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Abstract
A growing number of physiologically relevant genes are regulated in response to changes in
intracellular oxygen tension. It is likely that cells from a wide variety of tissues share a common
mechanism of oxygen sensing and signal transduction leading to the activation of the transcription
factor hypoxia-inducible factor 1 (HIF-1). Besides hypoxia, transition metals (Co2+, Ni2+ and
Mn2+) and iron chelation also promote activation of HIF-1. Induction of HIF-1 by hypoxia is
blocked by the heme ligands carbon monoxide and nitric oxide. There is growing, albeit indirect,
evidence that the oxygen sensor is a flavoheme protein and that the signal transduction pathway
involves changes in the level of intracellular reactive oxygen intermediates. The activation of
HIF-1 by hypoxia depends upon signaling-dependent rescue of its α-subunit from oxygen-
dependent degradation in the proteasome, allowing it to form a heterodimer with HIF-1β (ARNT),
which then translocates to the nucleus and impacts on the transcription of genes whose cis-acting
elements contain cognate hypoxia response elements.
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1. Introduction
Man and other mammals adapt to hypoxia by a number of physiologically appropriate
responses, such as increased production of erythropoietin (Epo) which augments the red cell
mass, induction of tyrosine hydroxylase (TH) which facilitates the control of ventilation via
the carotid body, and stimulation of new blood vessels by up-regulation of vascular
endothelial growth factor (VEGF) (Bunn and Poyton, 1996). The regulation of the genes
encoding these proteins depends upon accurate sensing of pO2 and transduction of a signal
that activates HIF-1, a heterodimeric transcription factor that enables enhanced transcription
(Guillemin and Krasnow, 1997). It is likely that the mechanism for the sensing of oxygen
and its subsequent signaling departs from well established systems of receptor binding. Due
to oxygen’s peculiar chemical properties, there is a limited repertoire of molecules to which
it can combine. Oxygen is known to bind to and react with heme proteins (and, in certain
invertebrates, hemerythrin, hemocyanin and chlorocruorin). Heme proteins play a critical
role in oxygen sensing by bacteria and yeast (Bunn and Poyton, 1996). Considering that
higher eukaryotes are exposed to less varied environmental stimuli but must respond to more
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diverse and complex internal stimuli, it is likely that they have become endowed with more
elaborate and delicate mechanisms for oxygen sensing and signal transduction. In all
vertebrates and many non-vertebrates, oxygen transport depends on the circulation of
erythrocytes which enable oxygen unloading to tissues at relatively high O2 tension.
Therefore in order to monitor perturbations in oxygen transport there is need for sensors
with relatively low oxygen affinity.

Initial work on oxygen sensing and signal transduction began with studies on neural
transmission in the carotid body and erythropoietin production in hepatic cell lines. The
subsequent discovery of HIF-1 (Wang et al., 1995) and the realization that the sensing and
signaling process is probably shared among many if not all types of cells (Maxwell et al.,
1993) have prompted experiments in a variety of other experimental systems. HIF-1 is a
heterodimeric protein composed of HIF-1α and HIF-1β (ARNT) subunits, both of which
belong to the basic helix–loop–helix PAS family (Wang and Semenza, 1993b; Wang et al.,
1995). At the mRNA level, both HIF-1α and ARNT genes are constitutively expressed and
not significantly up-regulated by hypoxia (Gradin et al., 1996; Huang et al., 1996; Wood et
al., 1996; Kallio et al., 1997). Whereas changes in oxygen tension fails to affect ARNT
protein abundance, hypoxia markedly increases levels of HIF-1α (Wang et al., 1995; Huang
et al., 1996; Kallio et al., 1997), rescuing the subunit from oxygen-dependent degradation in
the proteasome (Huang et al., 1998). Thus, hypoxia-induced activation of HIF-1 depends in
part on post-translational stabilization of HIF-1α.

1.1. Carotid body
Ventilation in mammals, birds and perhaps fish, is regulated in part by the carotid body
(Dejours, 1981; Schmidt-Nielson, 1990). This very small and highly vascular organ, located
in man at the bifurcation of the carotid artery, is composed of glomus type I chemoreceptor
cells which, upon challenge with hypoxia, release neurotransmitters that set the level of
electrical activity in the afferent fibers of the carotid sinus nerve. Type I cells have voltage
dependent K+, Na+ and Ca+ + channels (López-Barneo et al., 1988). Patch clamp studies on
isolated plasma membranes from type I cells have shown that a single K+ channel type is
down-regulated by lowering oxygen tension (Ganfornina and López-Barneo, 1991). The
rapid response indicates that the oxygen sensing mechanism is independent of transcription
and translation. Moreover, this physiologically relevant oxygen sensor appears to be
localized in the plasma membrane as opposed to somewhere in the cell interior. The addition
of relatively low levels of carbon monoxide to the hypoxic gas mixture substantially
reverses the inhibition of K+ currents (López-López and González, 1992) and the
chemosensory nerve discharge (Lahiri et al., 1993). In excitable O2 sensitive cells,
intracellular free Ca2+ may be a primary mechanism for gene regulation (Raymond and
Millhorn, 1997).

1.2. Erythropoietin production
Erythropoietin is a glycoprotein hormone that regulates proliferation and differentiation of
erythroid cells (Jelkmann, 1992; Porter and Goldberg, 1993). A large number of classic
physiologic studies demonstrated that Epo production is markedly enhanced by hypoxia.
The only other known stimulus to Epo production in vivo is the administration of certain
transition metals. Experiments with intact animals (Goldwasser et al., 1958) as well as
perfused kidneys (Fisher and Langston, 1968) demonstrated that cobaltous chloride
stimulates erythropoiesis by increasing the production of Epo. Intrarenal injections of nickel
have also been shown to induce erythrocytosis (Jasmin and Solymoss, 1975; Morse et al.,
1977). When human hepatoma cells (Hep3B or HepG2) were incubated for 24 h in the
presence of increasing amounts of CoCl2 or NiCl2 there was a dose-dependent enhancement
of Epo mRNA expression (Goldberg et al., 1988; Fandrey and Bunn, 1993) and protein
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production (Goldberg et al., 1988) similar to that observed with increasing degrees of
hypoxia. When other transition metals (manganese, zinc, iron, cadmium, and tin) were
tested, only manganese induced measurable Epo protein, but less than that obtained by either
cobalt or nickel. Hypoxic induction of erythropoietin protein (Goldberg et al., 1988) and
mRNA (Huang et al., 1999) in Hep3B cells was markedly inhibited by the presence of
carbon monoxide (CO). In contrast to its effect in hypoxic cells, CO did not inhibit the
induction by cobalt or nickel of Epo protein (Goldberg et al., 1988) or mRNA (Huang et al.,
1999).

2. Evidence that the sensor is a heme protein
The effect of carbon monoxide on oxygen sensing signaling extends beyond the carotid
body and the production of erythropoietin in Hep3B cells. CO has also been shown to offset
hypoxia’s effect on the expression of VEGF (Goldberg and Schneider, 1994), platelet
derived growth factor (Morita and Kourembanas, 1995), endothelin-1 (Morita and
Kourembanas, 1995) and phosphoenolpyruvate carboxykinase (Kietzmann et al., 1993).
More recently, Liu et al. (1998) and our laboratory (Huang et al., 1999) have shown that CO
suppresses the hypoxic activation of HIF-1. Carbon monoxide has remarkable specificity in
biological systems, binding non-covalently to ferrous heme groups in hemoglobin,
myoglobin, certain cytochromes and other heme proteins. Thus these experiments strongly
support the hypothesis that the oxygen sensor is a heme protein. The results with CO
indicate that the affinity of this ligand for the heme group in the sensor is low, compared to
hemoglobin which binds CO over 200-fold more tightly than oxygen. It is likely that the
sensor’s low affinity for CO has adaptive significance. The primary toxicity of CO in higher
organisms is due to its high affinity binding to hemoglobin, locking the tetramer in the ‘oxy’
comformation and thereby increasing oxygen affinity and decreasing oxygen unloading to
tissues. When subjected to CO-induced hypoxic stress, the organism needs intact oxygen
sensors. These sensors would be unresponsive if they had high affinity for CO.

The induction of Epo by the transition metals Co2+, Ni2+ and Mn2+ led to experiments
which support the hypothesis that cobalt, nickel and manganese atoms substitute for the iron
atom in the heme moiety of the oxygen sensor (Goldberg et al., 1988). Cobalt has been
shown to be a substrate for ferrochelatase, the enzyme responsible for the incorporation of
iron into protoporphyrin IX to make heme (Labbe and Hubbard, 1961). Radiolabeling
studies both in vivo (Sinclair et al., 1979) and in cultured cells (Sinclair et al., 1982) have
demonstrated the incorporation of transition metals including cobalt and nickel into heme. If
the effect of cobalt and nickel depends on incorporation into the heme moiety, increased
levels of iron should competitively inhibit the stimulatory effects of these metals on Epo
gene expression. We have provided experimental support for this prediction (Ho and Bunn,
1996). The response to cobalt is not specific for the Epo gene or for Epo producing cells. For
example, cobalt has been shown to mimic hypoxia in stimulating the expression of VEGF
(Goldberg and Schneider, 1994; Ladoux and Frelin, 1994; Minchenko et al., 1994) and
glycolytic enzymes (Firth et al., 1994; Semenza et al., 1994; Ebert et al., 1996) in a number
of different types of cells Moreover, reporter gene experiments show that Epo’s 3′ enhancer
(discussed in detail below) is responsive to both hypoxia and cobalt in a variety of cell lines
from different tissues (Maxwell et al., 1993). The fact that CO does not block the induction
of Epo by cobalt or nickel (Goldberg et al., 1988; Huang et al., 1999) is consistent with the
inability of cobalt and nickel substituted hemes to bind to CO.

Since nitric oxide (NO), like CO is a gaseous ligand that binds to ferrous atoms in heme
proteins, it is of interest to determine its impact on oxygen sensing and signaling. Several
laboratories have shown that NO from nitroprusside or other donors suppresses hypoxic
activation of HIF-1 DNA binding, the stabililzation of HIF-1α protein and the induction of
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reporter genes containing HIF-1 response elements (Liu et al., 1998; Sogawa et al., 1998;
Huang et al., 1999).

The best studied system of oxygen sensing and signal transduction has been in nitrogen-
fixing bacteria, Rhizobium, whose oxygen sensor has been shown to be an oxygen-binding
heme protein containing a protein kinase domain (Gilles-Gonzalez et al., 1991, 1994;
Rodgers et al., 1996; Lukat-Rodgers and Rodgers, 1997).

The evidence summarized above for a central role of heme protein(s) has led to the proposal
of two clearly distinct sites and mechanisms for oxygen sensing and signaling:1 (a) a
cytochrome b-like NAD(P)H oxidase on the plasma membrane; and (b) mitochondrial
complex IV cytochrome oxidase

3. Cytochrome b-like NAD(P)H oxidase
3.1. Role of peroxide in signaling

Fandrey et al. (1994) showed that the induction of Epo production, following exposure of
Hep3B cells to hypoxia, could be aborted by the addition of either hydrogen peroxide,
menadione, an agent which increases intracellular peroxide production, or aminotriazole, an
inhibitor of catalase. As mentioned above, treatment of Hep3B cells with cobalt induces Epo
production. HepG2 cells exposed to cobalt undergo a significant decrease in production of
hydrogen peroxide (Görlach et al., 1994). Taken together, as shown in Fig. 1, these
experiments suggest that molecular oxygen is chemically reduced, presumably by the
sensing apparatus, to superoxide and peroxide, thereby providing a plausible chemical signal
that could impact on the activity of HIF-1, which in turn regulates oxygen responsive genes.

In cells containing hydrogen peroxide, highly reactive oxygen compounds such as hydroxyl
radical and singlet oxygen can be formed. The generation of these reactive oxygen species
(ROS) is catalyzed by free iron via the Fenton reaction. Virtually all genes that are inducible
by hypoxia are also up-regulated by desferrioxamine and other strong chelators of iron
(Wang and Semenza, 1993a; Semenza et al., 1994; Gleadle et al., 1995a). As depicted in
Fig. 1, it is likely that drastic reduction in intracellular free iron lowers the level of ROS,
thereby mimicking a hypoxic environment.

3.2. Spectral analyses
Support for the central role of an oxidase has been provided by Acker (1994a,b) who have
made direct spectral measurements of cells in which oxygen sensing plays a critical role.
They have obtained difference spectra in the visible range in the presence and absence of
inhibitors of respiratory cytochromes in both Type I carotid body cells (Cross et al., 1990)
and in HepG2 cells (Görlach et al., 1993). In each case, their spectral data could be
deconvoluted to suggest the presence of a b-like cytochrome. This heme protein was
estimated to comprise ~6% of the total cytochrome b in the cell. It appeared to bind oxygen
with relatively low affinity and also carbon monoxide (Görlach et al., 1993). Moreover,
cobalt treatment of HepG2 cells abolished the response of this b-like cytochrome to hypoxia
whereas the redox states of mitochondrial cytochromes c and aa3 were unaffected (Görlach
et al., 1994). Although these absorbance measurements are potentially of considerable

1Recently, Srinivas et al. (1998) have proposed yet another model of oxygen sensing. They expressed the α-subunit of the
heterodimeric transcription HIF-1 as a GST-fusion protein in E. coli and reported that it contains up to 2 moles of nonheme iron per
mole protein. They suggested that the iron atoms on this protein could bind O2, thereby serving as a non-heme sensing mechanism
that would impact directly on HIF-1 activation. However, the authors have subsequently retracted this report [J. Biol. Chem. 74,
1180].
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importance and value, they are inherently difficult to execute and to interpret, owing to a
low ratio of signal to noise.

3.3. Tissue localization
The spectral evidence that the oxygen sensor is a b cytochrome led Acker et al. to focus on
neutrophil-macrophage cytochrome b558, which has similar spectral properties and,
importantly, functions as a NAD(P)H oxidase, converting oxygen to superoxide, in keeping
with the postulated role of reactive oxygen compounds in signaling. They demonstrated by
Western blot analysis that both type 1 cells of the carotid body (Kummer and Acker, 1995)
and HepG2 cells (Görlach et al., 1993) contain at least two of the subunits (p22phox and
p47phox) of the oxidase. However, the specific subunits that compose the NADPH oxidase in
neutrophils and macrophages are unlikely to play important roles in oxygen sensing since
patients with genetic subtypes of chronic granulomatous disease, characterized by absence
or abnormality of these subunits, have a very restricted clinical phenotype with no apparent
evidence of disordered oxygen sensing. Moreover, lymphoid cell lines from patients
deficient in gp91phox, p22phox, when transfected with an oxygen sensitive reporter genes,
showed normal responses to hypoxia (Wenger et al., 1996).

Additional support for the role of an NAD(P)H oxidase in oxygen sensing has come from
experiments utilizing iodonium compounds (Goldwasser et al., 1995; Gleadle et al., 1995b)
which inhibit this type of enzyme along with other flavoproteins (Stuehr et al., 1991).
Diphenylene iodonium (DPI) transiently increased the spontaneous neural discharge in
isolated perfused carotid body preparations and blocked the hypoxia-induced increase in
discharge (Cross et al., 1990). The same result was observed with pulmonary neuroepithelial
cells (Youngson et al., 1993). However, interpretation of these results is confounded by the
observation that DPI is a non-specific inhibitor of ion channels (Wyatt et al., 1994).

Despite major gaps in our understanding, it seems likely that most cells share a common
oxygen sensing apparatus which is depicted schematically in Fig. 1. The sensor is likely to
be a cytosolic, membrane bound, multisubunit b-like cytochrome which binds oxygen and
reduces it to superoxide, thereby generating ROS which serve as chemical signals that
impact on the transcription factor HIF-1 that regulates oxygen responsive genes. This
general model accommodates a considerable body of physiologic, biochemical and genetic
evidence described above. In its simplest form this scheme would provide a continuous
monitor of intracellular oxygen tension over a wide range.

4. Mitochondrial complex IV heme protein
Since the mitochondrion is the primary site of oxygen metabolism, this organelle might
seem to be a logical site for sensing and initiation of signal transduction. As mentioned
above, patch clamp experiments indicate that the oxygen sensor in carotid body type I cells
resides in the plasma membrane (Ganfornina and López-Barneo, 1991). Nevertheless,
several reports have suggested that mitochondria may play a critical role in oxygen sensing
by the carotid body (Mulligan et al., 1981; Obeso et al., 1985; Duchen and Biscoe, 1992;
Wilson et al., 1994; Lahiri et al., 1995). In view of the extraordinarily rich vascularity and
high oxygen consumption of the carotid body, there may be a unique functional role for a
mitochondrial oxygen sensor.

Recently, Schumacker et al. (Chandel et al., 1997, 1999; Duranteau et al., 1998) have
presented evidence that mitochondrial cytochrome oxidase (Complex IV) serves as an
oxygen sensor in other cell types: hepatocytes and cardiac myocytes. These investigators
observed that when cells are exposed to moderate degrees of hypoxia (20 torr=3% O2),
oxygen uptake decreased significantly, owing to a significant reduction in the Vmax of
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cytochrome oxidase. This effect was noted after a latency of ~2 h and was fully reversible.
Measurements of mitochondrial membrane potential indicated that the decrease in
respiration following hypoxia was due solely to a direct inhibition of mitochondrial proton
pumping and not to decreased ATP utilization. Mitochondria are a major source of
superoxide (O2

−) owing to inefficient transfer of electrons in the respiratory chain.
Accordingly, Schumacker’s group performed a set of experiments to test whether
superoxide produced proximal to mitochondrial Complex III serves as a signalling molecule.
They showed that graded decreases in pO2 from 35 to 7 torr (5–1% O2) resulted in a
progressive increase in ROS, as measured by the fluorescent probe dichloro-fluoriscein. The
addition of inhibitors supported the mitochondria as a source of the induced ROS. Rotenone
and TTFA (inhibitors of Complexes I and II, respectively) suppressed formation of ROS,
whereas antimycin A and azide (inhibitors of Complex III and IV, respectively) caused an
increase in ROS. These investigators then showed that HIF-1 activation and Epo gene
expression in Hep3B cells correlated directly with changes in ROS, induced either by
mitochondrial inhibitors or by reducing agents (Chandel et al., 1999). Moreover, in ρo
Hep3B cells, whose mitochondria have been destroyed by ethidium bromide, hypoxia failed
to induce either HIF-1 activity or Epo gene expression. In contrast, when ρo Hep3B cells are
exposed to cobalt, HIF-1 is activated and Epo mRNA is up-regulated. The model for oxygen
sensing suggested by these findings is in direct conflict with the one described above, in
which a cytochrome b-like oxidase generates decreased levels of ROS during hypoxia.

Considerably more experimental work is needed in order to establish whether either this
mitochondrial model or the NADPH oxidase model of oxygen sensing and signaling is
correct.
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Fig. 1.
Proposed model of oxygen sensing and signaling. In oxygenated cells, a flavo-heme protein
in the plasma membrane functions as an NADPH oxidase, transferring electrons through the
flavin and heme to molecular oxygen, generating superoxide O2

− which in the presence of
iron is converted to OH· and other reactive oxygen species. As a result HIF-1α is oxidatively
modified so that it is recognized by the proteasome and rapidly degraded. At low oxygen
tension, HIF-1α is stable and can form a heterodimer with constitutively expressed HIF-1β,
thereby activating HIF-1 which translocates to the nucleus and binds to response elements in
hypoxia inducible genes.
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