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ABSTRACT A generalization of the allosteric model is
presented that incorporates a hierarchy of conformational
equilibria. Such a formulation draws upon structural organi-
zation already seen in many large macromolecular systems.
The functional binding properties of the macromolecule reflect
conformational equilibria at each structural level. Appropri-
ate "nested" models are used to interpret structural features
and functional aspects of two hemocyanin systems with a large
number (12 and 24) of binding sites.

Structures of large biological macromolecules commonly
show a hierarchical organization of subunits, in which a
small number of subunits form "building block" assemblies
that themselves build up progressively to form the holomole-
cule. In proteins the subunits are often well defined as poly-
peptide chains. In nucleic acids the subunits could be
thought of as the nucleotide residues that are base-paired at
one level of structure and chained together and stacked into
a helix at a higher level. Macromolecules with these charac-
teristics often present a challenge to modeling in terms of
function. It is the purpose of this paper to suggest a thermo-
dynamic framework for considering functional aspects of
such organization.
Examples of hierarchy in structural organization are found

readily in the oxygen-carrying proteins of arthropods and
mollusks, the hemocyanins. In certain hemocyanin mole-
cules as many as 160 ligand-binding sites are arranged in
highly repetitive structures and substructures (1). An advan-
tage of this arrangement in terms of function may be en-
hancement of the total cooperativity of ligand binding, aris-
ing from the large number of interacting sites; another may
be extension of the range of cooperative binding, enabling
the macromolecule to operate with different cooperativities
in different regions of ligand activity (2). The ligand-binding
curves of such molecules are often complex (2-9) and cannot
be readily explained by simple models of allosteric interac-
tion.
The hierarchy of structure apparent in these large macro-

molecules suggests a corresponding hierarchy of allosteric
interaction and control. Such an interaction pattern has been
termed "nesting" (10). In the concept of nesting, the repeat-
ed subunits or assemblies of subunits are each hypothesized
to be allosteric entities. Further, they can interact by means
of changes in conformation of the higher-level assembly.
Thus, these units are "nested" in a given conformational
environment that is a property of the higher-level structure.

In this paper we outline a general mathematical formula-
tion of nesting models and illustrate the effects of nesting by
two examples: (i) oxygen binding to tarantula hemocyanin, a
24-site macromolecule composed of repeated dodecameric
assemblies, and (ii) oxygen and carbon monoxide binding to
lobster hemocyanin, a dodecameric protein made up of two
identical hexamers.

STATEMENT OF THE MODEL
Nesting arises from the influence of the conformation of a

given structure on the functional properties of its substruc-
tures. Thus, a nesting model can in principle become quite
complex, since a substructure of a macromolecule may itself
be a complicated structure, with substructures of its own.
This hierarchy could be extended either upward toward larg-
er structures or downward toward smaller ones, conforma-
tional equilibria at each structural level exerting functional
influence on the properties of the next level. On the other
hand, a nesting model can as well consist of a single level of
influence. In this context, the popular allosteric models, the
Koshland-Nemethy-Filmer (KNF; ref. 11) and the Monod-
Wyman-Changeux (MWC; ref. 12), exemplify a single level
of nesting (13)-that is, the subunits of a macromolecule are
hypothesized in those models to bind ligand in a noncoopera-
tive manner with the binding affinity determined by the con-
formation of the macromolecule. Two levels of nesting are
then exemplified when one hypothesizes that a large, multi-
ple-conformation macromolecule is composed of a number
of allosteric units, each with properties sensitive to the over-
all macromolecular conformation.
At a given level, the influence of conformation on the

functional properties of the substructures may be expected
to have a characteristic mechanism. For instance, on a large
scale conformational change in a protein might alter a-helix
packing, whereas on a smaller scale the rupture of individual
hydrogen bonds or salt bridges may be relevant. In a phe-
nomenological way, however, the hierarchy of influence is
self-similar-i.e., the effect can be described in the same
general terms at each level. For our purposes, the degree of
self-similarity in a specific macromolecular system, evident
from the extent of structural hierarchy present, determines
the number of levels of nesting.
We emphasize that nesting is a generalization of the origi-

nal allosteric model. At a given structural level, the allosteric
interactions could be modeled according to any appropriate
formalism-for instance, the MWC or the KNF model. Ap-
plications making use of both of those models have appeared
(2, 8). In particular, models using KNF or Pauling-type sub-
unit interaction schemes nested inside a higher-level MWC
formulation have been called "cooperon" models (14) and
have been invoked in an explanation (15) of the detailed co-
operative free-energy levels observed by Smith and Ackers
(16) for human hemoglobin.

THEORY
The nesting idea for a nondissociating macromolecule can

be conveniently expressed in terms of the binding polynomi-
al (17, 18), although the assumption of mass-law binding im-
plicit in writing a binding polynomial is not required for nest-
ing in general. The binding polynomial is similar to the grand

Abbreviations: KNF, Koshland-Nemethy-Filmer; MWC, Monod-
Wyman-Changeux.
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partition function; here the free-energy states of the macro-
molecule, relative to its free energy in an unligated state, are
defined by the number of bound ligands as well as by the
conformation. In this section we first obtain the binding
polynomial that applies to a macromolecule exhibiting a sin-
gle level of nesting; such a formulation includes the MWC
and KNF types of models. We then proceed to obtain the
binding polynomial for a macromolecule with two levels of
nesting interactions. The consequences of adding a second
level will be demonstrated in Applications. In the following
development we shall limit ourselves mainly to homotropic
ligand linkage, although the extension to heterotropic link-
age (more than one type of ligand) will be shown in one of
the examples.
A direct formulation of the binding polynomial is obtained

by making use of the binding potential (19).¶ For any nondis-
sociating assembly, be it a multisite macromolecule or a sin-
gle binding site, the binding potential JI and the binding poly-
nomial P are related by

J/RT = lnP, [1]

where the degree of the binding polynomial is equal to the
number of binding sites in the structure. For example, a sin-
gle-site binding polynomial can be written P = 1 + icx, where
x is the activity of ligand X and K is the intrinsic site affinity
for X. The specification of the binding potentials for the
"building blocks" permits the construction of the binding po-
tential of the whole macromolecule, as shown in the follow-
ing sections.
A Single Nesting Level. The simple allosteric models are

based on a single level of nesting, in which it is postulated
that the macromolecule can exist in any of a number of con-
formations, each conformation dictating the binding proper-
ties of the subunits, and that the subunits are independent
within a conformation. The binding potential of the macro-
molecule constrained to a conformation i is then the sum of
the potentials of the subunits, each for simplicity assumed
here to be a single site, in that conformation. For n subunits
indexed by q,

n

JIi = I JIi,q [2]
q=1

The binding potential for the macromolecule in equilibrium,
with r conformations available to it, is then (20)

Single level: JH/RT = ln > vi'expJIi/RT, [3]

where vi° is the mole fraction of macromolecules in confor-
mation i at some reference state, here specified as when the
primary ligand of interest is not present.
To cast these concepts into a more practical form we uti-

lize the relation of the binding potential to the binding poly-
nomial, Eq. 1. The binding potentials in Eqs. 2 and 3 can be
expressed in terms of appropriate binding polynomials using
Eq. 1. In particular, the binding polynomial for the macro-
molecule with a single level of nesting is

r r n

Single level: P = >1 viPi = >1 vi'fI (1 + KiqX),
i=1 i=1 q=1

[4]

where the sensitivity of the subunit q to its conformational

environment i is manifest in its affinity constant Kilq.l The
binding polynomial for the familiar MWC concerted two-
state (r = 2; i = 1 for the "R" state and i = 2 for the "T"
state) model obtains when all subunits q of a conformation i
are assumed equivalent with respect to ligand affinity, allow-
ing the product in Eq. 4 to be simplified to (1 + Kix)'. A
KNF approach would specify that each conformation is de-
fined by a given number of bound ligands, which requires
that only certain terms in the expansion of the product in Eq.
4 are considered. The details of such a procedure have been
examined (13).
Two Levels of Nesting. Now we consider an assembly of

structures, each with a single level of nesting as just de-
scribed. The entire assembly can exist in any of r' overall
conformations, indexed by i'. The result is a sort of "super"
macromolecule with two levels of allosteric interaction. In a
given super conformation i' the composite single-level-nest-
ed structures are independent of one another. The binding
potential of the macromolecule constrained in that overall
conformation thus follows a summation over the n' allosteric
structures analogous to the summation over subunits in Eq.
2:

n,

[5]IiRT= 2Ziiqq RT.
q'=l

Each single-level-nested structure q' of the macromolecule
in a given overall conformation i' is not a single site but is an
allosteric assembly with n sites. Therefore, the total number
of sites in the macromolecule is n n'. Expressions of the
form seen in Eqs. 2 and 3 are applicable to each structure q'
as well:

Jli',q'/RT = ln>1 vi,q';iexpJlEi,q';i/RT.
i=l

[6]

Similar to Eq. 3, $i°,q';i indicates the mole fraction of unligat-
ed allosteric unit q' in conformation i, under the influence of
the macromolecular conformation i'.
The binding potential for the entire macromolecule at

equilibrium can be expressed following Eq. 3 as

Two levels: JH/RT = > 4,°expM~'/RT,
i'=1

[7]

where vi° denotes the mole fraction of the macromolecule in
overall conformation i' when no ligand is present.
The binding polynomial for the entire macromolecule can

then be obtained by using again Eq. 1.

Two levels: P =
, n

[8]

This is the general result for a macromolecule exhibiting two
levels of allosteric interaction.
MWC Modeling at Each Nesting Level. The procedures

'IIf there is only one macromolecular conformation (r = 1), the mac-
romolecule behaves as a collection of independent sites. Identical
site behavior of a macromolecule with respect to one type of ligand
is often taken to indicate only one stable conformation of the native
macromolecule. However, other conformations may be revealed
through the linkage to a second ligand. In such a case the subunit
affinity for the primary ligand would not depend on the macromo-
lecular conformation but the affinity for the second ligand would
vary with conformation.

$The binding potential has the property X = aJI/aa., where X is
the amount of ligand X present in the system relative to a reference
component. If the reference component is identified as the macro-
molecule, then X becomes the amount of ligand "bound" to the
macromolecule in the most general sense.
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employed above are appropriate for the construction of the
binding potential and hence the binding polynomial applying
to a macromolecule exhibiting any number of nested levels
of allosteric interaction. However, it is seen that in general
each additional level greatly increases the number of param-
eters to be determined by experiment. Practically, in the
construction of a useful model only the minimum degree of
nesting and the minimal allosteric description at each level
are warranted. In this section we will apply aMWC model at
each of two levels of nesting interaction.
A two-state MWC approximation for interaction at each

level specifies r = 2 and r' = 2 in Eq. 8. The designations R
and T will be used in keeping with the conventional MWC
notation for the overall conformations i' = 1 and i' = 2, and r
and t are used for the conformations i = 1 and i = 2 of the n'
identical allosteric structures comprising the macromole-
cule. It can be seen that there are four possible subunit envi-
ronments (thus affinity states), which we shall denote Rr,
Rt, Tr, and Tt. With these considerations the binding poly-
nomial of Eq. 8 becomes

1 + L [1+ l(1 + K x) + l+lR(1+KRtX)l

1 + L[1 + 'T KTrX)++ 1 IT(1 + KTtX)nl 491
Here the a, are given using the uppercase letter L, or 1/(1 +
L) and L/(1 + L), where L is the equilibrium constant for the
overall reaction R -* T. For the lower-level structures the
Vi°;i are replaced making use of the lowercase letters 'R and
IT. 'R is the equilibrium constant for the reaction r -) t of a
structure nested in the R overall conformational state of the
macromolecule and IT is the constant for the r -* t equilibri-
um of a nested structure when the overall macromolecule is
in conformational state T. All conformational equilibria are
defined as applying in the absence of ligand.

In the first application presented below, that of oxygen
binding to tarantula hemocyanin, the hemocyanin molecule
has a structure described by a dimer of dodecamers, allow-
ing the identification n' = 2 and n = 12. A schematic repre-
sentation of the relevant conformational equilibria at each
structural level in this model is shown in Fig. 1 Left.
The lobster hemocyanin examined in the second example

appears from electron micrographs to be constructed as a
dimer of hexamers, or n' = 2 and n = 6. Fig. 1 Right shows a
representation of this model. Additionally, the second exam-

D <~~~~~~~~K

r t

~R T

R T
FIG. 1. Schematic representations of the 24-site tarantula hemo-

cyanin (Left) and the 12-site lobster hemocyanin (Right). According
to the nesting model, no allosteric properties are observed in an indi-
vidual binding site (top). However, an assembly of such sites (mid-
dle) with two alternative conformations, r and t, shows allosteric
properties or a single level of nesting. Two levels of nesting result
(bottom) if a macromolecule is composed of such allosteric struc-
tures (whose equilibria are here indicated by overlapping symbols)
and is itself in conformational equilibrium between two states R and
T.

ple involves two competitive ligands (oxygen and CO) bind-
ing to the macromolecule at the same site, a case known as
identical linkage (17), so that an additional term must be add-
ed to the individual site binding polynomials (inside the inner
parentheses of Eq. 9). For example, using x for oxygen activ-
ity and y for CO activity, the Rr environment for a subunit
gives

PR, = 1 + iqeiX + KCRrY- [10]
Similar expressions apply to the Rt, Tr, and Tt conforma-
tional environments.

APPLICATIONS
In these examples the saturation of the macromolecule

with a single ligand (moles of ligand per mole of macromole-
cule) is obtained from (21)

- = (alnP~ o aln)= 1 or - =1alnPXalnxjy \alny r
[11]

In the case of the competition experiments, where both lig-
ands are present, the activity of the second ligand at all
points of the experiment must be known and inserted into
Eq. 11.
Oxygen Binding to Tarantula Hemocyanin. We have used a

nesting model to describe oxygen binding to the hemocyanin
of the tarantula Eurypelma californicum. A preliminary ac-
count has been published elsewhere (2). Previous analyses of
oxygen equilibria with this molecule (9) demonstrated that
the simple two-state MWC model is not appropriate for de-
scribing the binding curve. The molecule is composed of two
identical dodecamers, each composed of seven different
types of subunits. Although the electron microscopy of the
intact 24-mer shows four hexameric structures, immunologi-
cal and electron microscopic studies of assembly intermedi-
ates reveal that these hexamers are not formed independent-
ly but are assembled directly into dodecamers from a shared
dimeric "linker" subunit between hexameric halves (22).
Thus, the likely functional hierarchy of the native molecule
is a dimer of dodecamers, as seen schematically in Fig. 1
Left.

Oxygen-binding data were obtained (2) for purified taran-
tula hemocyanin under conditions given in the legend of Fig.
2. The binding curve [fractional saturation (0) vs. logarithm
of oxygen activity relative to 1 torr (1 torr = 133 Pa)] for the
native 24-site hemocyanin molecule is shown in Fig. 2 Left.
Errors on the fractional saturation are approximately equally
distributed throughout the range of saturations represented
and are about one-half the height of the boxes drawn. The
solid line shown in Fig. 2 is drawn from the best least-
squares fit of Eq. 9 (2), and the best-fit values of the parame-
ters are given in the legend of Fig. 2. The marked asymmetry
of this curve, with high cooperativity at higher oxygen satu-
rations, presumably reflects the physiological transport re-
quirements of the spider.
The overall binding curve lies everywhere between two

"sub"-binding curves, which are cooperative due to the
presence of the additional level of allosteric interaction. For
a model exhibiting only a single nesting level, like the MWC
or KNF model, the overall binding curve would lie between
noncooperative subbinding curves or anticooperative ones
due to site heterogeneity in a given conformation. In the
present example the subbinding curves of the allosteric sub-
structures (dodecamers) are shown as dashed lines in Fig. 2.
The cooperative nature of these underlying curves can be
seen in this plot. A Hill plot of the data is shown in Fig. 2
Right along with error bars propagated through the transfor-
mation. In a macromolecule exhibiting only a single level of
nesting, the subbinding curves would transform to straight
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FIG. 2. (Left) Oxygen-binding curves of tarantula (E. californi-
cum) hemocyanin in 0.1 M Tris, pH 8.0/1 mM MgC12/4 mM CaC12,
250C (2). Boxes about data points are drawn two times the standard
error of a point. The solid line is the best fit of the nesting model
pictured schematically at the lower left of Fig. 1 with R-state param-
eters KRr = 2.0 torr-1, KRt = 0.056 torr-1, and 'R = 1.6 x 1014; T7
state parameters are KTr = 3.6 torr-, KTt = 0.021 torr', and 'T = 4
X 1018; overall L = 80. Errors in parameter estimates are less than
half in the last place reported. Dashed and dotted lines show the
underlying "subbinding curves" corresponding to the allosteric
equilibria of a macromolecule hypothetically fixed in a given macro-
molecular form R or T, respectively. (Right) Hill plot of the binding
data. The standard error of a point in the binding curve representa-
tion has been propagated through the Hill transformation in drawing
error bars.

lines on the Hill plot. The cooperativity of the subbinding
curves here is more obvious than in the fractional saturation
plot. The macromolecule has taken a path in going from the
overall T states to the overall R states that enables it to be-
have cooperatively in an extended range of ligand activity:
low but definite cooperativity at low activities and much
higher cooperativity above the half-saturation activity.
Oxygen and Carbon Monoxide Binding to Lobster Hemocy-

anin. In the case of the hemocyanin from the common lob-
ster Homarus americanus the MWC model provides a good
description of oxygen-binding data alone (23). However, a
more extensive test by Richey et al. (7) of the MWC model
for this molecule shows that the simple model is not appro-
priate. In particular, a comparison of the unligated allosteric

log(pGas/torr)
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FIG. 4. Binding potential (JI) surface for the hemocyanin of the
lobster H. americanus as a function of the logarithm of the activity
for two competitive ligands, oxygen and carbon monoxide. The
standard state activity for both gases is 1 torr.

equilibrium constant L recovered from 02- and CO-binding
studies showed that a different value of this parameter was
obtained with each ligand. Such an observation contradicts
the MWC definition of the parameter that is defined in the
absence of ligand and thus should be independent of the lig-
and employed. In the study of Richey et al., a three-state
MWC model was invoked to adequately explain all of the
data. In that model, the hexamers composing the dodeca-
meric molecule were considered to be functionally indepen-
dent. Here we show that a nesting model can explain the
same data while taking into account the dodecameric struc-
ture of the lobster hemocyanin in a straightforward way.
The H. americanus hemocyanin is a dodecameric assem-

bly comprising two identical hexamers, each consisting of
six oxygen- or CO-binding sites. The dodecamer can be re-
versibly dissociated into hexamers through adjustment of the
calcium ion activity (24). The monomeric dissociation prod-
ucts (also obtained by a reversible process) exhibit homoge-
neous binding behavior (7).
The binding experiments of Richey et al. were performed

with the Gill thin layer cell (25) and a modified version of the
cell for fluorescence studies (26). With this technique one is

pCO/torr
603 575 2901

log(pO/torr)

FIG. 3. Oxygen- and CO-binding curves and replacement experiment for lobster (H. americanus) hemocyanin [0.1 M Tris, pH 8.0/20 mM
CaCl2, 25°C (7)]. Individual curves (Left) were conducted by stepwise nitrogen dilutions of the individual gas. Replacement curve (Right) was
conducted by stepwise dilution of oxygen gas with carbon monoxide. CO partial pressure is found at each oxygen pressure from pCO = 606.2
torr - PO2. Boxes about data points are uniformly drawn approximately twice the maximum point error. The best fit of the theory to all data
sets is shown by the solid lines, with R-state parameters K01 = 1.7 ± 0.2 torr-1, KC°= 0.034 ± 0.008 torr-1, K42= 0.021 ± 0.005 torr-1, KC=
0.0034 ± 0.0004 torr-1, andlR = (1.9 _ 0.3) X 107; T-state parameters are KTT= 0.7 ± 0.1 torr'-, Kco= 0.011 ± 0.002 torr-1, K02= 0.007 ± 0.002
torr-1, K4c= 0.0019 _ 0.0004 torr-1, and 1T = (9 + 1.5) X 106; overall L = 80 ± 15. Ratios of02 affinity to CO affinity are: Rr, 50; Rt, 6.2; Tr,
64; Tt, 3.7.
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able to work with gaseous ligands for which there are no
electrodes for determining activity-e.g., carbon monoxide.
In the present study the three types of experiments from
Richey et al. were examined: the individual oxygen- and car-
bon monoxide-binding curves and the replacement experi-
ment in which oxygen replaces carbon monoxide. In all ex-
periments the aggregation state of the macromolecule was
the dodecamer (7). In the nesting model applied to the data,
two MWC hexameric units (n = 6) are nested inside a higher-
level (dodecamer) assembly (n' = 2), which can occupy ei-
ther of two alternative conformations (R and T). The denota-
tion of the subunit affinity states is the same here as in the
case of the tarantula molecule: Rr, Rt, Tr, and Tt. Results of
the binding experiments conducted by Richey et al. are
shown in Fig. 3, with individual binding curves on the Left
and a replacement experiment on the Right. The low affinity
of this molecule for CO is readily seen in these plots. The
theoretical lines shown are the best fit of the nesting model
determined by simultaneous fitting of all data sets (27, 28).
As shown by Richey et al., the simple MWC model cannot
explain these data taken together. In contrast, the nesting
model fits well, and the parameters are well determined
judging from the approximate one standard deviation confi-
dence intervals given in the legend of Fig. 3.

Since binding of either ligand is at the same site, changes
in the ratio of oxygen- to CO-binding constants give a mea-
sure of the local distortion of the binding site on ligation. The
magnitude of this difference increases >10-fold upon con-
version of the molecule from the unligated (primarily Tt) to
the ligated (primarily Rr) form. A similar result was found in
the study of Richey et al., and this type of information ap-
pears to be relatively model independent. The effect is great-
er for oxygen than for CO and may indicate customization of
the binding geometry for oxygen, a ligand that bridges the
dinuclear coppers.
The effect of a second ligand binding to a macromolecule

adds an additional dimension to the macromolecular poten-
tial surface under investigation, providing the means for
more critical testing of a given model. A three-dimensional
representation of the binding potential surface is shown in
Fig. 4, where the two individual ligand-binding curves corre-
spond to derivatives of cuts through the surface at fixed X
(oxygen) or Y (carbon monoxide) activities. The replace-
ment experiment corresponds to a more meandering path on
the surface where both X and Y activities change.

In summary, the simple allosteric models have often prov-
en inappropriate in dealing with the complexities of large
macromolecules. We have shown that the hierarchies of
structure present in these macromolecules can be used for
guidance in constructing functional models. The generaliza-
tion of the allosteric scheme to include more than one level
of interaction, in a nested fashion, provides a rationale for
interpretation of complex binding and linkage processes.
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