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Order parameters for macromolecules: Application to multiscale simulation
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Order parameters (OPs) characterizing the nanoscale features of macromolecules are presented. They
are generated in a general fashion so that they do not need to be redesigned with each new ap-
plication. They evolve on time scales much longer than 10~'# s typical for individual atomic colli-
sions/vibrations. The list of OPs can be automatically increased, and completeness can be determined
via a correlation analysis. They serve as the basis of a multiscale analysis that starts with the N-atom
Liouville equation and yields rigorous Smoluchowski/Langevin equations of stochastic OP dynam-
ics. Such OPs and the multiscale analysis imply computational algorithms that we demonstrate in an
application to ribonucleic acid structural dynamics for 50 ns. © 2011 American Institute of Physics.

[doi:10.1063/1.3524532]

. INTRODUCTION

A multiscale framework for simulating the dynamics of
macromolecules is developed. Their dynamics is divided into
high frequency atomic vibrations and slow (coherent) large-
spatial-scale conformational changes. A set of order parame-
ters (OPs) is introduced to describe the coherent, overall struc-
tural changes while the small amplitude and high frequency
atomic fluctuations are described by an equilibrium distribu-
tion following from entropy maximization constrained to in-
stantaneous values of the OPs. In effect, OPs as conceived
here filter out the high frequency atomistic fluctuations. These
concepts are put on a firm mathematical basis via a multi-
scale analysis of the Liouville equation. The result of the lat-
ter analysis is a set of Langevin equations, all factors within
which are related to an interatomic force field. This yields a
force-field based multiscale algorithm that allows for all-atom
simulation of macromolecular structural transitions with high
CPU efficiency. We believe this computational approach will
be of great value in fundamental and applied studies of the
dynamics of macromolecules and their interactions with their
microenvironment.

OPs characterize the state of organization of a system.
As used here they describe the overall structure of a macro-
molecule. The objective of introducing OPs has been dimen-
sionality reduction, i.e., to arrive at a practical computational
algorithm for large systems and to understand the salient
features of the structure/dynamics of nanoscale assemblies.'
They are related to the underlying all-atom description, en-
abling a unified treatment based on the Newtonian Liouville
equation.”? The present objective is to analyze a set of OPs,
showing that they facilitate a complete analysis of macro-
molecular dynamics.

Given that the OPs evolve much slower than the 10714 s
time scale of atomistic collisions/vibrations, the latter have
sufficient time to arrive at a quasiequilibrium consistent with
the instantaneous state of the OPs. The OPs modify the prob-
ability distribution of atomistic configurations, which, in turn,

) Author to whom correspondence should be addressed. Electronic mail:
ortoleva@indiana.edu.

0021-9606/2011/134(4)/044104/17/$30.00

134, 044104-1

determines the diffusions and thermal-average forces medi-
ating OP dynamics. In this view, macromolecular structural
dynamics follows from the coupling of processes across mul-
tiple scales in space and time.””!! The result of the multi-
scale analysis of the Newtonian Liouville equation is a set
of Langevin equations of stochastic OP dynamics. If the set
of OPs is incomplete (i.e., their dynamics is coupled to that of
other slowly changing variables), then they satisfy equations
involving time delays (i.e., memory effects) as resulting from
traditional projection operator analysis.'? In contrast, the for-
mal multiscale analysis presented here does not involve these
memory effects because of the time scale separation enabled
by the OPs.

A practical property of macromolecular OPs is that
their construction be automatable. This has two implications:
(1) the description can readily be enriched if it is found to
be incomplete and (2) the tedious process of inventing new
OPs for each macromolecule is avoided. The OPs must cap-
ture key features of the free-energy landscape in order to be
complete dynamically. In this way, they capture key pathways
for structural transitions and associated energy barriers. Ear-
lier choices for OP-like variables include principal compo-
nent analysis (PCA) modes to identify collective behaviors in
macromolecular systems,”‘15 dihedral angles,'ﬁ’I7 curvilin-
ear coordinates to characterize macromolecular folding and
coiling,'® bead models wherein a peptide or nucleotide is rep-
resented by a bead which interacts with others via a phe-
nomenological force, and spatial coarse-grained models.'~!
These approaches suffer from one or more of the following
difficulties: (1) characteristic variables are not slowly varying
in time; (2) macromolecular twist is not readily accounted for;
(3) their internal dynamics, and hence inelasticity of their col-
lisions is neglected; and (4) the forces involved must be cali-
brated for most new applications. In contrast as discussed in
Secs. II and III, these difficulties are overcome in the present
approach.

However, PCA has been successfully used to study pro-
tein folding. The PCA modes (involving collective degrees
of freedom) probe the global motions of proteins in an
“essential” subspace.’”?? Dihedral PCA (dPCA) has been
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suggested to naturally provide a correct separation of inter-
nal and overall motions.'® Free-energy landscapes of sev-
eral small molecules including protein and ribonucleic acid
(RNA) hairpin have been analyzed using dPCA. However, it
has been commented that dPCA produces distortions on the
free-energy surface that can lead to artificial energy barri-
ers and minima.”* One of the simulation methods based on
PCA is essential dynamics sampling (EDS). Here the PCA
modes are used to guide the macromolecular dynamics. This
method has been successfully used to study the folding path
of cytochrome ¢ over hundreds of ps. But the principal com-
ponents vary significantly during large transformations and
hence need to be carefully changed from those of the start-
ing structure.'*?? Another problem with EDS is the prereq-
uisite of PCA modes that require up to several nanoseconds
of molecular dynamics (MD) run. For big systems, this be-
comes computationally expensive.?! Improvements to EDS
have been made via a technique called amplified collective
motion. However normal modes derived from this model via
an anisotropic network'® may not be consistent with all-atom
models, especially if the structure undergoes severe deforma-
tion. Direct essential dynamics (DED) on the other hand uses
the most active collective mode and a weak force to jump
out of energy minima as discussed and reviewed in Ref. 13.
This has been demonstrated on a 15 amino acid S-peptide
where DED trajectories overcame local minima and energy
barriers and folded the protein faster than conventional MD.
Stock et al. developed a multidimensional Langevin model
of biomolecules where dPCA modes are used to determine
slow, large amplitude motions.'® This has been used to model
tri- and hepta-alanine structural transitions. The methodology
stresses on the large dimensionality of the model essential
for timescale separation.!” Similar ideas arise from our mul-
tiscale analysis developed in Sec. III and other papers.?>-26
However, to accurately generate the stochastic driving field
for the Langevin equation, long time MD data is required to
calculate the PCA modes. For example, a 100 ns trajectory
is required as an input for subsequent analysis of tri-alanine.
“Scrambled” data from replica MD is suggested to suffice.
These would again make calculations expensive for large sys-
tems that exhibit timescale separation. A variational coarse-
graining approach was used to locate the coarse-grain (CG)
sites on centers of masses of various collections of atoms
identified via PCA or normal mode analysis based on the
C, atoms of each residue.2’ However, a simulation method
has not yet been implemented using this CG representation.
In order to account for considerable far-from equilibrium
structures, a nonlinear dimensionality reduction free-energy
profiling scheme based on the isometric mapping algorithm
isomap has been developed and demonstrated on Src homol-
ogy three protein using MD simulations.”” Another coarse-
graining approach is the rigid region decomposition model.?®
This has been implemented via algorithms like framework
rigidity optimized dynamic algorithm and rigid cluster nor-
mal mode analysis to investigate protein mobility.?®

In this study, we have several objectives to be achieved by
introducing OPs: (1) provide a set of OPs for macromolecules
that capture the essence of macromolecular structural dynam-
ics (Sec. II), (2) provide an efficient computational algorithm
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to simulate structural dynamics (Sec. III), and (3) demonstrate
the applicability of our OPs to the multiscale algorithm of
Sec. III via viral RNA simulations (Sec. I'V).

IIl. MACROMOLECULAR OPs

A key element of the multiscale analysis of a macro-
molecule is the identification of OPs that describe its
nanoscale features. A central property of an OP is that it
evolves slowly. Slow OP dynamics emerges in several ways
including

¢ inertia associated with the coherent dynamics of many
atoms evolving simultaneously;

® migration over long distances;

e stochastic forces that tend to cancel; and

® species population levels as in chemical kinetics or
self-assembly, which involve many units, only a few
of which change on the atomic timescale.

OPs considered here relate macromolecular features to
a reference structure (e.g., from x-ray crystallography). They
are introduced via (1) a transformation warping space® and
(2) maximizing their information content to relate them to the
atomistic configurations.” Consider OPs constructed by em-
bedding the system in a volume V5. Basis functions Uy (r) for
a triplet of labeling indices k are introduced. If computations
are carried out using periodic boundary conditions to simu-
late a large system (e.g., to minimize boundary effects and
to handle Coulomb forces), periodic basis functions (Fourier
modes) can be used. Other possible basis functions would be
spherical harmonics when the system is embedded in a spher-
ical volume. More generally, as is familiar in quantum the-
ory or hydrodynamics, the basis functions used are chosen for
convenience to reflect the overall geometry of the system and
the conditions imposed at the boundary. Furthermore the basis
functions should be free of unphysical features (e.g., poles).
In the present study, we found Legendre polynomials to be
convenient for simulating systems with closed boundaries of
rectangular geometry.“’ 68,9

In our approach, points 7 within the system are consid-
ered to be a displacement of original points 7.6 A set of vec-
tor OPs @, are constructed as follows. The macromolecule
deforms in 3D sopace such that a point 7 is displaced from an
original point 7. Deformation of space taking any O to 7 is
continuous and is used to introduce OPs ®; via

F=Y U)oy 2.1)

k

As the @ change, space is deformed, and so does the macro-
molecule embedded in it. The objective is to ensure that the
dynamics of the @y reflects the physics of the macromolecule
and that the deformation captures key aspects of the atomic-
scale details of the structure. In this way, the <f>k constitutes
a set of vector OPs if they are slowly varying in time (see
below).

Let the i atom in the macromolecule (i = 1, ..., N) be
moved from its original position ?? via the above deformation
by evolving the ®; and correcting for atomic-scale details as
follows. Given a finite truncation of the k sum in Eq. (2.1), for
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e.g., choosing Nop number of OPs, there will be some residual
displacement (denoted o;) for each atom in addition to the
coherent deformation generated by the k sum:

-_ZQkUk

+ o;. 2.2)

To maximize the information content of the OPs, the magni-
tude of the o; can be minimized by the choice of basis func-
tions and the number of terms in the k sum. Conversely, im-
posing a permissible size threshold for the residuals allows
one to determine the number of terms to include in the k& sum.

To start the multiscale analysis, the ®; must be expressed
in terms of the fundamental variables 7;. To arrive at this re-
lationship, we minimize the mass-weighted square residual
(m]ovl2 + .- mNa,%,) with respect to the @k, where m; is the
mass of atom i. This implies

ZBkaDk’—Zm Ui(r rz,

B = Zm Ui(r Uk/ )

(2.3)

Thus, the OPs can be computed in terms of the atomic po-
sitions by solving Eq. (2.3). For convenience, we choose the
basis functions U to be mass weighted orthogonal. In that
case, the B-matrix equation (II.3) is diagonal. We view Uy (7?)
as the ith component of an N-dimensional vector for an
N-atom macromolecule. There are Nop N-dimensional vec-
tors, each labeled by its k value. Orthogonalization of these
vectors is carried out using a Gram—Schmidt procedure. In
the above notation, k is a set of integers (each of which can be
1...); with this, ®gx is the X component of the OP 53100
that weights the Ujgy contribution in Eq. (2.2) after the lat-
ter has been subjected to Gram—Schmidt orthogonalization.
In our implementation, before orthogonalization Uy, i, 1S a
product of Legendre polynomials of order ki, k;, k3 for the
X, Y, Z components of ?? respectively. The orthogonaliza-
tion scheme preserves the physical nature of the three fun-
damental OPs (100X, 010Y, 001Z) because they are always
chosen to be the first three members of the basis.* For other

OPs, the k labeling corresponds to the original Uk(??) from
which each orthogonal vector was constructed via the Gram—
Schmidt procedure.

Mass-weighted orthonormality of the basis functions im-
plies that By, is O for k # k’. With this

= ZlNzll’l’l,Uk(??)?,

d; = —
Mk

N 2
=Y mifu)) . e
i=1

Thus for a given set of atomic positions the corresponding
OPs are uniquely defined.

Next consider the timescale of OP dynamics. The
Liouville operator is defined £ = N pi/mi - d/or;
+ F -d/dp,, where p; and F are the momentum of, and net
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force on atom i. Given Eq. (2.4), one may compute d®/dt as
—L®, where ®(I") is a set of OPs ®;. With this

k (2.5)

Inclusion of m; in developing Eq. (2.3) gives ®; the char-
acter of a generalized center-of-mass-like (CM) variable. In
fact, if Uy is a constant then @y is proportional to the CM.
While the @ are given in terms of a sum of N-atomic dis-
placements, many terms of which have similar directions due

to the smooth variation of Uy with respect to r , the momenta

I1; are given by a sum of atomic momenta, which tend to

cancel near equilibrium. Hence the thermal average of I, is
small and thus the ®; tends to evolve slowly.

First consider the dynamics of the CM, i.e., ®ggo. From
Eq. (2.5), cT)()o() satisfies d®ggg/dt = Moo/ M, where [ig
= M is the total mass of the macromolecule. Since M is large,
5000 evolves slowly relative to the time scale of atomic colli-
sion/vibration. This suggests that ® satisfies a key criterion
to be an OP and serves as the starting point of a multiscale
analysis.

To reveal the time scale on which the OPs evolve, it
is convenient to define the smallness parameter ¢ = m/M,
where m is a typical atomic mass. For any of the @, letting
v; be the velocity of particle i, the definition of & and Eq. (2.5)
yields

d‘f)k _ Z,N=1 Uk(7?);7i Zz 1Uk( )m Vi

dt 1y Lk
Zl 1Uk( )mm V, _ Zt lUk( )I’Icl _SE
M g 27 i
(2.6)
where p; = fix/M and m; = m;/m.

Thus ®; changes at a rate O(¢) under the assumption
that the atomic momenta tend to cancel as is consistent with
the quasiequilibrium probability distribution p below. Spe-
cial initial conditions could make the rate of OP change
scale differently; examples of such conditions include an ini-
tial density discontinuity (leading to a shockwave), injec-
tion of the macromolecule at a high velocity or a sudden
jump in temperature. Under these conditions, the slowness of
motion within our reduced dimensionality framework (OPs)
and all the resulting advantages (e.g., calculating thermal-
average forces) is lost. Therefore, for any class of initial con-
ditions, the slow rate of OP dynamics must be confirmed
before applying the multiscale ideas developed in Sec. III. In
this study we demonstrate the applicability of the ¢ —scaling
for typical conditions underlying macromolecular behavior
(Sec. IV).
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A simple case of the r;, EDk relationship suggests how
it captures rigid rotation. Take Uy, k = 100, 010, 001 to be
1%, y0, and z°, respectively. Then neglecting the residuals,
Eq (22) becomes X = CD]()OXX’Q + q)()l()xy,‘o + (D()()]XZ?, and
similar for y; and z; (where x;, y;, z; are the three Carte-
sian components of r; vector). The relationship can be

written in the tensorial form r; = ijoi. It is seen that for
a special case (i.e., where the tensor @ is a rotation matrix),

&Dk constitute a length preserving rotation about the CM if 7;
is relative to the CM. More generally, for the above three ba-

sis functions, the r; — &Dk relationship corresponds to a mixed
rotation, extension/compression. In fact the OPs defined here
constitute a strain tensor thereby accounting for elastic de-
formations. In addition, our multiscale formulation (Sec. III)
is all-atom and hence captures internal friction effects via
the force field. Therefore, the theory accounts for both elas-
tic and viscous effects. As discussed in the original paper,
where the present OPs (denoted “global co-ordinates” there)
were introduced,® the higher order OPs specifically second
and third order capture twisting, bending, and more complex
deformations. Such OPs were shown to capture polyalanine
folding from a linear to a globular state. In another work, the
OPs were shown to capture nucleation and front propagation
in a virus capsid.® While it is not trivial to interpret all the
deformations associated with the higher order polynomial-
defined OPs, it is the generality of our multiscale approach
(Sec. III) that accounts for all their dynamics. Ultimately the
interpretation of the OPs is embodied in the description of
the phenomenon itself, e.g., macromolecular structural tran-
sition. A commonplace example is hydrodynamics wherein
one does not always interpret the meaning of each Fourier
density mode, but rather speaks in terms of phenomena such
as propagating waves or viscous boundary layers. Additional
properties of the OPs are discussed in Appendix A.

The set @ of OPs have technical advantages that greatly
facilitate theoretical analyses. Consider an extended set ®¢y

of OP and OP-like variables, notably the ik for k in the list
of OPs plus similarly defined variables ®;res for k not in the

OP list. Thus we write

Fi= Y OPQU(F) + Y T e Ui (). @)
k k

This relation maps the 3N configuration variables r onto
®., also a 3N-dimensional space. Expression (2.7) for r;
in terms of & and P,y provides a way to generate ensem-
bles of ®j-constrained configurations by randomly varying
the Cfbkres. An expression for o; in terms of @ is obtained
by comparing Eqgs. (2.2) and (2.7). However, generating en-
sembles by randomly varying the o; typically leads to very
high-energy configurations. This difficulty is readily avoided
as long as o; is chosen by constraining Dpres for higher or-
der k to small values.* The lower k — @y do provide major
structural variations by moving atoms in the ensemble with
a measure of coherence, avoiding near-atom overlap. Thus
CTDkres provides a way to generate rich ensembles at fixed ® and
with modest energies (and hence Boltzmann relevance). In
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practice, a “hybrid” sampling method, wherein short MD runs
are performed starting with configurations from the ®je-
generated sample is used to enrich fluctuations about the con-
stant set of OPs ®.* All these properties are critical for the
practical implementation of a multiscale molecular dynam-
ics/order parameter extrapolation (MD/OPX) approach’ and
more recently a fully self-consistent multiscale approach and
software SIMNANOWORLD™ # Implementation of the for-
mer is based on the philosophy of equation-free multiscale
approach.? In this, the absence of macroscopic equations of
motion is overcome by extrapolating OPs over large time
intervals using short bursts of MD simulation. In contrast,
SIMNANOWORLD computations are guided by the Langevin
equation for OPs (II1.9). Its development is closer to the theme
of the heterogeneous multiscale modeling,3o in the sense,
maximum knowledge (or ignorance) on the various scales in
the system is utilized in deriving the quasi-equilibium proba-
bility density.

Note, even though the OPs are defined in terms of
atoms in the macromolecule, multiscale analysis developed in
Sec. III accounts for both the macromolecule and the medium,
allowing simulation of the entire system. Since the OPs
evolve on a long timescale, their dynamics filters out the
high frequency atomistic fluctuations (residuals). Thus the
slowly evolving OPs can be projected over large intervals in
time. These timesteps are appreciably larger than simple MD
timesteps and, therefore, efficiently probe the long time be-
havior of a macromolecule. As the above OPs are generated in
an automated fashion, the set may be expanded by increasing
the range of the k sum. As discussed in Sec. III, this addresses
the difficulty that arises when a limited set of OPs couples to
other slow variables.

lll. MULTISCALE THEORY AND COMPUTATION

In this section, we use the OPs considered above and the
Liouville equation to derive equations for the stochastic dy-
namics of a macromolecule. The analysis starts by writing the
Liouville equation for the N-atom probability density Y, i.e.,
aY / dt = LY for Liouville operator £. Y depends on the set
of 6N positions and momenta I" and time 7.

Multiscale analysis starts with a transformation of the N-
atom probability density from the Y (T, #) formulation to one
that makes the multiple ways on which Y depends on T, ¢
more explicit. This involves introduction of a set of OPs ®(I")

(i.e., O of Sec. II for all k on the list of OPs) that depends on
I' and which are shown to evolve on a time scale much greater
than that of individual atomic collisions/vibrations.

First we write Y in a form that makes the dependence on
I' and ¢ of various types explicit:

Y (T, 1) = p{To(I"), D(Y), 10(2), 1(2); €} . (3.1

Thus we make an ansatz that reformulated probability den-
sity p depends on the N-atom state I" both directly (i.e., via
I'(I') = T') and, via a set of OPs ®(I"), indirectly. Similarly, p
depends on the sequence of times fy(t), t(t), 1(¢), ...
= to(2), 1(t), where 1,(t) = ¢"t. The times ¢, for n > 0 are in-
troduced to account for the slower behaviors in p; while #,
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accounts for processes on the fast timescale (i.e., 7y changes
by one unit when 10~'# s elapse). ¢ is a small parameter as
defined in Sec. II. The ¢ dependence of p and scaling of time
are justified later in this section.

In adopting this perspective, ® is not a set of additional
independent dynamical variables; rather, its appearance in p is
a place holder for a special dependence of p on I that under-
lies the slow temporal dynamics of p. A simple example that
elucidates our ansatz is the function f(x) = exp~** sin(x).
We restate f(x) as f(xo, x;) where xo = x and x; = ex. In
making this transformation, we do not add any independent
variable to the description, rather we make the discrete de-
pendencies on x explicit. It is shown below that the dual de-
pendence of p on I' can be constructed if ¢ is sufficiently
small. An equation of stochastic OP dynamics that preserves
the feedback between the atomistic and nanoscale variables*
is now obtained via a multiscale perturbation analysis for a
classical N-atom system.

In the following, we use the above framework to de-
rive an equation for the OP probability distribution. One
finds that £& naturally reveals a small parameter e, i.e.,

d®./dt = e(T1x /i) (Sec. II). Starting with Eq. (3.1), the Li-
ouville equation for Y and the chain rule, one obtains the mul-
tiscale Liouville equation (Appendix B),

Z a_p (Lo+eLy)p. (3.2)
—0

Many authors (see Refs. 9,31, and 32 for reviews) have ana-
lyzed such equations in the small ¢ limit. Equation (IIL.2) is
solved perturbatively via a Taylor expansion in €. As shown in
Appendix B and,? £, involves partial derivatives with respect
to Iy at constant ® [when operating on p in the multiscale
form (3.1)], and conversely for £;. With this £y and L take
the forms

L E
arl apz

(3.3)

¥ S
=L

Im 9
== — —. (3.4)
ur 0
k
Note that £, and £; operate in the space of functions that
depend explicitly on variables 'y and ®; IT signifies a set

of TI; and subscripts 0 on 7; and p; in Eq. (3.3) are hence-
forth dropped because of the simple I'y(I') = I dependence
of p. While the space of functions on which £y and £; op-
erates is composed of 6N + Nop variables (the 6N atomic
positions and momenta 'y plus the Nop OPs @), the formal-
ism does not assume that the variables are dynamically inde-
pendent. Rather, from Eq. (3.2), one determines the depen-
dence of p on I'y and &, but ultimately through Eq. (3.1)
how Y depends on I'. Hence Eqgs. (3.2), (3.3), and (3.4) do
not imply that I'y and & are independent dynamical vari-
ables but, in accordance with Eq. (3.1) the equations track
the multiple space and time dependencies of Y. Therefore,
there are still 6NV dynamical variables as the OPs do not evolve
independently of the 6N atomic positions and momenta.
Equations (2.4) and (2.6) show the explicit dependencies of
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atomic and coarse-grained quantities. In contrast, one could
introduce collective modes as new dynamical variables in ad-
dition to the 6N atomic positions and momenta I"'. However,
this approach carries the burden of eliminating selective po-
sition and momentum variables to keep the number (6/N) of
degrees of freedom fixed. In summary, to uncloak the ex-
plicit space-time dependencies of the N-particle density Y,
we make use of 6N + Ngp variables of which Npp are not
independent of the remainder [with dependencies defined via
Egs. (2.4) and (2.6)]. As no additional independent variables
are added to the description of the N-atom system, T still re-
mains a function of the 6N dynamical variables. Furthermore,
the O(e) scaling of the Liouville equation is a natural conse-
quence of the slowness of OPs. This justifies a perturbative
solution and hence the ¢ dependence of the N-atom probabil-
ity density. With this, the N-atom probability density is con-
structed as p = Y .-, €"p,. Putting the perturbation expan-
sion for p into Eq. (3.2) and analyzing different orders in &
(discussed in details in Appendices SI, SII, and SIIT (Ref. 33),
the Smoluchowski equation for the coarse-grained probability
distribution W is obtained,

oW 9 9
— = D | — —Bf :
9t %:a@k[ “ [a% k} }

The diffusivity factors Dkk are related to the correlation func-
tion of time derivatives of OPs via

(3.5)

0

/ dt] nke*‘iow nk,>
Mkl/«k
—00

@LL

(3.6)

where I, is defined in terms of the OP time derivatives via
Egs. (2.5) and (2.6). In constructing the correlation functions
the initial data is at fixed ®; since ® does not change appre-
ciably during the period in which the correlation function is
appreciable, D depends on ®.

The thermal-average force fk is given by

= aF —=m*
fe=——={fr ) (3.7)
ady
for ® constrained Helmholtz free-energy F, where
1
F= 3 In Q(®, B), (3.8)

Q(®, B) is the partition function ass001ated with o [Appen-
dices SI, SII, and SIIT (Ref. 33)], and f Z, 1 Uk(rO)F
is the “OP force.” Details of Eq. (3.7) derivation are provided
in Appendix C.
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Equivalent to Eq. (3.5) is an ensemble of OP time courses
generated by the Langevin equations

863 = - -
=B (D fel +&
k!

- 3.9)

The coherent part of the evolution is determined by the prod-
uct of the diffusion factors and the thermal-average forces;
the stochastic evolution is determined by the random force

§ «- The latter is constrained by requiring the integral of its au-
tocorrelation function to be proportional to the diffusion co-
efficient.

The expression for diffusion factors provided above in-
volves an integration of the correlation function over all time.
However, if the correlation function decays on a long time
scale (i.e., on that comparable to OP evolution), the above
Smoluchowski equation would be replaced by one that is non-
local in time. This would suggest that the set of OPs cou-
ples to other slow variables. Since the OPs are generated
automatically (as described in Sec. II), new slow variables
can be added in a straightforward way to make the exist-
ing set ® complete, e.g., eliminate the long-time tail. Com-
pleting the set of OPs modifies the operator £, [and hence
the velocity correlation of Eq. (3.6)] as the latter involves
derivatives with respect to Iy at constant ®. This modifies
the diffusion factor, affecting dynamics of the OPs on the
free-energy surface they define. Such an operator is automat-
ically accounted for via standard MD codes when the corre-
lation time of OP velocities is short relative to the timescale
of OP evolution. Thus the long-time behavior of correlation
functions provides a completeness criterion for the set of
OPs and, thereby, a self-consistency check for the theory and
computations.

Another self-consistency check is related to refreshing
of the reference structure r°. Our simulations begin with the
energy-minimized and thermally equilibrated x-ray crystallo-
graphic or other all-atom structure as the reference structure.
As the system evolves in time, the resulting deformation may
increase some of the residuals. This may reflect the need for
a new reference structure. The reference structure transition
point is chosen when the maximum residual for a structure
in the constant OP ensemble becomes comparable with its
root mean square deviation (RMSD) from the initial refer-
ence structure [|r — ??|2 N — ?(,)V|2/N]1/2, i.e., when
some local change in a structure reaches the order of an over-
all deformation [Fig. S1 in Ref. 33]. The increase in resid-
ual may indicate the presence of coherent motions that are
not accounted for by the set of OPs initially chosen. If the
emerging modes couple to the previously defined set of OPs,
long-time OP velocity autocorrelation tails are also expected.
The remedy for this difficulty is to increase the number of
OPs considered, a process greatly facilitated by the automated
generation of OPs (Sec. II). Increase in the residuals may in-
dicate the presence of an improbable fluctuation in the MD
generated part of the finite ensemble used for a practical com-
putation. This increase is generally minimized via the low k
— ®yyes sSampling and, for the thermal-average forces, via the
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Boltzmann factor (structures with larger values of CTJkres
for higher order k£ tend to be high in energy as sug-
gested in Fig. S2 in Ref. 33). However, for these cases,
a simple reference structure renewal would suffice to ac-
count for the resulting motions, and additional OPs are not
required.

As stressed above, new OPs should be added in order to
redefine the constant OP ensemble (i.e., to eliminate the long-
time tails of the correlation functions) and to account for the
systematic growth of residuals that is not accounted for via
re-referencing. In principle, a simple addition of higher order
OPs to the set of existing ones, till the complete elimination
of the long-time correlation tail would suffice. However, this
might include some unnecessarily high frequency modes as
OPs. As a result, the Langevin timestep must be reduced, af-
fecting the efficiency of multiscale simulation. Efficiency can
be restored by optimal choice of the OPs to be added. For ex-
ample, one could carry out a ns conventional MD run and use
the resulting configuration time courses to rank the omitted
OPs according to their average rate of change. Variables that
qualify as OPs are slow and coherent, whereas residuals (that

are described by Dpres) are highly fluctuating with mean close
to zero (Sec. IV). The former are added, one at a time, to the
list of existing OPs and new ensembles are generated by sam-
pling the remaining variables. This is repeated till the resid-
uals become reasonably small and the long-time tail in the
autocorrelation function is eliminated. This procedure allows
for addition of only slow variables and hence consideration of
high frequency modes as OPs is avoided. Such a procedure
is also used in selecting OPs to start the SIMNANOWORLD
simulations.

Multiscale analysis provides a numerical simulation ap-
proach implied by the feedback between nano and atomic
scale variables.* As f, and Dy are OP-dependent, they must
be computed at each Langevin timestep to account for the in-
terscale feedback. A finite Langevin timestep At advance-
ment takes the OPs from time ¢ to a time ¢t + At via Eq.

(3.9). Thermal forces ]7 « are efficiently computed via an en-
semble/Monte Carlo integration method enabled by the nature
of our OPs.* Atomic forces obtained from the residual gener-
ated OP constrained ensemble (Sec. II) are used to calculate

the OP force f km Monte Carlo integration averaging of },T
over the ensemble is carried out to obtain the thermal () aver-

age force f,. Hence the free-energy driving force is obtained
via the all-atom probability density p(I'g, ®), capturing the
cross talk between the OPs and individual atomic degrees of
freedom. Since p(I"y, @) reflects the OP constrained ensem-
ble, the 6V atomic degrees are consistent with the state of the

OPs. Note, the definition of f as OP derivative of free-energy
Eq. (3.7), and Dy as time integral of OP velocity autocorre-
lation function Eq. (3.6) is independent of the linearity in the
r — @ relationship. This implies that the multiscale analysis
developed can be applied to any complete set of slow vari-
ables provided the O (¢) time scaling, and Newton’s laws of
motion hold for their dynamics. As mentioned in Appendix A,
Secs. I and IV, the present OPs form a set of slow variables
that has suitable properties to serve as a basis of our approach.
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Other sets of slow variables can also be used as long as all cri-
teria of OPs dynamics are satisfied.

Adiabatic schemes have been successfully implemented
to perform approximate quantum dynamics simulations*3°
and Car-Parrinello type ab initio quantum dynamics.*® The
latter belongs to a family of extended Lagrangian approaches
wherein the time scales of faster and slower degrees of free-
dom are adjusted to ensure the adiabatic propagation of the
former in response to motions in the latter. This adjustment
is achieved via attributing fictitious masses and kinetic en-
ergy to the faster modes.’**” For many atom systems, a
free-energy profiling scheme, adiabatic free-energy dynam-
ics (AFED) based on an adiabatic partitioning of the slow and
fast variables have been developed.’® The AFED allows for
application of higher temperature for the slow variables fa-
cilitating rare events sampling and high mass leading to an
adiabatic decoupling.’® Therefore, the separation of timescale
between those of OPs versus atomic dynamics Eq. (2.6), the
relatively high OP masses jit,*° and the role of average forces
[Egs. 11, 12, and 13 in Ref. 36, Eq. (3.7) in the present pa-
per and elsewhere'?>%?) for driving the slow variables across
the free-energy landscape suggests implementation of an adi-
abatic dynamics algorithm for thermal-average force calcula-
tions. Unlike explicit variable transformation in AFED, ex-
tended phase space approaches like temperature accelerated
molecular dynamics (TAMD)*! are also used for simultane-
ous propagation of slow and fast degrees of freedom. Solving
the resulting equations of motion in the extended phase space
is equivalent to solving Eq. (3.9). This bypasses explicit aver-
aging. Another related approach, driven adiabatic free-energy
dynamics (d-AFED) employs explicit masses and dynamics
closer to that of AFED in formulating TAMD.** This allows
direct generation of multidimensional free-energy surfaces for
complex systems from the probability distribution function of
the extended phase-space variables. Even though an adiabatic
decoupling appears naturally in our analysis by the O(¢) scal-
ing of the Liouville operator, the relative efficiency of an adia-
batic relaxation scheme versus the present residual-generated
sampling scheme remains to be determined. In particular the
present scheme requires the development of a rich ensemble
of atomistic configurations at each Langevin timestep, while
the adiabatic scheme requires coevolution of the slow and
many [O(NV)] fast variables. This issue is of critical importance
for the efficiency of the simulation of systems involving 10°
or more atoms. However, in analogy to AFED, using higher
temperature for propagating the slower variables (OPs here)
would yield an algorithm for the simulation of rare-events
phenomenon. This is further discussed in Sec. V.

The diffusion factors are computed via the correlation
functions of Eq. (3.6) using short MD runs. The latter is al-
lowed because the correlation times in these functions are
much shorter than the characteristic timescale of OP evolution
(Sec. IV). All factors in the OP dynamics equation (II1.9) are
computed from the interatomic force field via Monte Carlo
integration and MD. Thus the only element of the calibra-
tion in constructing the thermal-average forces and diffu-
sions is through the existing force fields (e.g., CHARMM or
AMBER). At each Langevin timestep, the updated OPs are
used to generate the atomistic configurations of the macro-

J. Chem. Phys. 134, 044104 (2011)

molecule; then the host medium is introduced via a resolva-
tion module® and the entire system is thermalized. An en-
semble of such equilibrated atomistic configurations is used
to generate the thermal-average forces and diffusions. The lat-
ter factors are used to update the OPs completing one cycle of
the Langevin timesteping. A simple description of steps in-
volved in the SIMNANOWORLD simulation workflow is in-
cluded in the supplementary material as Appendix SIV in
Ref. 33.

In the present approach the OPs are defined over the
macromolecule. However, like for the atomic configurations
of the macromolecule, water, and ion are accounted for via the
quasiequilibrium ensemble (i.e., the configuration of the wa-
ter and ions rapidly explores a quasiequilibrium ensemble at
each stage of the OP dynamics). This assumption holds only
when water/ion equilibrate on a timescale much smaller than
that of OPs. Similar resolvation scheme has been used with
OPs in simulating virus capsid expansion in Nat and Ca>*
solutions.*? Therefore, fluctuations from water and ions mod-
ulate the residuals generated within the MD part of the con-
stant OP sampling and hence affect the thermal-average force.
This is the rationale behind not including the water and ions
in the definition of the OPs. If slow hydrodynamic modes are
found to be of interest, these atoms can be included in the
definition of the OPs. Ions when tightly bound to the macro-
molecule are considered a part of OPs. After every Langevin
timestep, an ion accessible surface is constructed and ions
close to the surface are tracked during the MD ensemble en-
richment calculation. Those with appreciable residence time
within the surface are included in the definition of the OPs
henceforth.

The notion of water and ion dynamics being much faster
than a set of slow modes is similar to that used in normal mode
Langevin (NML).** If these fast modes correspond to the co-
ordinated motion of just a few atoms, then there is no clear
separation in their time scale from that of single atom vibra-
tions. Thus such fast modes cannot be described by Langevin
dynamics unless memory kernels are used.'> However, NML
identifies the modes by diagonalizing a Hessian matrix and
fully relaxes (overdamps) the high frequency modes near their
energy minimum (respecting the subspace of low frequency
normal modes). In the limit of large damping coefficient, this
is equivalent to using Brownian dynamics to propagate high
frequency modes. In contrast, for our approach rapidly fluc-
tuating variables are allowed to explore a representative en-
semble of configurations. For our purposes, using the over-
damped value of the fast variables to construct an all-atom
configuration and using that configuration to compute the OP
force neglects the difference between the OP forces as a func-
tion of the average configuration versus the average of the
OP force over an ensemble of atomic configurations. Hence,
overdamping of fast modes is avoided. Furthermore, the NML
approach would become computationally expensive for the N
of O (10°) atom systems of interest here. In contrast, our ap-
proach avoids the need to diagonalize a large Hessian ma-
trix, a feature that follows directly from the explicit formula-
tion of our order parameters via Egs. (2.2) and (2.4). Finally
our OPs are essentially normal modes in that they are linear
combinations of atomic positions and furthermore are slowly
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TABLE 1. Input parameters for the NAMD and SIMNANOWORLD
simulations.

Parameter Values
Temperature 300 K

Langevin damping 5

Timestep 1fs

Full-Elect Frequency 2 fs
Non-bonded Frequency 1fs

Box size 145 A x 145 A x 145 A% or

162 A x 162 A x 162 AP

Force-field parameter par_all27_prot_na.prm

1—4 scaling 1.0
Switch dist 10.0 A
Cutoff 120 A
Pair list dist 200 A
Steps per cycle 2
Rigid bond Water

4Box for free RNA simulation for 3 ns.
YBox for free RNA simulation from 3-50 ns and protein-bound RNA.

varying. However, our equations of motion are highly non-
linear in the OPs and are dissipative. Thus, unlike for normal
mode analysis, our formulation can account for states that are
far from a free-energy minimizing structure.

For some choice of initial data, the O (¢) contribution to
W (®, t) can have short timescale dependence (e.g., due to a
shock wave). Under this condition our basic assumption of the
lowest order quasiequilibrium behavior is violated as the O(¢)
scaling of the OP motion is disturbed (Sec. II). Thus the the-
ory breaks down. In such a case one expects Fokker—Planck
behavior. The present formulation can be generalized to ac-
commodate such inertial effects.*> However, for the macro-
molecular phenomena considered here this class of initial data
is ignored.

IV. NUMERICAL SIMULATIONS

A study was undertaken to assess the viability of the
OPs of Sec. II as a basis of a multiscale algorithm for sim-
ulating macromolecules. An evaluation of other variables in
this context is also obtained. Comparisons with traditional
MD were made to determine the accuracy and efficiency of
the method. All multiscale simulations were done using the
SIMNANOWORLD software*> that is based on the OPs
of Sec. II and the multiscale analysis of Sec. III. The
CHARMM?22/27 force-field and NAMD are incorporated in
SIMNANOWORLD as part of the computation of the thermal-
average forces and diffusion factors for our OPs.

The demonstration system was the RNA of Satellite To-
bacco Mosaic Virus (STMV).*® This molecule contains 949
nucleotides. The initial state of the system was that believed
to be at equilibrium when the RNA resided with the associ-
ated proteins within the STMV capsid. Evolution followed af-
ter the capsid was removed instantaneously. The host medium
was 0.3M NaCl solution and the temperature was 300 K. The
system was placed within a cube and NVT conditions were
applied. Details of the NAMD settings are given in Table I.
SIMNANOWORLD simulations were done in these conditions
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(and not those used in other studies*®) as more dramatic struc-
tural changes occur because the RNA is more stabilized by
Mg?* than by Na*.#’ This is because Na* is expected to be
diffusively bound to RNA*" where as Mg?* remains tightly
bound. The structure used to initialize the simulation was gen-
erously provided by Prof. K. Schulten; the same structure was
used in Ref. 46.

As mentioned in Sec. II, in the following we exam-
ine the slowness in rate of change of a typical OP (001Z)
to ensure its applicability within our multiscale framework.
The one considered in particular exhibits properties of dila-
tion/extension about the Z-axis. The time evolution of this OP
is compared to other variables only to validate that some of
the latter are not suitable as slow variables for the purpose
of our multiscale analysis. If the fluctuations in these vari-
ables probe short space-time events then they are expected
to be accounted for by the quasiequilibrium ensemble, oth-
erwise larger space-time events are accounted for by one or
more of our OPs. Appropriateness of these other variables
for specific problems have been discussed in the literature
cited below and is only included here to distinguish them from
our OPs.

Consider some other variables commonly used to charac-
terize macromolecules, denoted “‘structural parameters”(SPs)
here and compare their dynamics with that of the OPs of
Sec. II. The SPs analyzed in this paper are different types of
dihedrals and their cosines,*®*’ radius of gyration, end-to-end
distances,* and typical components of the unit vectors along
the bonds connecting monomers.”® We designate these SPs:
SPy, SP,, SP; and SP4, respectively. Each of them was calcu-
lated over a 1 ns MD trajectory for the RNA under conditions
mentioned above. Their time evolutions are plotted in Fig. S3
in Ref. 33. We calculated the moving averages over a win-
dow of 50 ps to filter out the coherent part of the variations
from the fluctuations (). Details on A computation are pro-
vided in Appendix D. The coherent and fluctuating parts of
SP variations are plotted in Fig. S4 in Ref. 33. The dihedrals
y, 8, and ¢ defined according to Fig. 1(a) in Ref. 17 were cho-
sen for this comparison. The time evolution of these depends
on their location in the back bone. § fluctuates the least due
to geometric constraints imposed by a five membered ring.!”
In contrast, those not associated with the backbone fluctuate
even more than y or ¢. Fluctuations of variables characteriz-
ing the overall size of the macromolecule, like SP, or SP3,
are much smaller. For SP,4 fluctuations are maximum and are
also sensitive to bond location.

We compared the time evolution of these SPs to that
of the OPs from Sec. II. In Fig. S5 in Ref. 33 the coherent
and fluctuating parts are shown for the same 50 ps window.
Fluctuations in SP; and SP, are several orders of magnitude
higher in amplitude than those for OPs, and/or their charac-
teristic time scale is much shorter. Hence they do not evolve
slowly and cannot serve as a basis of our multiscale analysis.
Finally SP, and SP; are suitable as OPs but do not readily en-
able the generation of SP ensembles as they are a subset of a
more general set of OPs.® This presents difficulties in comput-
ing thermal-average forces and diffusion factors needed for
a multiscale analysis. In contrast, our OPs are automatically
generated and, therefore, the set ® can be augmented for sys-
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FIG. 1. (a) Ten OP velocity autocorrelation function time-courses for 001Z
starting from same initial conditions but different initial velocity random
seeds. (b) A Boltzmann average OP velocity autocorrelation function time-
course showing the absence of a long-time tail, and hence the lack of coupling
to other slow variables not included in the set of OPs. Decay trend similar to
a single MD derived autocorrelation function of Fig. S8 (enhanced online)
[URL: http://dx.doi.org/10.1063/1.35234532.1].

tems of higher complexity. Furthermore, the end-to-end dis-
tance and radius of gyration are accounted for via our more
general OPs (shown below). Another OP like variable often
found in literature®’ is the number of macromolecular hydro-
gen bonds. Later in this section we show that our OPs also
account for these slow variables.

As system size increases the OPs become better filters
of the high frequency fluctuations. To validate this, we simu-
lated hepta-alanine with 8000 water molecules in a cubic box
of side 44 A under settings mentioned in Table I. Fluctua-
tions in OPs for larger systems are found to be much smaller
than those of smaller ones [i.e., the same OP shows ampli-
fied fluctuations as the system is changed from RNA to hepta-
alanine (Fig. S6 in Ref. 33)]. Figure S7 in Ref. 33 compares
the moving averages in lower and higher order OPs for RNA
and hepta-alanine. Distinct differences in length scales allow
better separation of the lower order OPs from those of the
higher ones in the RNA. This facilitates filtering of the low
and high frequency modes. For smaller systems like hepta-
alanine, the length scale separation diminishes. Thus OPs
cannot facilitate filtering of high frequency fluctuations, and
consequently the implementation of multiscale analysis be-
comes inefficient.

The choice of OPs depends on the characteristics of
the system of interest. This can be understood a priori via
analyzing OP evolution for short MD trajectories and observ-
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ing the decay in the OP velocity autocorrelation functions. It
is found most efficient for the present problem to only use four
OPs (i.e., the center of mass and three corresponding to over-
all extension—dilatation). To verify completeness of this set of
OPs for the present problem, we plot the OP velocity autocor-
relation functions for a window of 1 ps in Fig. S8 in Ref. 33.
The correlation decays sharply on a time scale much shorter
than that of OP evolution (i.e., the OPs were constant over the
time of autocorrelation decay). The decay zone is followed
by a fluctuating phase that reflects insufficient statistics for
constructing long-time correlation function behavior. To il-
lustrate this, we plot several autocorrelation functions for 1 ps
trajectories with identical starting structure, initial conditions
but different random seeds for generating initial velocities
[Fig. 1(a)]. In principle, an average of such single MD sim-
ulation derived correlation functions is required to compute
the diffusion factors. However, using only the early part of a
single MD correlation function (wherein the most statics are
accumulated) was found to suffice [Fig. 1(b)]. Furthermore,
the correlation analysis validates the completeness of the set
of OPs as there is no long-time tail behavior in the correlation
functions.

Omission of a slow variable that couples with the exist-
ing set can lead to a long-time correlation tail. To validate
this, we redid the correlation calculation without the 100X
OP. This leads to a long-time tail in the velocity autocorrela-
tion function for the 001Z and 010Y OPs (Fig. SO in Ref. 33).
In general terms, the deformational behavior in a given Carte-
sian direction is driven by forces that depend on the OPs in all
directions. Therefore, a missing OP will create an ensemble
of atomic configurations that reflect its absence, which in turn
is expressed in slower behavior of the retained OP velocities,
and hence the associated autocorrelation functions. Simulta-
neously, the ensemble had a major population of structures
with very high residuals (~10 A) also signaling omission of a
slow mode. Therefore, the diffusion calculation indicates the
absence of a key slow variable that can be optimally added
to the existing set via the procedure of Sec. IIl. Due to or-
thogonality of our basis functions, the cross-correlation func-
tions between different OPs are several orders of magnitude
smaller than the autocorrelation functions; this implies that
the OPs are not coupled through the diffusion factors but only
through the OP dependence of the thermal-average forces.
This greatly simplifies the construction of the random forces
as they are related to the diffusion matrix.

Constructing higher order OPs from an MD run via
Eq. (2.4) shows that they are highly fluctuating and, therefore,
not appropriate as OPs in the sense used here (Fig. S10 in
Ref. 33). Rather they are accounted for via the quasiequi-
librium probability density (i.e., in the ensemble used to
calculate averages). As presented earlier,* the ensemble of
atomistic configurations is generated via Eq. (2.2). The resid-
uals (0;) are generated by a formula similar in structure to
that used to obtain the atomic positions but the sum over ba-
sis functions does not include those associated with the OPs
(Sec. ID).*

Addition of OPs to a pre-existing set is needed in vari-
ous cases. If the system is changed, for e.g., if it is composed
of multiple macromolecules then more OPs are required to
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FIG. 2. Time evolution of the (a) radius of gyration via conventional MD (blue) and SIMNANOWORLD (red), (b) RMSD from the O ns structure to that
after 10 ns for conventional MD (blue) and SIMNANOWORLD (red) simulations, (c) OPs 010Y (MD [blue]; SIMNANOWORLD[orange]), 100X (MD[mauve];
SIMNANOWORLD[red]) and 001Z (MD[deep-blue]; SIMNANOWORLD][green]) showing the OP-equivalence of SIMNANOWORLD and conventional MD, (d)
RNA potential energy via MD (red) and SIMNANOWORLD (blue), (¢) number of nucleic acid—nucleic acid hydrogen bonds via MD (blue) and SIMNANOWORLD

(red) (enhanced online) [URL: http://dx.doi.org/10.1063/1.35234532.2].

form a complete set. The added OPs probe complex inter-
macromolecular motions. New OPs could also be added in
a dynamic fashion in the course of a simulation to account for
types of motions absent initially. As mentioned above, the ap-
pearance of long-time tails in the correlation functions later in
a simulation is a key indicator of the need to augment the set
of OPs.

To assess the accuracy of the multiscale OP dynamics
comparisons were carried out with conventional MD sim-
ulations for trajectories of 10 ns. On removal of the vi-
ral capsid, the RNA is no longer constrained and tends to

expand. Following initial expansion the RNA shrinks, and
finally fluctuates among a range of distinct atomistic states
of similar energy. Figure 2(a) shows the radius of gyration
obtained with MD and SIMNANOWORLD, while Fig. 2(b)
shows the progress of the RMSD from the initial structure as
a function of time; agreement of the radius, and the RMSD
between MD and the multiscale simulation is excellent.
Figure S11 in Ref. 33 shows the overall and pentameric struc-
tural alignment®! of the MD and the SIMNANOWORLD gen-
erated RNA structures at the end of 10 ns. We further plot
OP time courses from the final 5 ns of conventional MD and


http://dx.doi.org/10.1063/1.35234532.2

044104-11  Macromolecular order parameters

SIMNANOWORLD [Fig. 2(c)]. These results show that both
the structures in Fig. S11 in Ref. 33 are essentially a part of
similar OP ensembles having similar overall characteristics
and confirm that multiscale simulation is generating configu-
rations consistent with the same value of the OPs that arise in
MD. However, it is inappropriate to compare our predictions
with that of a single MD since the former corresponds to an
ensemble of MD simulations (see below). Significantly, the
multiscale simulations capture the overall structural dynam-
ics, which is often the main interest. However, the atomistic
configurations are also accounted for via the quasiequilibrium
distribution. This illustrates that radius of gyration and end-
to-end distance (as mentioned above) is accounted for by our
OPs (Fig. S12 in Ref. 33). Figure S13 in Ref. 33 shows the
potential energy for the multiscale simulations. It fluctuates
about a constant value. Energies show identical trend and are
within a percent of those from the MD run. Figure 2(d) is the
same as Fig. S13 in Ref. 33 but without the water—water and
water—ion interactions. This shows that the RNA gains sta-
bility as the potential energy gradually decreases. Energies
from the MD and SIMNANOWORLD generated trajectories
show excellent agreement in trend as well as in magnitudes.
The observed difference is within limits of those from mul-
tiple MD or SIMNANOWORLD runs starting from the same
initial structure with different initial velocities. As another
basis of comparison, time evolutions of the number of intra-
macromolecular hydrogen bonds for both methods are shown
[Fig. 2(e)]. Hydrogen bonds are defined solely on the ba-
sis of geometric parameters (bond angle: 20°; bond-length:
3.8 A) between donors and acceptors. Initial expansion re-
duced the number of these bonds (primarily the ones in-
volved in the RNA tertiary structure). The number of bonds
decreased less rapidly in the later part of the trajectories when
expansion ceased. A detailed account of the various types of
hydrogen bonds will be given below.

An obvious advantage of multiscaling is the potential to
use timesteps of tens or hundreds of ps or greater (in con-
trast to the 1071 s of conventional MD or 0.2—1 ps for the
Langevin PCA approach!'®!7). For relatively slow processes
in large systems, the speed-up over conventional MD is sig-
nificant. To assess the efficiency of our approach, 128 proces-
sors were used. During the initial transient, 40 ps timesteps
were used. To accommodate the initial expansion and account
for the structural anisotropy (Fig. S14 in Ref. 33) the RNA
was resolvated in a bigger box (Table I) after the first 3 ns.
Post initial transient, Langevin evolution was executed us-
ing 150 ps timesteps, reflecting the longer characteristic time
for this phase. In this slower evolution regime (probed till 50
ns for the study) efficiency becomes 11 fold. However com-
parison with a single MD run is not appropriate since SIM-
NANOWORLD correspond to ensemble MD. In this study a
single SIMNANOWORLD simulation corresponds to an en-
semble of 168 traditional MD runs. While for each MD run
the OP time course is essentially the same as that predicted by
SIMNANOWORLD, the detailed atomistic configuration varies
dramatically among members of the ensemble. This factor of
168 comes from the sample size used in the Monte Carlo
integration to compute the thermal-average forces. Finally,
a single MD run may not be representative of an ensemble
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FIG. 3. Time evolution of the RNA potential energy via 50 ns SIM-
NANOWORLD simulation.

of possible time courses, which, in contrast is automatically
overcome in our approach. If the finer short timescale struc-
tural transition is of interest they can be pursued by either
shorter timescale traditional MD runs or by including more
OPs (although this will decrease the minimum characteristic
time of OP dynamics (Fig. S10 in Ref. 33) and, therefore,
reduce the efficiency of multiscale simulations). Unlike the
Langevin PCA model'® where single or multiple ns MDs are
used to generate input, here only short ps MDs are required
to generate a constant OP ensemble and thereby equivalent
trajectory ensemble. Selecting OPs for running the multiscale
simulation requires an initial analysis of their time trends over
1 ps—1 ns timescale. However, this analysis need not be re-
peated in the course of simulations until the emergence of new
OPs, thereby restoring efficiency of the multiscale simulation.

Making use of the above efficiency, we probed the
long-time behavior of the RNA with SIMNANOWORLD. In
Fig. 3 we plot potential energy versus time for the RNA. The
energy decreases and fluctuates about a minimum. The ra-
dius of gyration is plotted for the 50 ns trajectory in Fig. 4.
Following rapid initial expansion, RNA gradually shrinks for
30 ns before reaching a dynamic equilibrium wherein it fluc-
tuates about 50 A. These overall changes in shape and size are
tracked by our OPs (Fig. S15 in Ref. 33). Their values also
gradually decrease before flattening out. However, the magni-
tude of the three OPs is different, probing different extents of
deformation along the three Cartesian axes. This is consistent
with the fact that even though overall shape and size follow
simple trends (reflected in Fig. 4), the anisotropy in the sys-
tem leads to a symmetry breaking which is tracked by our OPs

59 4
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56
55 1

53 1
52 A
51 4
50 T T T T ‘
0 10000 20000 30000 40000 50000
time (ps)

radius of gyration(A)
b4

FIG. 4. Time evolution of the RNA radius of gyration via 50 ns SIM-
NANOWORLD simulation.
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FIG. 5. RNA structure snapshots at (a) 0 ns, (b) 10 ns, (c) 20 ns, (d) 30 ns,
(e) 40 ns, and (f) 50 ns.

and the constant OP ensemble. Figure 5 validates that the ini-
tial symmetry is completely lost in the course of the simula-
tion. In the final structure (after 50 ns) the tertiary structure of
the RNA is highly disrupted, though secondary structure still
remained. The latter is in agreement with experiments that
suggest free RNA can possess some secondary structure.’!
Figure 6 shows the RMSD over the entire 50 ns trajectory.
RMSD shows a rapid increase followed by a gradual one. In

16 -
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6_

RMSD (A)

4
24
0

20000 30000 40000 50000

time (ps)

0 10000

FIG. 6. As in Fig. 2(b) but for a total simulation time of 50 ns.
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FIG. 7. Time evolution of mobile ion (Na*t) cloud radius over 50 ns.

Fig. S16 in Ref. 33 we plot RMSD versus energy for the final
20 ns of our trajectory. The increase in RMSD signifies that
even though the energy, overall shape and size (OPs) change
negligibly, there are local (noncoherent) changes that are ac-
counted for by the constant OP ensemble (i.e., fluctuations
in the higher order OPs). Thus SIMNANOWORLD captures
the exploration of multiple isoenergetic configurations by the
RNA.

The gradual shrinkage of RNA is explained on the ba-
sis of ion shielding effects. Figure 7 shows the radius of the
ion cloud decreases with time. Thus the ion cloud concen-
trates and distributes about the RNA (Fig. 7 and movie 1 in
the supplementary material), shielding the electrostatic repul-
sion between similarly charged nucleic acid residues in the
RNA, causing them to come closer. When the cloud is re-
moved similarly charged groups mutually repel and the RNA
expands instead of shrinking. To confirm the above physical
picture, the structure at the end of 20 ns was deionized and
a further 7.5 ns simulation was carried out in aqueous sol-
vent. The expansion due to electrostatic repulsion is reflected
in the radius of gyration and OP changes over this simula-
tion (Fig. S17 in Ref. 33 and movie 2 in supplementary ma-
terial). Note, since we use 1:1 electrolyte the ions are diffu-
sively bound. Therefore, they exchange positions unlike for
tightly bound ions such as Mg?™*, justifying their inclusion as
a part of the ensemble and not as an OP. Even though the ions
are not included in an OP calculation, their rapid quasiequi-
librium redistribution accompanying structural changes in the
OP defined macromolecule at each Langevin timestep cor-
rectly accounts for the ion cloud around the RNA. Closely
related to the distribution of ions is the distribution of wa-
ter and hydrogen bonds. The total number of hydrogen bonds
remains constant throughout the 50 ns simulation. However,
the number of nucleic acid—water hydrogen bond decreases,
while those for water—water hydrogen bonds increases, con-
serving the total number of bonds (Fig. 8). This phenomenon
is consistent with mobile ion screening induced RNA shrink-
age. As the RNA shrinks, water from the inner RNA cavity
is expelled, thereby increasing the number of bulk water—
water interactions. These shifts in sodium ion population, co-
ordinated with hydrogen bond rearrangement, guide the sys-
tem to the final structure. There is also a redistribution of
internucleotide hydrogen bonds as the RNA samples isoen-
ergetic configurations in the final 20 ns. However, the total
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FIG. 8. Time evolution of the water—water (a) and nucleic acid—water
(b) hydrogen bonds for simulated RNA dynamics during the final 30 ns of
the Fig. 5 simulation.

number of nucleic acid—nucleic acid hydrogen bonds is con-
served (Fig. 9).

While coherent structural dynamics are tracked by
changes in the OPs, additional high frequency macromolec-
ular motions are captured by the residual modified/MD
generated ensemble. These high frequency modes capture
small-timescale local alterations, over and above the OP
mediated deformations in the RNA, and consequent effects
on atom scale features like the hydrogen bond distribution.
However, other complex and/or slow modes like bending or
twisting can arise in the course of the RNA dynamics and
affect the hydrogen bonds. As stressed above, emergence of
new modes can be captured by our OPs and are signaled by
our self-consistency checks. Within the simulated period of
time (50 ns), we have not come across any long-time velocity
autocorrelation tail or a significant population of high residual
structures signifying absence of additional slow modes. A
plausible explanation is that in viral RNAs it is possible that
the bending modes leading to an unfolding transition appear
much later in the time course (>50 ns) of structural evolution
or secondary structure disruption occurs at a temperature
much higher than 300K.>> Another possibility is the
sampling limitation of our implementation. RNA unfolding
has often been modeled using higher temperature sampling
techniques like replica exchange MD.>*>> Such sampling
techniques can take into account contributions from rare
events and prevent entrapment of a structure in deep potential
wells. Therefore, they efficiently probe unfolding conforma-
tions. Our approach has not yet been modified to take into
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FIG. 9. (a) Time evolution of the number of nucleic acid-nucleic acid hy-
drogen bonds for the final 20 ns of the Fig. 5 simulation. [(b), (c)] Shift in
hydrogen bonds from blue encircled to the red encircled region.

account the above and, therefore, can suffer from problems
of rare event sampling as does conventional MD. However
most of the simulation results in this paper are independent
of such events as they deal with reaching the energy minima
rather than being entrapped in one. Starting from the last few
ns of the reported simulation during which the system tends
to equilibrate, application of rare event sampling techniques
becomes useful in taking the system away from the obtained
minima by sampling other free-energy basins. Comments on
other efficient sampling techniques are included in Sec. V.
We did a control experiment to compare the deformation
in the free RNA versus that in protein encapsulated RNA. We
redid the simulation using identical physical conditions (tem-
perature, salinity) and software settings for the RNA core of
STMV. The RNA core is composed of capsid protein strands
(residue 2-27) complexed with the RNA.% This complex is
found to be stable with a radius distribution of ~50 A. The
added protein segments complex with the RNA, reducing
the degrees of freedom. The structure was energy minimized
and thermally equilibrated before starting the multiscale sim-
ulation. Time evolution of the OPs, RMSD and structures
for this simulation are shown in Fig. 10. Figure 10(b) also
shows the RMSD for free RNA. RMSD of RNA in the bound
state is much less than in the free state. Unlike the previ-
ous case where the difference in the OPs was large, here the
difference is small and their change is slower; this suggests
the preservation of the symmetry originally imposed by the
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FIG. 10. Time evolution of the Ops (a) RMSD (b) and structure [(c),(d)]
for the protein bound RNA in 0.3 M NaCl solution at 300K showing the
restriction on RNA motion imposed by the proteins.

capsid. Thus changes in the protein RNA complex are much
less than those of free RNA. This longer characteristic time
allows more efficient application of OP dynamics as now
timesteps of the order of 250 ps are possible. This implies
that SIMNANOWORLD is 16 times faster than a single con-
ventional MD for the present problem.

V. CONCLUSIONS

An efficient multiscale algorithm that probes the dynam-
ics of macromolecules using OPs is demonstrated and vali-
dated. The OPs are shown to be slowly varying and hence are
well suited as a basis of our multiscale algorithm. Complete-
ness of a set of OPs is determined by the shortness of cor-
relation times relative to the characteristic time of OP evolu-
tion. Automated construction of order parameters enables ef-
ficient augmentation of the set of OPs to address incomplete-
ness. SIMNANOWORLD results show excellent agreement
with those from a conventional MD run. SIMNANOWORLD
efficiency increases for larger systems undergoing slow trans-
formations, as these allow significant length and timescale
separation for the OPs to filter out the high frequency fluctu-
ations from the coherent dynamics. Thus OP mediated coarse
graining of the free-energy landscape allows for a Langevin
timestep of a few hundred ps (10° times greater than con-
ventional MD). SIMNANOWORLD predictions correspond to
an ensemble of MD trajectories and hence are more statis-
tically significant than results from a single MD run. Multi-
scale simulation via the OP description is found to capture
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significant structural details like ion screening, hydrogen
bond rearrangement, and symmetry breaking transitions.

The approach presented has been successful for phe-
nomenon that does not involve high barrier-crossing events.
However, this does not imply that our approach is lacking
in the basic physical framework; rather it implies that sim-
ulating very high barrier-crossing events is computationally
challenging.>* Note, as OPs coarse grain the free-energy land-
scape, some of the low energy barriers are naturally ad-
dressed. A number of authors have presented approaches
for simulating rare barrier crossing events and corresponding
applications to free-energy profiling. An incomplete list in-
cludes umbrella sampling,’’ thermodynamic integration,>%-%°
metadynamics,®®> and adiabatic molecular dynamics.*®
More recently, a multiscale conformation space exploration
scheme is developed and applied to proteins.®® These methods
can be used to complement the present approach to address
rare events and hence explicitly construct the free-energy
landscape. In this direction, potential modifications of our ap-
proach are as follows: (i) In analogy to metadynamics, se-
quential free-energy basin discovery can be implemented via
a memory dependent thermal force averaging that minimizes
the forces which would have driven the systems to basins al-
ready discovered in an earlier step. With this, each sequential
elimination simulation is guaranteed to find a new basin. (ii)
In analogy with, Ref. 64 our procedure can be run at a set of
high temperatures, for each of which the first passage time be-
tween two basins of interest is computed. This high tempera-
ture data can be fit to an Arrhenius-type law and the results are
extrapolated down to the temperature of interest. This yields
an approximation to the rate of crossing high free-energy bar-
riers. Such modifications were not required in the current sim-
ulations as in these we aimed to probe the most likely path-
ways along the free-energy surface and not rare events.

Recently, schemes like reconstruction algorithm for
coarse-grained structures® have been developed for con-
structing low-energy all-atom protein structures form
configurations with only C, atoms. In the present context,
this could facilitate SIMNANOWORLD simulations starting
from low resolution structures (e.g., electron cryomicroscopic
models®) via reconstructing all-atom input structures. A
higher order Langevin solver shall be incorporated into the
SIMNANOWORLD implementation. This will utilize data
from multiple time intervals thereby increasing the accuracy
of the coherent part of the Langevin dynamics and over-all
CPU efficiency. In summary, we show that our OP-multiscale
computational approach is ideally suited for studying struc-
tural dynamics in large macromolecules and macromolecular
complexes.
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APPENDIX A: LINEAR RELATIONSHIP BETWEEN OPS
AND POSITIONS

The relationship between CTDk and 7; is taken here to be
linear. This ensures that 7; has a unique value for a given
set of @ and residuals Eq. (2.2). Should this not be the
case then, as Newton’s equations evolve r, the system could
spontaneously transition to another state of order without a
change of microstate. By similar arguments application of
dw Bkk/&)k’ = ZlN:l miUk(fﬁ’)g:(?,-), where g is a function of
7:, may not always be suitable. This would have been implied
by replacing Eq. (2.2) with g(r;) =Y, deUk(??) +o;. Ifg
is linear in 7;, then the unique relation between 51(, residuals
and 7; holds, allowing for the multiscale analysis of Sec. III.
However, if g is a nonlinear function of 7; then this unique-
ness could be lost; multiple solutions for 7; could exist for
a given set of ®; and residuals. This could create situations
wherein an initial r state evolves to multiple states allowed
by the nonlinearity of g. Newtonian mechanics prohibits this
dynamical bifurcation of states (i.e., simultaneous evolution
of one state into multiple ones); hence, in the present OP con-
struction formalism, inclusion of a nonlinear function g could
lead to unphysical results if uniqueness of the r — ® relation-
ship is violated. Other transformations can be designed that
allow for nonlinear combinations of r without violating this
uniqueness. However, this was not pursued here. The sug-
gested bifurcation of states should not be confused with the
multiplicity of atomic configurations that arise due to ¢; sam-
pling (Sec. II). The present formulation does not imply that
our OP dynamics is linear, i.e., the thermal-average forces
driving OP dynamics in general are related to the OPs in a
highly nonlinear fashion. This nonlinearity is critical in simu-
lating far-from equilibrium structures.?’

In the above context, relationship (2.4) is the origin of
the unique value of ®; for a given set of ;. While » implies
CTDk uniquely, the converse is not true, i.e., there is an ensem-
ble of r for given ®. This stems from the fact that a theory
with Nop(& N) OPs cannot predict 3N atomic co-ordinates
uniquely; this is the motivation for adding the residuals to
Eq. (2.1) and generating an ensemble of atomic configura-
tions consistent with the OPs in Eq. (2.2). In particular, N
r; cannot be uniquely expressed in terms of Nop®; from
Egs. (2.3) or (2.4). Therefore, the r — ® relationship is not
one-to-one, as it should not be.

Generation of atomic ensemble consistent with coarse-
grained variables has been discussed in other multiscale
approaches.” However, in these approaches the dynam-
ics of all atoms was not accounted for, leading to issues
in treating diffusion and long range electrostatics.” One
suggested way of overcoming this is to couple the atom-
istic and coarse-grained representations via the boundary
conditions.®’ This has been implemented by parameterization
of a coarse-grained model with MD simulation data, and
demonstrated on transmembrane proteins.67 In contrast, the
present approach accounts for the all-atom configurations via
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a quasiequilibrium probability distribution, which evolves
adiabatically with the OPs. Viscoelastic effects in the dynam-
ics of the macromolecule are accounted via thermal-average
forces and diffusion coefficients (Secs. II and III).

APPENDIX B: DERIVATION OF THE MULTISCALE
LIOUVILLE OPERATOR

Here we derive the multiscale Liouville operator of
Eq. (3.2) using the ansatz Eq. (3.1) and the chain rule, starting
from the classical Liouville operator £. With this, the contri-
bution to Lp from particle i is given by

_p B g O Z@(&)( % >
mi  9r; ap; m; 0ria 0Dy r=r,

o,k

(B1)

where « and o’ signifies Cartesian components of the posi-
tion/momentum and OPs respectively.

The first two terms in Eq. (B1) are the ith contribution to
L. Extending the above to N particles,

N N
502_2{&.14_;‘1..1

= = (B2)
mi  9r; ap;

i=l1

Furthermore considering the third term of Eq. (B1), the ®;
— 7 relationship (I1.4), and the definition of w; (I1.6) yields

k i a(ﬁk I'=Iy
This justifies the form of Liouville operator in Eq. (3.2)
through Eq. (3.4).

L= (B3)

APPENDIX C: THERMAL-AVERAGE FORCES
AS FREE-ENERGY GRADIENTS

By definition the «th Cartesian component of the
thermal-average force is given by

CAF 1 9
3Pre  BOB, D) 1P

fra = / wdD* A(® — &*)e P,

(ChH

where ®* is the set of the first Nop components of &7
(i.e., P4 evaluated at ['*); @ and A are defined in Appendix
SII and references therein. The contribution O from the r*
integration of Eq. (C1) is given by

0= f od’r* A(® — &F)e I, (C2)
As @ does not affect the momentum contribution to the Q-
integral in deriving the thermal-average forces, we proceed
with the analysis of 8 Q/3®y,.

Note, the thermal averaging involves integration over all
positions and momenta I'* which are consistent with a given
value of ® as imposed through the A factor. In taking the
derivative of the integral with respect to &y, in concept, one
calculates the integral at two closely lying &y, values and
divides the difference by the increment in ®,; at all stages
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of this conceptual calculation, H is taken to be a function of
'™ and not ®* directly. This implies the £; H = 0 condition
encountered in the course of constructing the multiple depen-
dencies of py is not violated.

Taking the derivative inside the integral in Eq. (C1), and
using the fact that A only depends on the difference (®
— ®*), one obtains

90 A(D — *
0 _ _/wd3r*Le—ﬂH
0Dy 07,

(C3)

Using Eq. (2.7) and the chain-rule yields

30 3 IN(D — D) ar:, ..
d3r* i BH
aq)ka / Z Z aria/ BCID,*:(X ¢

a’'=1i=1

3 N

i} ¢ 8A(d> %)
- /d3 ZZaaa,Uk OT ,

a'=1i=1
(C4)

where Kronecker delta 8, arises since dr};,, /0 @5, is zero if
o # ar. Integration by parts of Eq. (C4), and simplification of
the expression yield

1 30
lga(bka

= / wd’r* A(® — O finre P, (C5)

where f* = S U (F)F*, for F* = —aV*/or},. Here
i
C I .
*=V(r,,r,---ry)isthe N-atom potential evaluated at r*.
Reinstating vector notation, integrating over the mo-
menta, and dividing both sides by Q yields

fo= 5 /wdF*A((D o) fI e P = <}2‘*>. (C6)

This validates Eq. (3.7) and also shows how the interatomic

forces F ; influence j‘k through the N-atom potential in H. On
arriving at Eq. (C6), all the position dependence of H is rele-
gated to r*. Therefore, the condition £, H = 0 is sustained.

APPENDIX D: . COMPUTATION
Fluctuations A in SPs

<\/ SV ISP — (SPYRN /S Py ma(ti)s j = 1,

4, where t; is the ith time, Ny is the total number of MD

time frames used for the moving averages, (SPJ) is the mov-

ing average (over 50 ps), and S P; nax is the maximum abso-

lute value of the SP within the range of SPs sampled for the

moving average calculation. Fluctuations are defined about

a moving absolute maxima rather than a moving average to

avoid singularities for zero moving averages. The normaliza-

tion makes A dimensionless. Thus A can be compared between
different SPs and OPs.

is calculated using A(SP;,t;)
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