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Abstract
Malignant tumours are characterised by a low, acidic extracellular pH (pHe) which facilitates
invasion and metastasis. Previous research has proposed the potential benefits of manipulating
systemic pHe, and recent experiments have highlighted the potential for buffer therapy to raise
tumour pHe, prevent metastases, and prolong survival in laboratory mice. To examine the
physiological regulation of tumour buffering and investigate how perturbations of the buffering
system (via metabolic/respiratory disorders or changes in parameters) can alter tumour and blood
pHe, we develop a simple compartmentalised ordinary differential equation model of pHe
regulation by the  buffering system. An approximate analytical solution is constructed
and used to carry out a sensitivity analysis, where we identify key parameters that regulate tumour
pHe in both humans and mice. From this analysis, we suggest promising alternative and
combination therapies, and identify specific patient groups which may show an enhanced response
to buffer therapy. In addition, numerical simulations are performed, validating the model against
well-known metabolic/respiratory disorders and predicting how these disorders could change
tumour pHe.
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1. Introduction
Malignant tumours consume significantly higher amounts of glucose than corresponding
normal tissues or benign tumours [1,2]. This increased glucose uptake is observed even in
the presence of adequate levels of oxygen, a phenomenon referred to as aerobic glycolysis.
The use of aerobic glycolysis by cancer cells was characterised as early as the 1930s and
named the Warburg effect [3,4]. The inefficiency of this type of metabolism significantly
contributes to the observed increased glucose uptake and a subsequently increased acid load.

Upregulated aerobic glycolysis is a hallmark of malignant cancers [1]. The high level of
glycolysis results in increased production of H+ ions, leading to an acidification of the
tumour microenvironment. This has been well documented by experiments showing that
solid tumour extracellular pH (pHe) is commonly 0.5-1 units lower than normal tissue
(tumour pHe of 6.5-7 versus a normal tissue pHe of 7.4) [5,6,7].

Despite the early discovery of the Warburg effect, little is understood about the reasons why
malignant tumours consistently upregulate the use of aerobic glycolysis. In a series of
papers, Gatenby et al. hypothesised that tumour acidification confers an advantage to the
tumour cells, by producing a harsh environment in the peritumoural soft tissues as acid is
transported along concentration gradients from the tumour in adjacent normal regions. This
results in normal cell death, extracellular matrix degradation, increased angiogenesis and
disordered immune response facilitating tumour invasion [8,4,1,9,10,2]. This ‘acid mediated
invasion hypothesis’ is supported by experiments which have shown that normal cells
proliferate optimally at a pHe of 7.4, with a steep decrease in proliferative ability below 7.1,
while tumour cells obtain an optimal proliferation rate at pHe 6.8, which correlates with the
slightly acidic environment found in invasive tumours [9].

The ‘acid-mediated invasion hypothesis’ leads to the prediction that neutralising the acidic
tumour pHe will inhibit invasion and, subsequently, spontaneous metastasis, which has been
explored in a recent set of experiments [11]. To test this prediction, Robey et al. implanted
highly metastatic human breast cancer cells in the mammary fat pad of severe combined
immunodeficient mice. Oral administration of sodium bicarbonate (which acts as a buffer to
resist changes in pHe) raised primary tumour pHe, reduced the number and size of
metastases, and prolonged survival [11]. More generally, Gatenby and Gawlinski [4]
propose that manipulation of systemic pHe (either through acidification or alkalinisation)
could reduce tumour growth by perturbing the system from the optimal pHe for tumour
proliferation.

To examine how manipulation of the systemic buffering system can alter tumour pHe, we
develop a simple but realistic model of tumour pHe regulation via the  system,
including the effects of physiological control of blood buffering, which is detailed in Section
2. With this model, we explore model behaviour by constructing an asymptotic
approximation (Section 2.2) and subsequently perform a sensitivity analysis to ascertain the
key parameters regulating tumour pHe, and identify which of those parameters can be
altered with minimal effect on blood pHe regulation (Section 3.4). Additionally, we model
respiratory and metabolic disordered states, comparing blood pHe predictions to known
data, and predicting the resulting effect on tumour pHe (Section 3.1).

2. Mathematical Model
2.1. Model formulation and construction

To produce a basic model of blood and tumour buffering we first develop a simple model of
the main extracellular buffering system, the  system, along with the
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physiological regulation of this system. The aim is to develop a simple model of pHe at the
tumour and blood compartment scale which accurately models the physiological regulation
of tumour and blood pHe. Although as a first approximation, we compare the behaviour of
our model to known human data. Any additional buffering from intrinsic non-motile buffers
(such as proteins, amino acids, and phosphates) operate on a faster scale than the

 buffer. As there is little to no movement of intrinsic buffers between
compartments, we assume this contribution in the tumour tissue is constant and implicitly
incorporated in the tumour proton production parameter. Furthermore, our model tracks
arterial blood delivery to the tumour, which has haemoglobin in the oxygen-bound form
with low proton carrying capacity. Consequently, it is reasonable to assume only a small
proportion of blood delivered to hypoxic areas of the tumour will contain the deoxygenated
form of haemoglobin which can bind protons. This hypoxic subcompartment would be low
in bicarbonate, high in CO2, and likely have poor flow and connectivity to the vascular
network, and therefore would likely reduce the potential efficacy of any buffer delivery to
that region. Subsequently, our model could be extended to include additional buffering
components at different spatial and temporal scales. Hence, we consider a two-compartment
model, simulating the blood and tumour tissue, incorporating the bicarbonate-carbon dioxide
system. Crucially, the model also includes the physiological regulation of the bicarbonate
system through ventilation and kidney filtration. In this respect, our model can be seen as an
extension of the work of [12], and our analysis will show that inclusion of these effects can
significantly affect model predictions. As we are interested in average tumour pHe and not
pHe differences within the tumour, we neglect fine scale spatial variations in tumour acid
production. Hence, we can subsequently ignore regional variation in oxygen levels and
consumption as considered in previous models [12] and assume an average acid production
rate. Furthermore, as tumour cells exhibiting the glycolytic phenotype rely on glycolysis
even in the presence of oxygen, the local oxygen concentration should not significantly alter
acid production.

The schematic for the mathematical model is shown in Figure 1. We have that Bt,b
represents the concentration of bicarbonate per volume in the tumour and blood respectively,
in units of moles/litre. Ht,b represents the volumetric concentration of free protons within the
tumour and blood respectively, in units of moles/litre. Ct,b represents the concentration of
carbon dioxide for the tumour and blood respectively, in units of moles/litre. Note that as we
are modelling extracellular pH, we model the levels of ions in the tumour interstitial fluid
surrounding the cells, and neglect the intracellular pH of the tumour cells themselves.

Each equation includes a term describing the chemical buffering reactions of the 
system, which proceeds as follows:

(1)

The first two terms in each equation describe this chemical buffering reaction, with k2 and k1
the reaction rate constants. This reaction is accelerated by the presence of the enzyme
carbonic anhydrase (CA), the activity of which varies depending on the isozyme type. In our
model, we include the action of carbonic anhydrase in both the blood and tumour by
increasing the rate constants of the reaction to reflect this acceleration. The fastest
acceleration occurs in the blood, where CA II in red blood cells can accelerate the hydration
reaction 50,000 to 1,000,000 fold over the uncatalyzed rate at human body temperature [13].
Tumour associated carbonic anhydrases include CA II and CA IX [14], and the activity of
CA IX has recently been found to be as high as CA II [15]. Hence, we assume for simplicity
that the catalytic rates in the blood and tumour tissue are equal. Further, the asymptotic
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analysis indicates that the model is robust to changes of several orders of magnitude of these
parameters (provided the pKa, and hence ratio of the kinetic parameters, remains equal), as
this will only alter the fast reaction timescale as the solution relaxes to the intermediate and
slow solutions.

The equations also include a vascular exchange term of the respective ion or molecule
between the blood and the tumour. Hence, γ1, γ2, γ3 are the vessel fluxes for bicarbonate,
lactate, and carbon dioxide respectively. The vessel fluxes are calculated by γi = V AD × Pi
where V AD is the vessel length per tumour cross section area (in cm/cm2), and Pi is the
vessel permeability (in cm/s) for the respective ion or molecule [16]. In order to ensure
conservation of total quantities of H+, CO2 and  during the vascular exchange process
from the tumour to the blood, we multiply γi by vT, where vT = Vtumour/Vblood, where Vtumour
is the volume of the tumour and Vblood is the volume of blood. Although tumour volume
varies over time, the timescale of tumour growth is much slower than the pHe regulation
dynamics examined in this model, and we therefore assume tumour size is constant.
Furthermore, the sensitivity analysis in Section 3.4 indicates the system is not sensitive to
this parameter.

The first three equations capture the tumour dynamics, and will be discussed in turn below.

(2)

Equation 2 describes the bicarbonate dynamics in the tumour. As there is no direct
production or consumption of  in the tumour, this equation only includes chemical
reaction terms and vascular exchange of  between the blood and the tumour, where γ1
is the vessel flux rate for bicarbonate.

(3)

Equation 3 models the tumour H+ concentration. The third term, ϕ1, is the net production of
H+ per unit volume of the tumour through aerobic glycolysis, implicitly incorporating the
fixed contribution of minor additional non-motile tissue buffering components which act on
a faster timescale than the other reactions detailed. It is this production term that is generally
higher than normal tissue due to the upregulation of glycolysis in malignant tumours. The
final term is the vascular exchange, where γ2 is the vessel flux rate for lactate as protons
move in association with lactate to maintain electroneutrality.

(4)

Equation 4 represents the tumour CO2 dynamics. The third term, ϕ5, represents the tumour
production of CO2 from cellular metabolism.

The last three equations capture the blood dynamics, and will be presented in turn. Firstly:
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(5)

This equation describes the blood . The third and fourth terms are standard
representations used to model the complex process of renal filtration and reabsorption of
bicarbonate [17,18]. The details of this system can be found in the Appendix A. Briefly, an
increase in blood CO2 results in more conversion of CO2 into  and H+ inside the
kidney nephrons, elevated levels of acid secretion into the bladder, and increased absorption
of  into the bloodstream. If CO2 levels are stable (through ventilation), then any
increases in  result in an increased rate of renal bicarbonate filtration (and subsequent
loss in the urine). Here, ϕ2 is the acid secretion rate, and λ1 is the bicarbonate filtration rate.
The fifth term, θ1, is the bicarbonate treatment term used in the Robey et al. [11] study we
examine in the sensitivity section.

(6)

Equation 6 models the blood H+ dynamics. The first two terms in Equation 6 represent the
bicarbonate buffering reaction kinetics in the blood. The third term represents the net
contribution of protons from the rest of the body tissues (except for the tumour) after the
contribution of non-motile tissue buffers.

(7)

Equation 7 models the blood CO2 concentration. The third term is the CO2 source from the
normal body tissues; here ϕ4 represents the rate of CO2 entry into the bloodstream from the
normal tissue.

The fourth term in Equation 7 represents the regulation of blood CO2 levels by respiration,
where CO2 lost through ventilation is proportional to the product of the ventilation rate,
f(Cb), and the CO2 concentration. The function for ventilation we use is:

(8)

Note the linearity over a range with minimum and maximum thresholds [19]. Although the
specific form of this term is a simplification of the complex dynamics surrounding
ventilation, it is an appropriate approximation for the purposes of our model. The
experimental ventilation response to blood CO2 has been well quantified in both humans and
mice and used to derive biological values for the ventilation parameters [20,21,22].

The initial conditions are Cb(0) = c0, Ct(0) = c0, Bb(0) = b0, Bt(0) = b0, Hb(0) = h0, and Ht(0)
= h0. We choose c0, b0, and h0 to be the standard blood values of CO2, , and H+

respectively. This allows a clear visualisation of H+ and CO2 accumulation in the tumour,
and subsequent depletion of . Furthermore, as tumours can develop in many types of
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tissue with different metabolic rates, the baseline tissue values are likely to vary, but as there
is only one steady-state the initial conditions do not affect the long-term behaviour of the
system and are not a focus of this study.

In order to nondimensionalise our model, we use the rescaling τ = k2t, b0bt = Bt, c0ct = Ct,
h0ht = Ht, b0bb = Bb, c0cb = Cb, and h0hb = Hb to obtain the system,

(9)

(10)

(11)

(12)

(13)

(14)

with , , , , , , , , , ,

, , . Additionally, the nondimensionalised ventilation function is
now:

(15)

with , , and .

The initial conditions become:

(16)
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From the calculations detailed in Appendix A, the full parameter sets for a laboratory mouse
and human are shown in Table 1. The nondimensionalised values for a mouse and human
are shown in Table 2.

2.2. Asymptotic simplification of the model
In this section we will construct a uniformly valid asymptotic approximation. This analytical
solution is used to understand the general model behaviour and key parameter groupings. It
is also used to perform a sensitivity analysis in Section 3.4 in order to examine which
parameters have a large effect on tumour pHe. Potential treatments are then suggested which
relate to the important parameters indicated by the sensitivity analysis.

Preliminary numerical simulations, as well as the wide variation in parameter values
spanning several orders of magnitude, indicate different timescales in our solution. There are
three characteristic timescales for our system. The inner, or fastest, is the timescale on which
the reaction dynamics take place (k1 and k2 in Equations (2)-(7)). This is on the order of
milliseconds. Then, there is an intermediate timescale where proton production takes place,
on the order of seconds (ϕ1 and ϕ3 in Equations (3) and (6)). This intersects with a slower,
outer solution which takes into account the rest of the physiology (kidney filtration,
ventilation, etc), and occurs on the scale of minutes to hours (ϕ2, λ1, λ2 in Equations (5) and
(7)). With this in mind, let us first examine the inner, fast solution.

2.2.1. Fast timescale dynamics—From our biological knowledge of the system, we
know that the chemical reaction equations occur on the order of nano- to milliseconds, and
are much faster than the other processes in our system. Furthermore, we can see that the
parameter δ3 is several orders of magnitude larger than any other, indicating that the ht,b
equations will vary on the fast timescale (which is verified by proceeding with a standard
asymptotic analysis). Thus we anticipate that chemical reactions will dominate the fast
dynamics. To proceed, we define ∈ = 10−3, whereupon Equations (2)-(7) rescale to:

(17)

(18)

(19)

(20)

(21)
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(22)

where , , , , , , , ,

, , , , .

The ventilation function becomes:

(23)

with , , , and .

Note that we can decouple the reaction dynamics by making the following substitution: u1 =
bt + δ1ct, u2 = bb + δ1cb, v1 = ht + δ3ct, v2 = hb + δ3cb. With these substitutions, Equations
(17)-(22) become:

(24)

(26)

(27)

(28)

(29)
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Our new variables v1,2 are not scaled to order 1, in fact, they are O( δ3)=O(104). However,
the advantage is that the leading order equations then simplify on noting the size of v1,2,
yielding at leading order:

(30)

(31)

(32)

(33)

From these equations, we can see that u1, v1, u2 and v2 are constant, respectively denoted A1,
A2, A3, and A4, and hence,

(34)

(35)

These equations have one positive, stable steady state given by

(36)

(37)

Therefore, in our original variables, the solution, which we will denote as Wfast, follows
these equations:

(38)
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(39)

(40)

(41)

(42)

(43)

In general, the model dynamics of interest on the intermediate and slow timescales are
insensitive to the timescales of the fast reactions (providing the fast reactions remain fast).
Hence, altering the specific kinetic parameters (but keeping the pKa, and hence the ratio of
these parameters, equal) does not alter the system behaviour on the timescales of interest.

2.2.2. Intermediate timescale dynamics—To examine the intermediate timescale
dynamics, let us rescale time, so τ2 = ∈τ. We have, at leading order, again noting that our
variables v1,2 are not scaled to order 1, but instead O(δ3)=O(104),

(44)

(45)

(46)

(47)

Martin et al. Page 10

Math Biosci. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(48)

(49)

Thus we can see immediately that u1 and u2 are constant as previously and respectively
denoted by A1 and A3. Further, ht and hb are at their slow dynamics steady states, given by
Equations (36) and (37).

Hence, we are left with only two ODEs, Equations (45) and (48), where the initial
conditions for v1 and v2 are the equilibrium values from the fast solution, A2 and A4,
respectively.

Here we can see that the positive equilibrium solutions are:

(50)

(51)

where standard linear analysis shows this steady state is stable.

Changing back into our original variables so we can compare our approximate analytical
solution to our numerical simulations, the solutions (which we will denote as Wintermediate)
satisfy these equations:

(52)

(53)

(54)

(55)
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where v1 and v2 are determined by the solution to Equations (45) and (48).

2.2.3. Slow timescale dynamics—The final, slow timescale, is where the physiological
responses such as ventilation and kidney excretion take effect. To examine the slow
dynamics, let us rescale time, defining τ3 = ∈2τ. Once again we note that v1,2 are
O(δ3)=O(104), hence we consider each term in turn when approximating to leading order.
Thus we have at leading order,

(56)

(57)

(58)

(59)

(60)

(61)

The initial conditions are the intermediate timescale equilibrium values for u1,2 (denoted A1
and A3). As these equations are linear in u1 and u2, they can be solved explicitly. The
equilibrium values, which are both positive with our parameters, are

(62)

(63)

Standard linear analysis shows that this equilibrium point is a linearly stable node.

Changing back into our original variables in order to calculate and compare our approximate
analytical solution to our numerical solution, the slow solutions (which we will denote as
Wslow), follow these equations,
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(64)

(65)

(66)

(67)

(68)

(69)

where v1,2 and ht,b are defined by the algebraic Equations (57), (58) (60), (61) and u1,2 are
the solutions to the ODEs in Equations (56) and (59). The explicit large time asymptote,
steady state, solutions can be readily found, yielding the steady state solutions in our original
variables:

(70)

(71)

(72)

Martin et al. Page 13

Math Biosci. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(73)

(74)

(75)

where v1 and v2 are the steady state solutions from the intermediate timescale in Equation
(50) and (51) respectively. Also,  and  are the steady state solutions of Equations (56)
and (59).

By extracting the leading order terms with our chosen parameters, we find,

(76)

From Equation (76) we can see that to leading order,  is proportional to  and inversely
proportional to α2, ,  and . Therefore, lowering the glomerular filtration rate (ξ1) will
lower H+ levels in the tumour. Conversely, raising the acid secretion rate (φ2), carbon
dioxide vessel permeability (Γ3), or bicarbonate vessel permeability (Γ1) will lower tumour
H+. This expression can tell us about how groups of parameters affect the long time steady-
state, and allows us to identify the most important ones. However, quantification of the
relative importance with this expression is difficult, so we will proceed with a formal
sensitivity analysis in Section 3.4 after we construct the uniformly valid solution.

2.2.4. Uniformly valid solution—It is now straightforward to construct an approximate
uniformly valid solution using our fast, intermediate, and slow solutions from above. This
uniform solution has the form:

(77)

where  are the quasi-steady state solutions to the Wfast and Wintermediate
equations, respectively.

2.2.5. Sensitivity analysis—It is important to identify how sensitive the system is to the
chosen parameter values. Most importantly, we would like to be able to predict treatments
targeting the parameters that have the most pronounced effect on raising tumour pHe. In
particular, we are most interested in the parameters which have the greatest effect in
lowering the steady state tumour pHe, as well as how the treatment term can affect the pHe
of the tumour and the blood. Also, as parameter variations exist naturally between patients,
if the system is particularly sensitive to a given parameter it would be important to highlight
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this system behaviour. As noted, the previously derived analytical approximation can tell us
about how groups of parameters affect the long time steady-state, but it is difficult to
quantify the relative importance of each individual parameter contribution. Hence, analytical
sensitivity values can provide this added information.

One way of examining the effect of a parameter, p, on one of our steady state variables, V, is
to calculate a sensitivity coefficent. This can be defined as

(78)

The calculation of this sensitivity coefficient, S, tells us what effect a percentage change in
the parameter, p, has on the variable, V. If ǀSǀ > 1, a percent change in p produces a larger
percent change in V, and thus p has a strong effect on V.

The analytical value of the sensitivity coefficient was calculated in Maple, and the parameter
values were then substituted to obtain the numerical value.

2.2.6. Description of numerical methods—The model equations (9)-(14) were solved
using the Matlab stiff ODE solver ode15s, a variable order multistep solver. A stiff solver is
necessary due to the multiple timescales in this system, with rapid transient movement of the
reaction kinetics, and then slowly varying long transients. Initial conditions were used as in
(16) and parameters from Table 1. The simulations were run until τ = 1 × 1010 to ensure
steady state is reached.

3. Results
3.1. Model Validation: Comparison of respiratory/metabolic disorders to observed blood
pHe

In this section we present a set of numerical simulations of Equations (9)-(14) to confirm
that the model produces qualitatively and quantitatively reasonable and accurate results.

In order to confirm that the mathematical model correctly simulates blood pHe, we examine
the accuracy of the model in a variety of clinical situations which we can compare to data. In
the unperturbed system, the blood pHe equilibriates at the normal blood value of 7.4 (see
Figure 2), with blood carbon dioxide and bicarbonate concentrations also at their normal
values (nondimensionalised to 1).

Four disordered states are then simulated: respiratory alkalosis, metabolic alkalosis,
respiratory acidosis, and metabolic alkalosis. In our simulations, the respiratory disorders are
induced by fixing the ventilation rate, ξ3(cb), at higher or lower values than normal, thereby
changing the blood CO2 levels. Metabolic disorders are induced by altering the blood 
levels by the addition or removal of bicarbonate (θ1). These results are shown in Figures 3
and 4. For the respiratory disturbance scenarios, in agreement with experiments which
induce patients to hyperventilate or hypoventilate, the ventilation rate is fixed and varied to
produce either acidosis or alkalosis. Initially, change in ventilation rate causes a change in
blood CO2, which immediately alters the  and H+ levels. After a few hours the effects
of the renal compensation are visible, with the amount of reabsorbed bicarbonate changing
to compensate and push the pHe back to normal. Both of these simulated disorders match
the correct clinically predicted pHe and compensation timescale [17]. Simulations of
metabolic disorders (acidosis or alkalosis) as a result of persistent administration of
bicarbonate (due to bicarbonate loading) or loss of bicarbonate (for example, through

Martin et al. Page 15

Math Biosci. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



vomiting) predict no respiratory compensation, hence blood pHe levels do not return to
normal.

To compare our results more rigorously with clinical data on acid/base disturbances, a
standard buffer curve of the blood pHe is constructed. This is accomplished by inducing a
respiratory or metabolic disturbance into the model (as described above), and tracking blood
pHe prior to renal compensation. Although in these simulations we are primarily interested
in the blood dynamics, the full coupled model is simulated (blood and tumour). This is
reasonable as the tumour of our simulated size has a negligible effect on blood dynamics
(results not shown, but the model sensitivity is calculated in Section 3.4).

The simulated results and clinical buffer curves for humans are shown in Figure 5. The
mathematical model performs well, particularly in predicting the response to metabolic
disorders, and also in our range of interest (a normal blood of pHe 7.35-7.45). For example,
the pHe changes caused by altering the amount of bicarbonate in the blood (for example, by
changing θ1 as is done in the simulations, or by impaired renal function which could affect
φ2 or ξ1) are shown by the red squares. The resulting curve follows a contour line of
constant pCO2 at 40mmHg, the normal level, as tight regulation of ventilation prevents any
change in CO2 levels. As this model is primarily interested in the effect of adding
bicarbonate in this way, the accuracy of the simulations is encouraging.

Alternatively, the pHe changes caused by altering the CO2 levels by fixing the ventilation
rate, ξ3(cb) (clinically induced via rebreathing CO2 or hyperventilating), follow the red
triangles. As shown in the previous section, respiratory disturbances immediately alter blood
pHe and bicarbonate levels. Eventually, renal compensation occurs (both clinically and in
our simulation), which is not shown in this gure as the in vivo studies were performed on a
short timescale before compensation could occur. Again, the model performs well, despite
the approximations to the CO2/ventilation term, falling well within the 95% confidence
limits of the data within the biological pHe range we are examining (7.35-7.45). Only at
very low pHe is there a deviation from the predicted buffer line, which is acceptable
particularly as the model is developed specifically to examine metabolic alkalosis (possibly
induced by the bicarbonate treatment), not acidosis.

3.2. Model prediction: Effect of respiratory/metabolic disorders on tumour pHe
Simulations of respiratory and metabolic disorders indicate that these disordered states can
cause significant changes in tumor pHe. The model predicts tumor pHe is elevated (greater
than 7.1 from a normal tumor pHe of 7.0) during the conditions of respiratory acidosis and
metabolic alkalosis. During states of respiratory alkalosis and metabolic acidosis, tumor pHe
can be lowered to potentially toxic levels for tumour cells (less than 6.5 from a normal
tumor pHe of 7.0).

3.3. Comparison of Numerical Solutions and Asymptotic Approximations
Figure 6 shows the uniform solution, Equation (77), plotted against the numerical
simulation, and agreement is excellent. The numerical solution is simulated with Equations
(9)-(14). For the purposes of this comparison, the numerical and analytical solutions are
calculated with initial conditions (16) and parameters from Table 2 but with Θ1 = 0.

3.4. Modelling therapy: Sensitivity analysis
The full results of the sensitivity analysis are presented in Appendix B in Table B.3, which
displays the sensitivity of all the variables to each of the parameters for both mice and
humans in the untreated and treated cases. The results are similar for both cases. The human
and mouse tumour H+ sensitivity coefficients with the largest effect on tumour pHe (selected
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by an absolute value greater than 1) are shown in Figure 7. In both humans and mice, the
sensitivity coefficients indicate that the most important parameters affecting the tumour pHe
are those involved with renal function: bicarbonate clearance and reabsorption. Targeting
these processes not only raises the tumour pHe, but also increases the bicarbonate therapy
efficacy (simulations not shown).

Other key parameters which most significantly affect tumour pHe are , which incorporates
the tumour proton production rate and the pKa parameter . In humans, the ventilation
parameters (  and ) are predicted to be very important, but less so in the mouse.
Treatments which target renal parameters (  and ), however, also have a strong effect on
the blood pHe (see Appendix B).

As shown in the previous section, the sensitivity analysis confirms that none of the variables
are sensitive to the parameter representing vascular exchange of the protons between tumour
and blood, . This suggests that the majority of the removal of protons from the tumour is
accomplished via CO2 evacuation, and not direct movement of free protons. This is
reasonable because despite the high proton production of tissues, the actual concentration of
free protons in the tissue is very small (several orders of magnitude lower than the respective
buffering components). Therefore, by far the majority (ca. ratio of 1 in 105) of protons will
exit the tumour attached to a buffer.

Unsurprisingly, the parameter incorporating the kinetics of the bicarbonate reaction, , is
shown as important in this analysis, as altering the ratio of the forward to back reactions
(and, therefore, the pKa of the reaction), will strongly alter the effect of the buffer.

The sensitivity of the system with respect to the parameters used for its non-
dimensionalisation (for example, δ1 and δ3) is not considered, as these parameters do not
have a natural biological interpretation. Hence, as initial conditions in the nondimensional
system they do not effect the steady state values of the variables.

4. Discussion and Conclusion
This paper presents a systemic blood and tumour buffering model, which is parameterised
with both mouse and human data sets. The model accurately simulates blood pHe in normal
and acid/base disordered states. The simulations indicate that respiratory acidosis and
metabolic alkalosis elevate tumor pHe. Conversely, respiratory alkalosis and metabolic
acidosis lower tumor pHe to potentially toxic levels. These predictions confirm the
hypothesis that inducing metabolic alkalosis through the chronic administration of buffers
such as sodium bicarbonate can elevate tumour pHe to normal levels, which has been
verified through in vivo experiments [11]. This normalisation of tumour pHe could help
promote the survival and functions of the normal cells, reducing the tumour’s ability to
invade. Furthermore, inducing metabolic acidosis is predicted to reduce tumour pHe from
the already acidic level, potentially to levels which could be toxic to the tumour cells.
Several experimental studies have shown that patients with metastatic renal cancer benefit
from cytoreductive nephrectomy [23,24,25]. Our model supports the speculation by Gatenby
and Gawlinski [4] that the observed benefits are a consequence of potential metabolic
acidosis caused from the kidney removal, which could lower tumour pHe to levels toxic to
the tumour cells.

In order to identify promising proton reducing targets which could prevent tumour acidity
and normalise tumour pHe), a sensitivity analysis of the model was performed and indicates
that the tumour pHe is most sensitive to tumour proton production and kidney filtration/
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reabsorption of bicarbonate. For example, the model predicts that decreasing glomerular
filtration rate (GFR) leads to a rise in baseline levels of bicarbonate, and any treatment will
not be filtered out as effectively. Similarly, the model predicts increasing the renal acid
secretion rate would raise bicarbonate levels and significantly increase tumour pHe.
However, as treatments targeting these parameters also have a significant effect on blood
pHe, any therapy used to adjust kidney function should be undertaken with extreme caution.

On the other hand, altering tumour proton production, , has a signicant effect on tumour
pHe, but virtually no effect on blood pHe, and therefore should be considered a safe option.
Any potential therapy which could decrease proton production (such as through inhibiting
glycolysis) could be used in combination with bicarbonate to an enhanced effect. Ongoing
studies by our research group are currently exploring these possibilities.

There are several important extensions to this model which would improve the accuracy of
the predictions. First, more detailed modelling of the contribution of other intrinsic buffering
components would strengthen the quantitative predictions of the model. The incorporation
of these static tissue buffers would not alter the regulation examined in this model, but do
contribute to the overall buffering capacity of the tumour. We have assumed a constant
buffering contribution from intrinsic buffers, implicitly included in the proton production
term. However, it is likely that the intrinsic buffering capacity of the tumour is pH
dependent, and thus would be an important model extension to examine. Currently, the
model will most likely overestimate the effect of bicarbonate treatment on both the blood
and the tissue. Nevertheless, comparing our mathematical model to in vivo data indicates
this model performs well alone.

Secondly, the predictions in this model are based on the assumption that the tumours in
humans will have the same vascularity as in mice, which is not necessarily valid in all cases.
However, the cell lines used in the mice were human breast cancer cells, thus it is reasonable
to assume the cell lines will produce the same amount of pro-angiogenic signals and
therefore initiate similar vasculature. Still, the stromal responses might differ in each
situation, which highlights the difficulties of using animal models (even with human cell
lines) in therapy experimentation. Additionally, vascular heterogeneity within a single
tumour will result in variable buffer delivery across the tumour, which will be important to
study with advances in functional vessel imaging.

Thirdly, the effects of systemic alkalosis on respiration is controversial, and we have
neglected the effect of H+ on ventilation rate for several reasons. Firstly, isolated changes in
H+ are mainly sensed by the peripheral chemoreceptors [26], which only contribute a small
amount to ventilation. Secondly, respiratory compensation to metabolic alkalosis is
controversial [27,28,29]. Early studies indicated that there was little to no respiratory
compensation in humans and dogs [27,28]. Later studies have shown that in some human
cases there is respiratory compensation, although the magnitude of compensation is highly
variable, and in all cases limited [30]. Even in cases of severe metabolic alkalosis, it is
extremely rare to see respiratory compensation raising pCO2 levels above 55mmHg from the
normal 40mmHg [31,32]. There is no concrete evidence surrounding murine respiratory
compensation. However, respiratory compensation to metabolic alkalosis is present in some
humans. As our model system is sensitive to the ventilation term, the refinement of this term
is worth further consideration.

Experimental studies undertaken by our group are currently examining the presence (or
absence) of respiratory compensation in mice, which will hopefully elucidate the variability,
timing, and extent of this compensation should it occur. These and other experimental
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results will be used to refine and develop the current model, which can further aid in
developing safe and effective anti-tumour therapies.

Despite the many possible extensions, our simplified model accurately predicts acid-base
regulation in the blood and tumour, and can be used to suggest the most promising
parameters and processes to target in order to reduce tumour acidity and prolong survival.
Novel therapies utilising exogenous buffers or other combinations can be built on this basic
framework for future study. Finally, this model could be linked to other cellular models of
tumour growth [33,34], and subcellular models of tumour metabolism to provide a
multiscale model linking pHe regulation with tumour invasion.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Schematic of the systemic buffering model presented in Equations (2)-(7). The two
compartments, blood and tumour, are linked through the vascular transfer of protons and
buffering components such as carbon dioxide (CO2) and bicarbonate (HCO3). In the blood,
various physiological systems such as ventilation and renal filtration tightly regulate the
buffering system.
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Figure 2.
Simulations of Equations (9)-(14) for human blood (red line) and tumour (blue line with
squares) values of pHe (top left),  (top right), CO2 (bottom left), and H+ (bottom right)
levels, with no metabolic or respiratory disorder, and no bicarbonate treatment. Note the
blood pHe remains at 7.4, with normal levels of  and CO2. By contrast, the tumour has
a lowered pHe to 7.0, with elevated CO2 and low  levels. The numerical simulations
are run with initial conditions (16) and parameters as in Table 1 but with θ1 = 0. Note that τ
of 109 corresponds to a dimensional time of approximately 10 hours.
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Figure 3.
Simulated respiratory disorders in humans. Induced respiratory acidosis (left panels) and
induced respiratory alkalosis (right panels). In both situations, there is an initial blood pHe
alteration due to the respiratory disturbance. However, after a few hours, the effect of renal
compensation is visible, pushing the pHe back to normal and resulting in altered bicarbonate
and carbon dioxide levels. In this simulation, Equations (9)-(14) are solved with initial
conditions (16) and parameters as in Table 1 except the change in ξ3(cb) (ξ3(cb)=7.7 × 10−8

for respiratory acidosis, ξ3(cb)=2.3 × 10−7 for respiratory alkalosis), and with θ1 = 0. Note
that τ of 109 corresponds to a dimensional time of ≈ 10 hours.
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Figure 4.
Simulated metabolic disorders in humans. Results are shown for induced metabolic acidosis
(left panels) and induced metabolic alkalosis (right panels). Elevations (reductions) in blood
pHe result in subsequent increases (decreases) in tumour pHe. Additionally, acidification of
the bloodstream can cause substantial reductions in tumour pHe, potentially to toxic levels
for tumour cells. In this simulation, Equations (9)-(14) are solved with initial conditions (16)
and parameters as in Table 1 except with θ1 = −5 × 10−6 in metabolic acidosis and θ1 = 4 ×
10−6 in metabolic alkalosis.
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Figure 5.
Human buffer curve comparison between in vitro, in vivo, and calculated with our model.
Blue lines represent in vitro curves of blood containing varying amounts of haemoglobin.
Dark black lines are the in vivo observed ranges in values for a normal human. Red squares
and triangles represent calculated values when Equations (9)-(14) are solved with initial
conditions (16) and parameters as in Table 1 but with varying ξ3 to simulate impaired
ventilation, and varying θ1 to simulate ingestion or loss of bicarbonate. Red squares
represent inducing a metabolic disturbance by varying  (θ1) with a constant pCO2
level (40 mm Hg). The accuracy of the mathematical model, particularly with regards to
metabolic alkalosis, is encouraging. Red triangles represent the effect of varying CO2
through disordered ventilation. These data points were obtained by fixing ventilation rate,
ξ3, at several values, running the simulations as in Figure 3, and taking the blood CO2,

, and pHe values prior to renal compensation consistent with experiments. Although
this model does not focus on respiratory disturbances, it still provides a good fit to data in
this region, particularly in the region of interest where blood pHe is in the normal and safe
region of 7.35-7.45. In vitro and in vivo data adapted with permission from The University
of Chicago Press (Figures 17 and 18 in [18]).

Martin et al. Page 26

Math Biosci. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 6.
Comparison of the numerical (black dashed line) and uniform analytical approximation (red
line) in the (a) blood and (b) tumour in an untreated human. The uniform analytical solution
is calculated from Equation (77). The numerical solution is simulated with Equations (9)-
(14). All numerical and analytical solutions are calculated with initial conditions (16) and
parameters from Table 1 but with θ1 = 0.
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Figure 7.
Tumour H+ ( ) sensitivity coefficients (Sht,p) with respect to parameter (p) with an absolute
value greater than 1 for a treated human (black) and mouse (blue). The human tumour pHe
is most sensitive to tumour proton production (φ2), renal function parameters (ξ1 and φ1),
ventilation parameters (Δ1 and Δ2), and pKa (α2). By comparison, the mouse is less sensitive
to the parameters in general, and in particular much less sensitive to the ventilation
parameters (Δ1 and Δ2). These coefficients were calculated with bicarbonate treatment,
values as in Table 1. A table of all the sensitivity coefficients can be found in Appendix B.

Martin et al. Page 28

Math Biosci. Author manuscript; available in PMC 2012 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Martin et al. Page 29

Table 1

Mouse and human parameter values and sources. Details of the extraction and calculation of the parameters
can be found in Appendix A. All citations of The Jackson Laboratory are in reference to the Mouse Tumor
Biology Database (MTB), Mouse Genome Informatics, The Jackson Laboratory, Bar Harbor, Maine. The
MTB is a database of laboratory mouse strain measurements of phenotypic and genotypic data [56]. The
database is located at http://tumor.informatics.jax.org.

Name Mouse Human Units Source (M: mouse, H: Human)

h 0 3.98 × 10−8 3.98 × 10−8 mol/L M:[35,36] H: [18]

b 0 2.4 × 10−2 2.4 × 10−2 mol/L M:[35,36] H:[18]

c 0 1.2 × 10−3 1.2 × 10−3 mol/L M:[35,36] H:[18]

P 1 3.4 × 10−5 3.4 × 10−5 cm/s [16,37]

P 2 1.2 × 10−4 1.2 × 10−4 cm/s [9]

P 3 1 × 10−3 1 × 10−3 cm/s [38,39]

V AD 20 20 cm/cm 2 [40,41,42]

vT 0.1 0.01 – – M: [11,43] H:[44,43]

ϕ 1 7.8 × 10−6 7.8 × 10−6 mol/L/s fit to [11], within the range from [45,9]

ϕ 4 3.7 × 10−5 3 × 10−6 mol/L/s M:[46,35,36] H: [46]

ϕ 2 6.16 × 10−2 1.14 × 10−2 1/s M:[47] H: [17,18]

ϕ 3 1.5 × 10−6 1.2 × 10−6 mol/L/s M: [45,35] H: [45,17]

ϕ 5 2 × 10−7 2.5 × 10−7 mol/L/s M: [46,35] H:[46,17]

λ 1 3 × 10−3 5.2 × 10−4 1/s M:[48,49] H: [18,50,51,52]

λ 2 102 0.042 1/L M:[53] H: [17,18]

k 2 2.73 × 104 2.73 × 104 1/s [13,14,15]

k 1 3.437 × 1010 3.437 × 1010 L/mol × s from pKa in [17,54]

Vslope 0.34 1.1 × 103 L2/mol × s M:[22] H:[20,21]

Vmax 5.5 × 10−4 1 L/s M:[22] H:[20,21]

Vmin 1.4 × 10−4 0.02 L/s M:[22] H:[20,21]

Vintercept 9.4 × 10−5 1.237 L/s M:[22] H:[20,21]

θ 1 7.6 × 10−6 6 × 10−7 mol/L × s M: [11] H: [11,55]
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Table 2

Mouse and human nondimensionalised parameter values.

Name Mouse Human

δ 1 5.0 × 10−2 5.0 × 10−2

Γ 1 2.5 × 10−8 2.5 × 10−8

δ 3 3.02 × 104 3.02 × 104

φ 1 7.17 × 10−3 7.17 × 10−3

Γ 2 8.79 × 10−8 8.79 × 10−8

α 2 1.0 1.0

φ 5 6.11 × 10−9 7.63 × 10−9

Γ 3 7.32 × 10−7 7.32 × 10−7

φ 2 1.13 × 10−7 2.11 × 10−8

ξ 1 1.10 × 10−7 1.90 × 10−8

Θ 1 1.16 × 10−8 9.16 × 10−10

vT Γ 1 2.5 × 10−9 2.5 × 10−9

φ 3 1.28 × 10−3 1.1 × 10−3

vT Γ 2 8.79 × 10−9 8.79 × 10−9

φ 4 1.13 × 10−6 9.16 × 10−8

vT Γ 3 7.32 × 10−8 7.32 × 10−8

Δ min 5.23 × 10−7 3.08 × 10−8

Δ 1 1.52 × 10−6 2.03 × 10−6

Δ 2 3.51 × 10−7 1.9 × 10−6

Δ max 2.05 × 10−6 1.54 × 10−6
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