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Automatic identification of frontal (posteroanterior/

anteroposterior) vs. lateral chest radiographs is an

important preprocessing step in computer-assisted

diagnosis, content-based image retrieval, as well as

picture archiving and communication systems. Here,

a new approach is presented. After the radiographs

are reduced substantially in size, several distance

measures are applied for nearest-neighbor classifica-

tion. Leaving-one-out experiments were performed

based on 1,867 radiographs from clinical routine. For

comparison to existing approaches, subsets of 430

and 5 training images are also considered. The overall

best correctness of 99.7% is obtained for feature im-

ages of 32 · 32 pixels, the tangent distance, and a 5-

nearest-neighbor classification scheme. Applying the

normalized cross correlation function, correctness

yields still 99.6% and 99.3% for feature images of 32 ·
32 and 8 · 8 pixel, respectively. Remaining errors are

caused by image altering pathologies, metal artifacts,

or other interferences with routine conditions. The

proposed algorithm outperforms existing but so-

phisticated approaches and is easily implemented at

the same time.
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ALTHOUGH MODERN IMAGING
MODALITIES such as computed to-

mography or magnetic resonance imaging in-
crease in number while many types of
conventional x-ray examinations decrease, the
upright or supine chest radiograph is still by far
the most common x-ray taken, accounting for
at least one third of all examinations in a typical
radiology department.31 However, the reading
of chest radiographs is extremely challenging,
even for specialists and therefore is a wide area
of research for computer-aided diagnosis
(CAD). In particular, the segmentation of lung
fields or the rib cage, as well as local analysis

such as nodule detection, are the most fre-
quently studied problems in automatic image
processing of chest radiographs.2 To implement
a CAD system into the clinical environment, it
is important to correctly identify the orientation
of image acquisition, ie, posteroanterior (PA) or
anteroposterior (AP) versus lateral view,3,4 as
well as top-down, left-right, and mirroring.5-7

These are also essential preprocessing steps for
data handling in picture archiving and com-
munication systems (PACS) and content-based
image retrieval (CBIR).8

Pietka and Huang5 presented an automatic
three-step procedure that determined the image
orientations of computed radiography chest
images and rotated them in steps of 90 degrees
into a standard position for viewing by radiol-
ogists. Based on horizontal and vertical pixel
profiles, the orientation of the spine within the
images was detected and the upper extremities
were located. Finally, the lungs were extracted
and compared to decide whether the image was
flipped. Based on a set of 976 images, a rate of
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95.4% correctly orientated radiographs was re-
ported. To simplify this approach and to make it
suitable for hardware implementation, Evanoff
and McNeill7 applied linear regression to only
two orthogonal profiles. Then, the edge of the
heart was located to make sure that the image is
not displayed as a mirror image. However, only
90.4% correctness was reported based on a data
set of only 115 chest images. A more sophisti-
cated approach proposed by Boone et al6

extracted feature data from 1,000 digitized chest
radiographs to train a neural network for ori-
entation correction. Based on another set of
1,000 images which had not been seen during
training, 99.4% were correctly rotated, but the
overall correctness including mirroring was only
88.8%. Harreld et al3 also applied neural net-
works to identify the view position of chest ra-
diographs and reported an accuracy of 98.7%.
However, the design of neural networks is
sophisticated, their training requires a large
number of examples, and also, it is desirable
to develop more accurate methods for the
identification of correct views of chest radio-
graphs.
Recently, Arimura et al4 have proposed an

advanced computerized method by using a
template matching technique for correctly
identifying either PA or lateral views. They
applied it to a large database of approximately
48,000 PA and 16,000 lateral chest radiographs.
In particular, 24 templates were generated by
the summation of, in total, 464 reference im-
ages, which had been manually selected and
combined. A two-step scheme was applied. If
the difference between the two largest correla-
tion coefficients with three PA and two lateral
templates was above a certain threshold, the
second step was applied to distinguish small and
large patients and to classify the radiograph
based on another 11 to 19 particular templates.
Although an accuracy of 99.99% was reported,
the manual generation of such a large number
of templates is cumbersome, time-consuming
and, most crucial, it is highly observer-de-
pendent. Therefore, the technique of Arimura et
al is difficult to reproduce and to apply to other
PACS or CBIR environments.
In this article, we present a simpler method

based on the nearest-neighbor (NN) classifier
resulting in almost equal accuracy rates but

with greater computational efficiency and full
automation.

MATERIALS AND METHODS

Our approach to the identification of the view position of

chest radiographs is embedded in a system for content-based

image retrieval in medical applications (IRMA).8 IRMA is a

distributed system using a central relational database that

stores administrative information about distributed objects

(image data, methods of computation, and features resulting

from method processing) and query processing to control

distributed computing on all IRMA workstations.9

Image Data

The IRMA database is used as reference for this study.

Currently, it holds 1,867 chest radiographs that have been

selected arbitrarily from clinical routine in a radiology de-

partment of a 1,500+- bed hospital. In particular, 1,266

radiographs in posteroanterior/anteroposterior (PA/AP)

view and 601 images in lateral view position are available.

Scanned at a resolution of 300 dpi with 8 bit quantization,

the size of radiographs ranges between 2,000 and 4,000

pixels in both the x- and y-directions. The non-lateral im-

ages can be differentiated into plain images of upright pa-

tients, supine images of critically ill patients from intensive

care units, and pediatric images in both suspended and lying

positions (Fig 1). Because it is representative of a large ra-

diological department, the database contains material of all

grades of image quality: (i) regular images with decent

contrast and no severe pathology; (ii) medium-grade images

with low contrast and/or partial technical defects, eg, col-

limation errors, over-/under-exposure; and (iii) poor quality

images with metal artifacts, grave technical problems, and/

or severe pathologies with significant image changes.

Size Reduction

Automatic categorization of PA/AP and lateral view

positions is achieved in two steps. First, the image is sub-

stantially reduced in size. Regardless of the initial aspect

ratio, a maximal-sized squared intermediate image is ob-

tained by linear interpolation, where the number of pixels in

the x and y directions is the next smaller power of two.

Integrating adjacent pixels, a feature image of size h · h is

generated (Fig 2).

Distance Measures

To determine the similarity between a reference image

r(x,y) and the sample radiograph under investigation s(x,y)

a distance measure is required. Because of its mathematical

simplicity, the Euclidean distance

DEðr; sÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh
x¼1

Xh
y¼1

ðrðx; yÞ � sðx; yÞÞ2
vuut ð1Þ
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Fig 1. The chest radiographs within the IRMA database are used as

references: (a) high-contrast PA view from an adult patient; (b) and (c)

supine AP view from intensive care units of an adult and an infant

patient, respectively; (d) and (e) lateral views of adult patients in

upright position, also high contrasted.
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is frequently applied to accomplish such a task. However,

DE is affected by differences in the general illumination of

the images to be compared. In other words, the Euclidean

distance becomes large if the x-ray dose is changed but the

patient imaged and the imaging geometry are maintained

between the acquisition of r and s. Therefore, the empirical

correlation coefficient, which is also referred to as the nor-

malized cross correlation coefficient or cross covariance co-

efficient,

DVðr; sÞ ¼

Ph
x¼1

Ph
y¼1

ðrðx; yÞ � �rrÞðsðx; yÞ � �ssÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
x¼1

Ph
y¼1

ðrðx; yÞ � �rrÞ2
 !

�
Ph
x¼1

Ph
y¼1

ðsðx; yÞ � �ssÞ2
 !vuut

ð2Þ

is applied, where �rr and �ss denote the means of r and s, re-

spectively. To compensate translations within the radio-

graphs, the maximum of the covariance function DF (m,n) is

determined by

where m and n denote the integer shift between the feature

images r and s. The integer d denotes the maximal dis-

placement, which is chosen to depend linearly on the size h

of the feature images

d ¼ 1

4
� h
2

	 

ð4Þ

where bÆc denotes the truncation to the next lower integer

value. Note that (2) results from (3) for the special case of

d = 0. Hence, DF ” DV if h < 8.

Although shifts in the x and y directions are handled

in (3), other global transforms such as scaling, rotation,

or axis deformation may occur in chest radiographs. In

1993, Simard et al10 proposed an invariant distance meas-

ure called tangent distance. A transformation t(r,a) of an
image r(x,y), which depends on L parameters a 2 <L (eg,

the scaling factor and the rotation angle), typically leads

to nonlinear, difficult to handle alterations in pattern

space. The set of all transformed patterns is a manifold

of, at most, dimension L in pattern space. The distance

between two patterns can now be defined as the minimum

distance between their respective manifolds, being truly

invariant with respect to the L regarded transforms. How-

ever, computation of this distance is a hard nonlinear

optimization problem and, in general, the manifolds do

not have an analytic expression. Therefore, small trans-

forms of the pattern r(x,y) are approximated by a linear

tangent subspace to the manifold at the point r(x,y).

The subspace is obtained by adding to r(x,y) a linear

combination of the vectors vl(x, y), l = 1,...,L that are

the partial derivatives of t(r,a) with respect to al and span

the tangent subspace. The tangent distance DT is then

defined as the minimum distance between the tangent

subspaces of reference r(x,y) and observation s(x,y) (two-

sided tangent distance). In the experiments, only one of

the two subspaces was considered (one-sided tangent

distance):

DTðr; sÞ ¼ min
a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXh
x¼1

Xh
y¼1

rðx; yÞ þ
XL
l¼1

alvlðx; yÞ
 !

� sðx; yÞ
 !2

vuut
8<
:

9=
;:

ð5Þ

This distance can be computed efficiently as the mini-

mization is easily solved by standard linear algebra tech-

niques, and it is invariant to small amounts of the

transformations considered. Simard et al proved DT to be

especially effective for the task of handwritten character

recognition.10 In addition, it has been shown in a previous

study that DT outperforms many other techniques when

applied to the classification of radiographs.11 Optimal re-

sults were obtained when the tangent distance was combined

with an image-distortion model that compensates for local

image alterations, eg, caused by noise, pathologies, varying

collimator fields, or changing positions of the scribor in a

radiograph.11 Therefore, we applied this extended DT to

distinguish PA/AP and lateral views of chest radiographs. In

our experiments, L = 7 was chosen, modeling affine

transforms and contrast variations.

Classification

Instead of computing the distance to a template obtained

from the summation of references, as proposed by Arimura

et al,4 a k-nearest neighbor (k-NN) classification scheme is

used. In other words, DE, DV, DF, or DT is computed to

all references, and the k most similar references are deter-

mined. The classifier then chooses the class with most ex-

amples within this set of k-NN. With respect to a previous

investigation,12 we set k = 5. Based on the entire set of

1,867 radiographs, leaving-one-out experiments were per-

formed. All images were successively selected for testing,

and the training is done with the remaining 1,866 radio-

graphs. The number of errors is counted over all 1,867

experiments.

Simulation of Arimura’s Method

To compare the classification results to the approach

of Arimura et al4 three PA/AP radiographs representing

the classes (i) to (iii) mentioned before and two lateral

DFðr; sÞ ¼ max
jmj;jnj�d

Ph
x¼1

Ph
y¼1

ðrðx�m; y� nÞ � �rrÞðsðx; yÞ � �ssÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPh
x¼1

Ph
y¼1

ðrðx�m; y� nÞ � �rrÞ2
 !

�
Ph
x¼1

Ph
y¼1

ðsðx; yÞ � �ssÞ2
 !vuut

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
, ð3Þ
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reference images of different chest width were selected (Fig

1). They were reduced in size applying the method described

earlier. This approximates the first step in Arimura et al,4

where, however, the 5 templates where obtained from

summation of 430 references (230 frontal images and 200

lateral images). Because the addition of instances is suitable

to increase the signal-to-noise ratio only if geometric

transforms such as translations or rotations do not occur,

the quality of classification improves when the similarities of

an image to be classified are individually computed to all of

the references. This fact has also been verified experimen-

tally in a previous study.12 Therefore, we did not attempt

to reproduce the second step of Arimura’s scheme. Instead,

we arbitrarily selected 230 frontal and 200 lateral radio-

graphs for training, and the remaining images were used for

testing.

RESULTS

The complete results of this study for all
distance measures and reference sets are sum-
marized in Table 1. The experiments based on
1,867 and 430 references were executed using a
5-NN classifier, while those referring to 5 ref-
erence images were based on a 1-NN classifier.

Fig 2. Continued
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Euclidean Distance

The overall best correctness is 98.9%, result-
ing from a feature image of 16 · 16 pixels (256
feature values) and 430 reference images.
However, the quality of leaving-one-out exper-
iments is only slightly lower. Referring to only
5 prototypes, only 90% correctness is obtained.
The worst correctness of 81.4% is obtained
with the mean gray value of the radiographs
(1 · 1 pixel size or 1 feature value) and leaving-
one-out experiments. This correctness is
still above the theoretical threshold of 67.8% for
this experiment based on 601 lateral and 1,266

PA/AP radiographs, indicating a significant
difference in the mean gray value of each group.

Correlation Coefficient

The use of the empirical correlation coeffi-
cient DV as a distance measure was suggested by
Arimura et al.4 In this case, the overall best
performance is 99.2%, obtained with leaving-
one-out experiments based on 32 · 32 pixel
feature images (1,024 feature values). It is re-
markable that the correctness as compared to
the Euclidean distance is significantly improved
for the 5-prototypes method, where perform-

Fig 2. The h 3 h-sized feature images (h = 64, 32, 16, 8, 4, 2, 1)

were obtained from the upper left PA/AP chest radiograph.
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ance reaches 96.6% for the largest size of feature
images. Because DV is independent of the mean
gray value, the worst classification of about
67.8% is obtained for all methods with 1 · 1
pixel size. Note that this corresponds exactly to
the theoretical threshold of this experiment.

Correlation Function

Determining the maximum of the correlation
function compensates horizontal and vertical
shifts of the thorax position within the chest
radiographs. Hence, further improvement is
obtained in almost all experiments. Because the
displacement is adapted to the size of the re-
duced image, experiments for smallest image
sizes were skipped. The best correctness is
99.6% using the 5-NN classification scheme
based on 32 · 32-sized feature images. This
means that eight images were misclassified (Fig
3). Reducing the number of feature components
to 64 (8 · 8-sized feature images), the correct-
ness is still 99.3%. Referring to only 430 pro-
totypes, still a correctness of about 99% is
obtained for 32 · 32-sized feature images.

Tangent Distance

The tangent distance compensates for inten-
sity differences and small global transforma-
tions such as rotation, scaling, shearing, and
translations, while the image distortion model
compensates for small local transforms like
noise or changing scribor positions.11 Hence,
further improvement in accuracy is obtained.

Especially for large numbers of references and a
sufficient size of the feature images, the tangent
distance DT outperforms the correlation func-
tion DF. For instance, a 99.3% correctness is
obtained with 32 · 32-sized feature images,
whereas that obtained with the covariance
function is only 98.5%. The best correctness of
99.7% is obtained with 32 · 32-sized feature
images and the 5-NN classifier.

Computing Times

Although the leaving-one-out experiments
for large image sizes are time consuming, the
classification of a single item is reasonably fast
for all methods. For a feature image with 16 ·
16 pixels, runtimes are about 0.005 s, 0.02 s, 1.7
s, and 2.0 s for DE, DV, DF, and DT, respec-
tively. However, increasing the image size in-
creases the runtime, especially for the
covariance function-based method, because
here, also d is increased. For a 32 · 32-sized
template, classification based on DF and DT

takes about 22.5 s and 7.0 s, respectively. All
time measurements were obtained on a regular
Pentium III PC with 1 GHz clock running un-
der Linux. All programs are compiled with
GNU C++ 2.95 with standard optimization.

DISCUSSION

Automatic differentiation between PA/AP
and lateral views of chest radiographs is an
important step for several image processing
tasks. A recent approach is based on manual

Table 1. Results of automatic detection algorithm for identifying the view of chest radiographs

Pixel Size of Feature image

Distance Measure Number of References 64 · 64 32 · 32 16 · 16 8 · 8 4 · 4 2 · 2 1 · 1

DE
1,867 98.66 98.66 98.72 98.66 98.86 94.80 81.41

430 98.77 98.77 98.93 98.82 98.82 94.54 81.90
5 90.52 90.79 90.09 89.56 87.47 92.98 84.52

DV
1,867 99.20 99.20 99.09 99.14 98.39 91.64 67.81

430 98.77 98.72 98.66 98.55 97.00 91.12 67.54
5 96.63 96.52 95.82 95.82 90.31 90.47 67.76

Df
1,867 99.46 99.57 99.25 99.25 98.39 — —

430 98.93 99.04 98.93 98.39 97.00 — —
5 96.89 96.84 96.79 95.45 90.31 — —

Dr
1,867 99.62 99.68 99.46 98.55 94.06 — —

430 99.25 99.25 99.20 97.97 94.86 — —
5 95.02 96.14 96.47 87.63 87.63 — —
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selection and combination of radiographs for
template generation. We have shown that this
task can be fully automated and substantially
simplified if the maximum of the normalized
correlation function is used directly for classi-
fication. Based on 1,867 reference images from
the IRMA database, a sufficient precision of
99.3% is obtained for 8 · 8-sized radiographs
using 5-NN classification. Applying 32 · 32-
sized feature images, the correctness increases

to 99.6%. Figure 3 displays the eight radio-
graphs misclassified using the correlation
function. All images show severe pathologies,
metal devices, or other artifacts such as a
frame from misalignment during the scanning
process. However, this also proves the IRMA
database to be representative of routine ap-
plications. Figure 4 displays the five nearest
neighbors of one of the misclassified images
from Figure 3. Clearly, the rotation of the

Fig 3. Continued
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radiographs before scanning is the reason for
misclassification.
Arimura et al have suggested a 16 · 16 pixel

template.4 Because a 32 · 32-sized feature image
was found to be optimal, but sufficient accuracy
can be obtained using 8 · 8-sized images, this
result is supported by the more detailed data
analysis presented here.

Although the impact of the covariance func-
tion is remarkable with respect to the covari-
ance coefficient, the classification correctness
obtained with the tangent distance further im-
proves the overall results only slightly. For 32 ·
32 pixel features, 99.7% correctness were ob-
tained. This indicates that the compensation of
chest position already accounts for most of the

Fig 3. Eight images were misclassified using the correlation function and 32 3 32-sized feature images.
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affine transformations in chest radiographs and
that compensation of the remaining affine
transformation components and local distor-
tions has only a small additional positive effect.
For sizes of 8 · 8 pixels and smaller, the tangent
distance leads to less accuracy of the classifier.
This is not surprising, as the effective dimen-
sionality of the feature vector is reduced im-
plicitly by the dimensionality of the tangent
subspace (eg, a 6-dimensional subspace for af-

fine transformations). If this reduction is large
with respect to the image size (eg, ratio 6/(4 ·
4) = 37.5%), then important information may
be lost; by comparison, the effect usually is
beneficial for larger image sizes (eg, ratio 6/(64
· 64) = 0.15%).
As a result of the local image distortion

model within the tangent distance, misclassified
images from correlation method and tangent
distance do not correspond. Hence, a combi-

Fig 4. Continued
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nation of both distances further improves the
overall correctness. In particular, the 32 · 32-
sized feature images result in six and eight er-
rors for the tangent distance and the Euclidean
distance, respectively. However, only two errors
are in common. Using a 10-NN classifier and
deciding for the lateral group with lower a-pri-
ori probability on equal voting halves the error
rate. More sophisticated combinations of both
measures will be investigated in the future.

CONCLUSIONS

The IRMA framework enables the validation
of numerous image-processing algorithms on a
large data set.8 Here, it was employed to eval-
uate and simplify the method proposed by

Arimura et al4 for automatic detection of the
view of chest radiographs. With the normalized
cross correlation function as distance measure,
the correctness of classification is 99.6%. How-
ever, the approach presented here does not need
any manual selection of reference images for
template generation. Because the detection of
the view position and orientation of radio-
graphs is an important preprocessing step for
CAD,2 PACS,13 and CBIR,8 numerous appli-
cations might benefit from the simple approach
presented here.
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