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Abstract
Steerable needles can be used in medical applications to reach targets behind sensitive or
impenetrable areas. The kinematics of a steerable needle are nonholonomic and, in 2D, equivalent
to a Dubins car with constant radius of curvature. In 3D, the needle can be interpreted as an
airplane with constant speed and pitch rate, zero yaw, and controllable roll angle.

We present a constant-time motion planning algorithm for steerable needles based on explicit
geometric inverse kinematics similar to the classic Paden-Kahan subproblems. Reachability and
path competitivity are analyzed using analytic comparisons with shortest path solutions for the
Dubins car (for 2D) and numerical simulations (for 3D). We also present an algorithm for local
path adaptation using null-space results from redundant manipulator theory. Finally, we discuss
several ways to use and extend the inverse kinematics solution to generate needle paths that avoid
obstacles.

I. INTRODUCTION
Steering needles through soft tissue has the potential to enable physicians to reach targets
behind sensitive or impenetrable areas. We focus on a subclass of flexible needles that
provide steerability due to asymmetric forces acting at the needle tip, for example due to a
beveled surface (Webster, Okamura, Cowan, Chirikjian, Goldberg & Alterovitz 2006) or a
kink near the end of the needle (Engh et al. 2006). By rotating the needle at the base, the
orientation of the tip can be changed and hence the trajectory of the needle can be
controlled. Other needle steering approaches have also been developed, including symmetric
flexible needles controlled by applying asymmetric forces at the base (DiMaio & Salcudean
2005), not at the tip. For the purposes of this paper, we refer to asymmetric flexible needles
(based on beveled tips or kinks) simply as steerable needles. The extra mobility of steerable
needles over rigid needles can be harnessed in medical applications such as brachytherapy
(Alterovitz et al. 2005) and brain surgery (Engh et al. 2006) to reach difficult targets.

Experimental studies (Webster et al. 2005) show that the motion of steerable needles can be
approximated as having a constant radius of curvature that is independent of insertion speed.
The control inputs for the needle are the insertion speed and rotation (roll) angle, although
for motion planning (the topic of this paper) insertion speed is often not important. The
rotation angle is then the only real control input and trajectories can be parameterized by
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insertion depth. A steerable needle (Fig. 1a) is thus kinematically equivalent to an airplane
with fixed speed and pitch rate, zero yaw, and controllable roll rate (Fig. 1b).

Motion planning for steerable needles is an important problem and has been studied in
several ways in literature. Most studies focus on planar motion, for which the control input
reduces to switching between curve-left and curve-right. Alterovitz et al. present a roadmap-
based motion planning framework that explicitly incorporates motion uncertainty and
computes the path that is most likely to succeed (Alterovitz et al. 2005, Alterovitz et al.
2007, Alterovitz & Goldberg 2008, Alterovitz et al. 2008). Minhas et al. (2007) show
planning based on fast duty cycle spinning of the needle, effectively removing the limitation
of a fixed-radius path but requiring continuous angular control input. Kallem & Cowan
(2007) introduce a controller that stabilizes the needle motion to a plane, allowing practical
implementation of planar motion planning methods.

The first 3D motion planning algorithm was introduced by Park et al. (2005,2008) and used
diffusion of a stochastic differential equation to generate a family of solution paths. The
authors also describe several extensions to avoid obstacles. Duindam et al. (2008) presented
a second 3D motion planning algorithm that uses fast numerical optimization of a cost
function to compute feasible needle paths in 3D environments with obstacles.

This paper presents a different solution to the 3D motion planning problem for steerable
needles, based on inverse kinematics. We propose a new geometry-based algorithm inspired
by the Paden-Kahan subproblems in traditional inverse kinematics algorithms (Murray et al.
1994). Just as the Paden-Kahan subproblems, our algorithm (Section III) can be fully
described in geometric terms of intersecting lines, planes, and circles, and computing the
solution simply requires a few trigonometric functions. We analyze reachability and
competitivity of the solution (Section IV) using analytic comparison to the Dubins car
solution (Dubins 1957) and numerical simulations. We also present a method to locally
adapt needle paths using null-motions (Section V).

The proposed motion planning algorithms find feasible needle paths very quickly and
provide some capability for obstacle avoidance. As the current accuracy of medical data is
limited, these algorithms may be sufficient by themselves, but we envision them being part
of more general global motion planning systems for more complex environments with
obstacles, as discussed in Section VI.

II. PROBLEM STATEMENT AND MODELING ASSUMPTIONS
A. Model parameters and assumptions

Throughout this paper, we only consider the idealized kinematics of the needle in a static
and rigid (non-deforming) environment. We assume that the motion of the needle is fully
determined by the motion of the needle tip, that the motion of the needle tip is
instantaneously along a perfect circle of constant radius r, and that rotations of the base are
instantly transmitted to rotations of the tip. Experimental results (Webster et al. 2005) show
that needle materials can be chosen such that the needle indeed moves along an arc of
approximately constant radius, but the effects of tissue inhomogeneity, friction, and needle
torsion can be significant and will require compensation (Kallem & Cowan 2007) in
practical applications. The assumption of rigidity is strong but necessary to reduce
complexity. We consider the presented method for path planning as a tool to compute an
initial solution that may be locally adapted and optimized to account for deformations.
Tissue deformation for planar needle motion planning has been studied for rigid needles
(Alterovitz et al. 2003) and recently for control using external tissue manipulation (Torabi et
al. 2009).
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Under the previous assumptions, the motion of the needle is determined kinematically by
two control inputs: the insertion velocity, denoted v, and the tip rotation velocity, denoted ω.
We present the kinematics model for general v(t) but remove this redundant degree of
freedom in the next section.

Fig. 2 illustrates the model setup. We rigidly attach a coordinate frame Ψn to the tip of the
needle, with axes aligned as in the figure, such that the z-axis is the direction of forward
motion v and needle orientation ω, and the beveled tip causes the needle to rotate
instantaneously around a line parallel to the x-axis and passing through the point (0, −r, 0).

Following standard robotics literature (Murray et al. 1994), the position and orientation of
the needle tip relative to a reference frame Ψs can be described compactly by a 4 × 4 matrix
gsn(t) ∈ SE(3) of the form

(1)

with Rsn ∈ SO(3) the rotation matrix describing the relative orientation, and psn ∈ T (3) the
vector describing the relative position of frames Ψs and Ψn.

The instantaneous linear and angular velocities of the needle are described by a twist vsn ∈
se(3) which in body coordinates Ψn takes the convenient form

(2)

in equivalent vector and matrix notation. The twist relates to gsn as

(3)

This kinematic model is the same as the unicycle model by Webster, Kim, Cowan,
Chirikjian & Okamura (2006). When the twist is constant, (3) becomes a linear ordinary
differential equation (ODE) that can be integrated as

(4)

for which a relatively simple analytic expression exists (Murray et al. 1994). In the path
planning algorithms, we construct paths for which  is piecewise constant and compute the
resulting transformation using this efficient analytic expression.

B. Problem statement
The objective of the motion planning algorithms in this paper is to find feasible paths
between given start and goal configurations in the absence of obstacles1. More precisely, the

1Section VI discusses several ways to use and extend the presented algorithm to environments with obstacles.
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inputs to the algorithm are an initial needle pose gstart G SE(3) and a desired needle pose
ggoal ∈ SE(3). The outputs of the algorithm are control functions v(·) and ω(·) and a finite
end time 0 ≤ T < ∞, such that the solution gsn(·) of the differential equation (3) with gsn(0) =
gstart satisfies gsn(T) = ggoal. If no feasible path can be found, the algorithm returns failure.

The kinematics equations (2) and (3) are invariant to time scaling, in the sense that the path
traced out by the needle does not change if the control inputs v(·) and ω(·) are scaled by the
same (possibly time-varying) factor. Therefore, we can simplify the motion planning
problem by assuming without loss of generality that v(·) ≡ 1, which is equivalent to
parameterization by insertion depth (Kallem & Cowan 2007,Duindam et al. 2008). The

insertion time T thus represents the total path length since . A pure
rotation, i.e. motion with non-zero ω and zero v, can be represented by a Dirac pulse in the
signal ω with magnitude equal to the desired total angle of rotation. These impulses and the
general choice v ≡ 1 are used only for compact representation of the path; in practical
execution of a given solution path, the speed of insertion can be changed such that the
motion is safe, while impulsive rotations should obviously be executed by stopping insertion
(v = 0) and slowly rotating the needle until the desired angle.

Although motion planning is based on connecting general 3D poses (both position and
orientation), solving a difference in initial or final roll angle is trivial as this degree of
freedom is directly controlled through ω(·). So although the inputs to the algorithm are
general elements of SE(3), we often mainly focus on path planning between given start and
goal position and direction of the needle, i.e. only considering the z-axis of Ψn. Given a
solution from the start position and direction to the goal position and direction, the full
motion plan from a start pose to a goal pose follows directly by adding the required pure
rotations as Dirac impulses in ω at the beginning and end of this solution. We discuss the
difference in the number of degrees of freedom in the control solution vs. the configuration
space in Section III-B.

III. PATH PLANNING USING INVERSE KINEMATICS
We present two motion planning solutions based on inverse kinematics, one for the planar
(2D) case and one for the general spatial (3D) case. The motion planning problem is
considered planar if the start position ps, start direction zs, goal position pg, and goal
direction zg are all in the same plane.

In both inverse kinematics solutions, we look for a control input function ω(·) of a very
specific form, namely a function that is zero everywhere except for a fixed number of Dirac
impulses (two in the planar case, four in the spatial case, see Fig. 3). Geometrically, this
means that we look for trajectories that are concatenations of a fixed number of circular
segments with radius r: the needle moves along a circle when ω = 0, and instantaneously
changes direction at the time instants that ω is a Dirac impulse. Furthermore, the magnitudes
of the Dirac impulses in the planar case are constrained to be exactly π, corresponding to a
change in direction between curve-left and curve-right. We also choose a spatial solution for
which the last two impulsive rotations are π, making the last three segments of the spatial
path co-planar as well.

The specific choices in the structure of ω(·) result in geometrically intuitive solutions that
are relatively straightforward to compute. The simplicity of the proposed solutions comes at
the cost of not necessarily being optimal in terms of path length or required control effort.
Earlier work (Duindam et al. 2008) studied methods to find needle trajectories by
numerically optimizing a particular given cost function expressing the desired balance
between control effort, path length, and other costs. The solution paths discussed in the
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present paper could be used as initial guess for these optimization algorithms and thus be
(locally) adapted to have lower cost.

A. Inverse kinematics in 2D
We first consider the planar path planning problem with ω(·) as in Fig. 3a. For simplicity,
we only consider relatively short-distance planning problems for which a solution with three
consecutive circular segments exists; the approach can be extended for longer paths by
adding additional circular segments. The relative position of the start and goal are described
by two displacements x and y, their relative orientation by a single angle θ. The purpose of
the path planning algorithm is to find the three insertion depths t1,t2,t3 describing a feasible
needle path from start to goal. Note that the needle travels a distance ti = rαi when moving
along a circle of radius r for αi radians, and hence we can equivalently look for the three
angles αi in Fig. 4. These should be such that if we start at ps in the direction zs heading left,
move rα1 forward, turn π, move rα2 forward, turn π, and move rα3 forward, we arrive
exactly at the desired goal pose. The mirrored case starting with a right turn can be
computed similarly.

We can solve for the angles αi by looking at the setup in Fig. 4 and realizing that the three
centers of rotation (marked by × in the figure) form a triangle with known edge lengths.
Using the cosine rule for this triangle, we can write

(5)

This equation has two solutions for α2, which correspond to the two paths shown in Fig. 4.
With α2 known, the other two angles follow uniquely as

(6)

(7)

with atan2 the inverse tangent function solved over all four quadrants. Since the needle can
only move forward, angles must be chosen as αi ∈ [0,2π). The required insertion distances ti
follow immediately as ti = rαi.

B. Inverse kinematics in 3D
Now consider the 3D inverse kinematics problem of connecting two general poses in SE(3)
by a valid needle path. We propose one solution using eight consecutive insert and turn
motions as shown in Fig. 3b; an explicit geometric solution using fewer motions is still an
open problem.

The geometry of this solution is illustrated in Fig. 5. The problem is split into two parts:
first, the needle is turned and inserted such that its instantaneous line of motion (the
instantaneous direction of the needle) intersects the line describing the goal position and
direction. Second, the remaining planar problem is solved using the solution from Section
III-A.
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More precisely, we first choose any point q on the line defined by pg and zg. This point q
will be the intersection point of the two lines defining the remaining planar problem. With q
defined, the needle is first rotated by θ1 = β1 until its (y, z)-plane contains q. The required
angle β1 satisfies

(8)

which has two solutions β1 that differ by π.

Second, the insertion distance t1 = rβ2 is solved such that the line through the needle tip in
the direction z2 contains the point q. If q is outside the circle describing the needle motion
along β2, two solutions exist, with z2 either pointing towards (as in the figure) or away from
q. These solutions are

(9)

with qv := q − ps + ry1. No solution exists if q is inside the circle (|qv | < r).

Third, the needle is rotated by θ2 = β3 until pg (and hence the whole line through q and pg) is
contained in the needle’s (y,z)-plane:

(10)

which again gives two solutions that differ by π. The remaining angles β4, β5, β6
(corresponding to the time segments t2,t3,t4) can then be solved using the 2D planner from
Section III-A.

In this algorithm, we have the following degrees of freedom to choose a solution. First is the
choice of the point q: this can be anywhere on the line containing pg and zg, which means
varying q generates a one-dimensional subspace of possible inverse kinematics solutions.
Second, we can choose one of two possible solutions βi for each of the four angles in
equations (8–10) and (5), resulting in 24 possible combinations. Not all of these choices may
give feasible paths for a given start and end pose, and it is also not directly obvious which
choice will result in the ‘best’ path between the two poses. Nevertheless, since the inverse
kinematics equations can be computed very quickly, one can simply compute all
combinations for a number of choices of q and pick the best solution, with ‘best’ defined, for
example, using a cost function.

The inverse kinematics solution describes a path consisting of four insertions (translations)
and four rotations, a control space with eight degrees of freedom as shown in Fig. 3b. Two
degrees of freedom (θ3 and θ4) are constrained to be exactly π, and one additional degree of
freedom is constrained through the choice of the point q. The remaining five degrees of
freedom are exactly sufficient to describe any relative position and direction between the
start and goal needle configuration; the final roll angle of the needle is not prescribed and
hence the space of relative configurations is five-dimensional. We could even consider the
space of relative configurations to be four-dimensional if we discard the initial roll angle,
but this is merely a matter of calling β1 either a control action or an initialization step. In
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Section V, we relax the constraints on the control space and show how the shape of the
needle path can be adapted using the resulting extra degrees of freedom.

IV. REACHABILITY AND COMPETITIVITY
To evaluate the quality of the paths generated by the presented inverse kinematics (IK)
solutions, we study the set of reachable needle poses and competitivity (Icking & Klein
1995, Gabriely & Rimon 2005) of the computed solutions. Competitivity in this case refers
to the path length of the computed solution; it has no relation to competitivity in the sense of
computational speed (the IK algorithms run in constant time).

A. Reachability and competitivity in 2D
Consider first the solution to the planar problem as described in Section III-A. The algorithm
will clearly only find a solution if the right-hand side of (5) has norm less than or equal to
one, or geometrically, if the centers of the circles tangent to the start and goal poses are no
farther than 4r apart. This condition defines the set of reachable relative needle poses.

To describe competitivity of the algorithm for these reachable poses, we compare the IK
solutions to the trajectories generated by allowing an infinite number of direction changes.
In that case, a trajectory can be generated with an arbitrary radius of curvature larger than or
equal to r, by asymmetrically cycling between curve-left and curve-right and taking the limit
of this cycling frequency to infinity, similar to the idea used by Minhas et al. (2007). This
means that in the limit, the needle can behave like a Dubins car (Dubins 1957) with
minimum radius of curvature r.

The optimal path for a Dubins car is known to consist of two circular arcs with radius r
connected by another circular arc or a straight line (Dubins 1957). For a given start and end
pose, the IK solution only differs from the Dubins path if the connecting segment for the
Dubins path is a straight line; the IK solution will still contain a (sub-optimal) circular arc.
Furthermore, the Dubins path may start and end with circular arcs in the same direction or in
opposite directions (Fig. 6), whereas the IK solution always starts and ends with a turn in the
same direction. It is intuitively clear that the largest difference in path length occurs at the
border of the reachable space where the three circles of the IK solution are aligned; if the
circles are not aligned, one of the two solution paths is relatively ‘more straight’ and hence
shorter, as illustrated in Fig. 4. In the first case (Fig. 6a), the maximum ratio of the path
lengths is

(11)

For the second case (Fig. 6b), we can compute the length of the straight-line segment q – p
as

(12)

from which we find that the maximum path length ratio equals

(13)
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The degree of competitivity of the 2D IK solution is hence approximately 1.63. Note that
this is a bound on the competitivity that does not take into account the number of direction
changes; the medical benefit of a shorter needle path (less tissue cutting) may very well be
outweighed if this requires a large number of direction changes (180° rotations) with
associated amounts of friction forces on the tissue surrounding the needle path. In addition,
from a planning and control point of view, direction changes increase uncertainty in the state
estimate and complexity in the control algorithm (Reed 2008, Reed et al. 2008).

B. Reachability and competitivity in 3D
Continuing with the 3D IK solution from Section III-B, we present a reachability and
competitivity analysis based on numerical simulation. Formal geometric proofs and bounds
of the algorithm are subject of future research; at this point we do not have a good
approximation for the optimal path and simply compare the IK solutions to the Euclidean
distance between the start and goal positions. Future work could compare the presented
solution to the paths generated by the method of Park et al. (2008). We take q = pg
throughout the analysis; different choices give qualitatively similar results.

First consider Fig. 7. This illustrates the lengths of the IK trajectories starting at the center of
the figure and ending at goal positions in the plane of the figure, with start and goal
directions equal and pointing to the right. The brightness of each pixel indicates the length
of the IK path divided by the Euclidean distance between the start and goal locations: dark
colors represent small ratios (good paths) while light colors represent large ratios (bad
paths). Fig. 7b illustrates several examples of solution trajectories.

A set of reachable states shows up in the figure as the ‘figure-eight’ around the start
location. Points outside this shape cannot be reached for the given goal direction. The figure
also shows a distinction between poses that can be reached with reasonably short curves
(darker region) and poses that require significantly longer paths (lighter region). This
distinction is sharp in the area in front of the needle (right side of the figure) but is more
diffuse for poses on the sides of the needle (top and bottom of the figure). If we consider
competitivity in an informal way, meaning whether the algorithm can generated paths of
reasonable lengths, we can say that the algorithm is competitive in the darker region of the
figure; relative poses that are in the lighter region may be reachable, but the paths are so
unwieldy that they are of little practical use in our brachytherapy application.

Fig. 8 shows additional plots generated by varying the two remaining degrees of freedom in
placing the goal pose: the in-plane yaw angle and out-of-plane pitch angle (the inverse
kinematics solution is invariant to roll about the initial and final needle directions).

The figure shows that as the goal direction is turned away from the straight-ahead case
(change in yaw), the set of reachable and competitive paths rotates in the same direction
while maintaining a roughly similar shape. As the goal direction is rotated out of plane
(change in pitch), the competitive paths near the starting pose disappear until only poses at a
significant distance (three to five times the radius of curvature) are competitive.

In the three-dimensional case, it remains a difficult task to precisely characterize the set of
poses that can be reached with a reasonably short path. Comparing the solutions to the
Euclidean distance provides some insight but no global bound on the solutions:
competitivity measures are unbounded when comparing to the Euclidean distance, since for
infinitely close but non-collinear needle orientations the path length of the IK solution
remains finite while the Euclidean distance converges to zero.
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To use the inverse kinematics planner as a local planner in global roadmap-based planning
methods such as the Probabilistic Roadmap method (Kavraki et al. 1996), it is important to
characterize the set of goal poses that are reachable from a given needle pose. Numerical
simulations such as those shown in Fig. 8 can be used to construct an approximation of the
set of goal poses that can be reached with a competitive path (with ‘competitive’ in the
informal meaning of ‘reasonably short path’). This set can be used as the definition of
‘neighborhood’, i.e. those needle poses that are likely to be connectible and can become
edges in the roadmap if they do not intersect obstacles.

V. PATH ADAPTATION USING NULL-MOTIONS
The presented inverse kinematics solution can be computed very quickly but is generally not
the optimal solution in the sense of avoiding obstacles or minimizing path length or required
control effort. Earlier work considered path planning as a pure numerical optimization
problem (Duindam et al. 2008), but in this section we show how sub-optimal paths such as
those generated by the IK planner can be locally optimized and adjusted using null-motions.

Consider an IK solution between two general 3D needle poses. By construction, this solution
describes a path from start to goal consisting of eight consecutive turning and insertion
control actions. We can think of this path as a redundant serial robot manipulator arm with
eight joints (Fig. 9a). Since the relative pose of the goal is given by six parameters, standard
robotics theory (Murray et al. 1994) tells us that the robot has a two-dimensional space of
null-motions2, provided it is not at a singularity. If the joints are moved in this null-motion
space, the shape of the robot (i.e. the shape of the needle path) will change without changing
the pose of the end effector (i.e. the needle tip).

The set of null motions is described by the null space of the geometric Jacobian J(q) ∈ ℝ6×8

of the robot, which relates the spatial twist  to the joint velocities q̇ as  (Murray
et al. 1994). Given the Jacobian, we can change the shape of the path by changing the joint
angles in such a way that q̇ ∈ Null(J(q)) at all times.

Fig. 9b shows an example of how one inverse kinematics solution can be locally
transformed in this way into a family of solution curves. Intuitively, this set of curves was
generated by starting from the IK solution indicated in the figure (the dashed line), and
‘pulling’ on the curve from several points laid out in a circle, while holding the start and end
pose of the needle fixed. More precisely, we model the robot as a viscous system with
damping in each joint that counteracts applied forces, and write the governing equations as

(14)

(15)

with Fi the wrench (Murray et al. 1994) corresponding to the (known) externally applied
pulling force, Ji(q) the Jacobian of link i at which Fi is applied, λ the required constraint
wrench acting at the tip to constrain its motion, and B(q) > 0 the symmetric positive-definite
inverse damping matrix that relates the joint torques τ to the joint velocities as q̇ = B(q)τ.
The first equation relates the total torque (due to external forces Fi and λ) to the change in

2The method can be directly extended to the case where we only consider the final (and initial) needle direction, leaving the roll angle
unconstrained. This results in five (four) parameters describing the relative configuration and hence a three-dimensional (four-
dimensional) space of null-motions.
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the joint angles, the second equation describes the end point constraint that should be
satisfied. Note that these equations do not relate to any actual physical needle motions and
only represent a mathematical procedure.

Substituting (14) into (15), solving for λ, and substituting back into (14) results in an
unconstrained equation for q̇ that no longer contains λ:

(16)

This ODE describes the evolution of q under the influence of an external wrench Fi and tip
constraint Jq̇ = 0. It has a unique solution if B is invertible and J has full rank (no
singularity). Equation (16) projects the velocity  due to the wrench Fi along the
columns of BJT onto the null space of J. The matrix B(q) defines a metric on the space of
torques that can be chosen in any appropriate way, e.g. as a function that drives the system
away from configurations that are singular or contain negative-length path segments.

For the example of Fig. 9b, we chose B diagonal with Bjj(q) → 0 as qj → 0 for all joints j
describing insertion path segments, thus avoiding negative-length path segments. We
applied a linear force in the middle of the kinematic chain (link 5), directed toward one of
the dots, and integrated (16) over time to obtain the pod-shaped family of needle paths
shown in the figure.

This method of path adaptation can be used in fully automated motion planning (e.g. to
perform gradient descent on some cost function with penalty costs for obstacle penetration)
with changes in q constrained to be null motions. More directly, in interactive (computer-
assisted) motion planning systems, it can provide the user with an intuitive path adjustment
tool similar to the control points on a spline curve that can be moved to change its local
shape. Although there is no guarantee this approach will always work, it provides the user
with an additional tool to construct suitable needle paths.

VI. EXTENSIONS FOR OBSTACLE AVOIDANCE
The inverse-kinematics based motion planning algorithm quickly computes feasible needle
paths and allows the user to focus on specifying higher-level objectives in terms of start and
goal needle poses. Indeed, the main motivation and reason for computer-assistance in this
motion planning problem is the degree of under-actuation and nonholonomicity, which can
be dealt with using the presented approach.

Nevertheless, the algorithms provide no guarantees for a solution or a structured incremental
way to search for other trajectories in case of failure due to obstacles or other complications.
The only possibilities are to choose different parameter settings or, for the null-motion based
method, to try applying external forces at a different point or in a different direction.

This section briefly discusses four ways in which the described planning algorithms can be
used and extended to produce needle paths that avoid obstacles. Some can be implemented
directly; others are the subject of ongoing research.

First, the inverse kinematics solutions have a number of free parameters that can be chosen
to maximize obstacle avoidance. In the planar case, this merely amounts to choosing the left
or right solution in Fig. 4 and whether to start curve-left or curve-right. The spatial solution,
however, not only provides four such binary choices (sixteen combinations), but in addition
allows the point q to be chosen anywhere on a line (though not all choices may result in a
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solution path). This choice defines two planes in which the spatial solution path will be
contained, and we hence the solution path will be free if we choose q such that these two
planes do not intersect obstacles. This is clearly a conservative strategy since the actual
needle path will only reside in a small part of the planes.

A second way to implement obstacle avoidance is to use optimization-based planning
(Duindam et al. 2008), in which obstacle penetration is associated with a penalty cost, and
the motion planning algorithm implicitly avoids obstacles by minimizing the cost. One of
the open problems in this optimization-based scheme is the choice of a good initial estimate
for the optimal solution, since the optimization problem is nonlinear and non-convex. The
inverse kinematics solutions presented in this paper may serve as good initial estimates for
the optimization routine, since they already achieve the goal of connecting the start state to
the goal state. The optimization can then locally adapt the solution paths as to avoid
obstacles.

Third, the inverse kinematics solutions can be used as a component in global planning
methods that can avoid obstacles. In motion planning techniques such as PRM (Probabilistic
Roadmaps, see Kavraki et al. (1996)) and related techniques such as RRT (Rapidly-
Exploring Random Trees, LaValle (1998)) and SMR (Stochastic Motion Roadmaps,
Alterovitz et al. (2007)), possible paths for a system are explored by sampling from the free
configuration space and connecting these samples using a fast so-called local planner. In the
case of steerable needles, the presented inverse kinematics solution could be used as a local
planner, as it can quickly compute a feasible trajectory between nearby configuration states.
This is the subject of ongoing research, some preliminary results are described by Xu et al.
(2008).

Finally, a fourth way to use the inverse kinematics solutions in obstacle avoidance schemes
is to rely partially on user input. When it comes to global motion planning, computers are
severely limited in cognitive abilities and can require large amounts of computation power
and time to solve problems that are easy for humans. Consider for instance the motion
planning problem of Fig. 10a: for the reader it is instantly clear that any feasible path should
pass near the intermediate point marked in the figure, but computer-based planners may take
significant amounts of computation time to ‘realize’ this, or they may not be able to find a
feasible solution at all.

One way to solve this problem is to combine human cognitive abilities for global planning
with computer power for local planning. This idea is similar to the concept of ‘many-worlds
browsing’ (Twigg & James 2007), in which the user assists an optimization algorithm and
interactively and intuitively constrains the vast search space of possible solutions. For our
motion planning system, if a human path planner indicates the desired intermediate point as
in Fig. 10a, automatic motion planning algorithms can be applied to solve the resulting two
subpaths. Finding a path from the start location to the intermediate location is trivial, as is
finding a path from the intermediate location to the goal. Figs. 10b and 10c show the
resulting subpaths obtained using the inverse kinematics planner; comparable results are
obtained when using the direct numerical optimization approach described by Duindam et
al. (2008). For this example, the algorithms are not sensitive to the exact position and
orientation of the intermediate pose, but the approach could be extended to iterate over
several intermediate poses near the one indicated.

VII. CONCLUSIONS AND FUTURE WORK
This paper presents constant-time geometrically motivated motion planning algorithms for
steerable needles and airplanes with constant speed and pitch rate, zero yaw, and
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controllable roll. The first algorithm uses inverse kinematics to explicitly compute feasible
paths in 3D, the second uses null-motions to adapt paths to avoid obstacles or achieve other
objectives.

As briefly discussed, these algorithms can be used as components in larger more general
motion planning schemes, possibly using limited user-input to guide automatic local
planning. In future work, we plan to explore this direction and use the IK algorithm as a
local planner in (autonomous) roadmap-based algorithms. Recent results using Rapidly-
Exploring Random Trees (Xu et al. 2008) are encouraging, although computation
requirements are still several orders of magnitude larger than with direct optimization-based
algorithms (Duindam et al. 2008).

Another main future direction of our research is to find a systematic way to include
uncertainty during motion planning and control (Hauser et al. 2009). Our application of
steerable needles contains several sources of uncertainty, including needle motion
uncertainty, tissue flexibility and friction, and sensing inaccuracies. These uncertainties
should be taken into account in the motion planning stage, as discussed and implemented for
the 2D case in previous work (Alterovitz et al. 2007). The presented fast local motion
planning algorithm can be used to quickly test connectivity and iteratively study the effect of
perturbations.

Finally, reachability and competitivity analyses were presented for the 2D and 3D inverse
kinematics algorithms. Future work will be aimed at reducing the number of control
parameters to six (or five when discarding final roll) to match the intrinsic dimension of the
control problem. We also plan to extend the analysis of the current 3D algorithm to provide
bounds on the competitivity compared to the optimal shortest-path solution. A promising
direction is the comparison with paths generated by the approach of Park et al. (2008). The
results from these analyses may also prove useful for roadmap-based motion planning and
help define ‘neighborhood’ of states: a static asymmetric relation that describes what
configurations are reachable from a certain configuration via a reasonably short path (in the
absence of obstacles). This extra structure would hopefully reduce the required number of
function calls to the local planner.
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Fig. 1.
Model setup of a steerable needle and a kinematically equivalent airplane with fixed speed
and pitch rate, zero yaw, and controllable roll rate.
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Fig. 2.
Choice of coordinates and reference frame Ψn at the needle tip. Control input ω generates a
rotation around z, while control input v generates a circular motion around an axis parallel to
x and passing through (0, −r, 0).

Duindam et al. Page 16

Int J Rob Res. Author manuscript; available in PMC 2011 February 25.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Fig. 3.
Structure of the solution ω(·) for the 2D and 3D planning problems.
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Fig. 4.
Two geometric solutions for the same planar inverse kinematics problem, both using
sequential curve-left, curve-right, curve-left motions.
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Fig. 5.
Geometric derivation of an inverse kinematic solution on SE(3). The point q may be chosen
anywhere along the line through pg in the direction zg, although not all choices may generate
a solution path. The planar IK algorithm is used to find the values of (β4,5,6.
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Fig. 6.
Paths generated by the 2D inverse kinematics algorithm compared to the optimal paths for a
Dubins car. The worst-case scenario occurs when the three circles defining the IK solution
are farthest apart and the straight-line segment of the optimal Dubins path provides the best
‘short-cut’.
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Fig. 7.
Reachability and relative path lengths obtained using the inverse kinematics algorithm. The
algorithm tries to find a path from the center of the image to each pixel in the image, with
both start and goal direction aimed to the right.
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Fig. 8.
Reachability and relative path lengths as in Fig. 7 for various relative yaw and pitch angles
for the goal pose. Grid lines are 2r units apart.
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Fig. 9.
Representation of a needle path as a robot with eight joints, and how null motions can be
used to generate a family of solution curves.
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Fig. 10.
Difficult motion planning problems with complex obstacles can be solved using semi-
automated planning. The algorithm is provided with an intermediate pose, a ‘way point’ that
separates the global motion planning problem into two relatively straight-forward local
motion planning problems.
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