25 
54 100 MOD 2.5 0.50 
55 100 MOD 5.0 0.25 
56 100 MOD 5.0 0.50 
57 100 MOD 7.5 0.25 
58 100 MOD 7.5 0.50 
59 100 MOD 10.0 0.25 
60 100 MOD 10.0 0.50 
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