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Epidemiological and basic science evidence suggest a possible shared pathophysiology between type 2 diabetes mellitus (T2DM) and
Alzheimer’s disease (AD). It has even been hypothesized that AD might be ‘type 3 diabetes’. The present review summarizes some of the
evidence for the possible link, putative biochemical pathways and ongoing clinical trials of antidiabetic drugs in AD patients. The
primary and review literature were searched for articles published in peer-reviewed sources that were related to a putative connection
between T2DM and AD. In addition, public sources of clinical trials were searched for the relevant information regarding the testing of
antidiabetic drugs in AD patients. The evidence for a connection between T2DM and AD is based upon a variety of diverse studies, but
definitive biochemical mechanisms remain unknown. Additional study is needed to prove the existence or the extent of a link between
T2DM and AD, but sufficient evidence exists to warrant further study. Presently, AD patients might benefit from treatment with
pharmacotherapy currently used to treat T2DM and clinical trials of such therapy are currently underway.

Introduction

Type 2 diabetes mellitus (T2DM) and Alzheimer’s disease
(AD) are both more prevalent with ageing, but it has gen-
erally been assumed that this is coincidental, not a reflec-
tion of co-morbidity. However, evidence suggests that
patients with T2DM are at an increased risk of getting AD
and that hyperinsulinaemia and insulin resistance – hall-
marks of T2DM [1–3] – can lead to memory impairment.
Animal models of T2DM have reduced insulin transport to
the brain, reduced insulin uptake and reduced neuronal
insulin [4–6], consistent with reported reduced insulin
levels, insulin receptor expression and insulin resistance in
brains of AD patients [7–9]. Recently, Takeda et al. [10]
reported studies in which they crossed two well-
established mouse models of T2DM (viz. ob/ob and NSY
mice) into an APP23 transgenic mouse background. They
found that in both APP+–ob/ob and APP+–NSY mice, diabe-
tes exacerbated cognitive dysfunction, which supports
impairment in insulin signalling as a mechanistic link
underlying these seemingly disparate disorders. From a
clinical perspective, a link would suggest that currently
available ‘antidiabetic’ drugs might be beneficial in treat-
ing AD patients. The present review summarizes the two
disorders, the postulated common biochemical links, and
the clinical trials of ‘antidiabetic’ drugs in AD.

Diabetes

It is estimated that almost 8% (24 million) of the US popu-
lation has diabetes [11]. Another estimated 57 million or
more have prediabetes, defined as an intermediate state of
altered glucose metabolism (blood glucose between 110
and 126 mg dl–1), placing them at increased risk for diabe-
tes [12]. Type 2 diabetes mellitus is a condition in which a
high blood glucose level results from increased hepatic
glucose production, impaired insulin production by pan-
creatic b-cells, impaired insulin release in response to
hyperglycaemic stimuli or ‘insulin resistance’ (inadequate
response to insulin by target cells).Type 2 diabetes mellitus
accounts for about 90–95% of diagnosed cases of diabetes
[13]. Inadequate glucose control leads to medical compli-
cations and, possibly through defective leptin signalling,
includes effects on the central nervous system (CNS) [14,
15]. Although T2DM affects persons 60 years and older
disproportionately, the number of cases in the younger
population is on the rise [13]. Type 2 diabetes mellitus is
associated with a variety of risk factors (including a family
history of diabetes, history of gestational diabetes,
impaired glucose metabolism, poor diet, obesity and
physical inactivity [16]) and affects men and women about
equally [13]. Both genetics and lifestyle play significant
roles [17].
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About 60–70% of diabetics also exhibit mild to severe
forms of nervous system damage [13]. This manifests as
impaired sensation or pain in the feet or hands (diabetic
neuropathy), slowed digestion of food in the stomach,
carpal tunnel syndrome, erectile dysfunction and other
peripheral nerve problems.Central nervous system compli-
cations can include stroke and possibly cognitive impair-
ment [15]. Persistent blood glucose elevation contributes
to atherosclerosis that impairs blood flow to the brain. Indi-
viduals with glycosylated haemoglobin (HbA1c) levels (a
test that indicates blood glucose levels over the previous 3
months) greater than 7% are nearly three times as likely to
have a stroke compared with people who have an HbA1c

level less than 5% [18]. Other CNS complications may result
from changes in blood–brain barrier or transport functions
of the cerebral microvasculature [19]. Such damage might
be associated with vascular dementia. Studies also suggest
that diabetics are at greater risk of depression than nondia-
betics [15], but the mechanistic link is not clear.

Alzheimer’s disease

Alzheimer’s disease [20] currently accounts for 60–80% of
cases of dementia [21]. Onset of symptoms progresses to
cognitive decline that impairs social and other functioning
and eventually leads to death [22, 23].The exact pathologi-
cal defects in AD are unknown, but prevailing theories
implicate build-up of soluble b-amyloid oligomers or
insoluble plaques or neurofibrillary tangles [22, 24].
b-Amyloid [Ab, a 39–43 amino acid peptide formed from
cleavage of amyloid precursor protein (APP)] is a naturally
occurring transmembrane glycoprotein of unknown func-
tion [25, 26]. Neurofibrillary tangles are hyperphosphory-
lated ‘tau’ protein associated with microtubules in axons of
neurons [27]. Early-onset AD has been linked to mutations
on chromosomes 1, 14 and 21, suggesting that there is a
genetic component or predisposition [28]. Consistent with
this, Down’s syndrome (trisomy 21) patients have a higher
risk of developing AD by 50 years of age [29]. Late-onset
AD appears linked to a gene on chromosome 19 coding for
the cholesterol transporter protein apolipoprotein E
(apoE). There are several alleles of the apoE gene, of which
apoE-e2, apoE-e3 and apoE-e4 occur with the highest fre-
quencies [30]. Inheritance of apoE-e4 increases the risk of
developing AD in an autosomal-dominant fashion (i.e.
inheriting one copy apoE-e4 results in a 50% chance of
developing AD). Environmental factors appear to play key
roles [31, 32], and there are postulated links to cardiovas-
cular risk factors, such as high cholesterol, hypertension
and obesity, as well as T2DM [33].

The single greatest risk factor for AD is increasing age
[34]. In 2000, there were approximately 4.5 million AD
patients in the USA, of whom 7% were between 65 and 74
years old, 53% between 75 and 84 years old, and 40% were
�85 years old [35]. Currently, there may be as many as 5.3

million [21], and projections are that by 2050 there will be
13.2 million [35]. Age-specific incidence reveals no signifi-
cant sex difference [36], but possible race differences
[37,38].

Average survival after onset of symptoms is 8 years
(range about 3–20 years) [39]. At time of diagnosis, life
expectancy is approximately half that of those of the same
age not afflicted with AD [40]. Alzheimer’s disease is
currently one of the top 10 leading causes of death in the
USA [41]. Alzheimer’s disease patients typically die from
opportunistic bacterial infections, nutritional deficiencies,
choking, aspiration or trauma [42, 43]. No current treat-
ment stops brain deterioration. The drugs available are
able to slow worsening of symptoms for 6–12 months, but
are effective in only about half the treated population [44].

Possible links

There have been reports of links between T2DM and AD
(sample shown in Table 1). Some of these are highlighted
below.

Insulin processing
Insulin (two peptidic chains joined by two disulfide bonds)
is primarily secreted by b-cells of the pancreas and nor-
mally is released into the circulation through the portal
vein in response to a rise in blood glucose. Insulin-
degrading enzyme (IDE) catalyses the catabolism of insulin
in the liver, kidneys and muscles [45, 46]. It is generally
agreed that insulin located within the brain is mostly of
pancreatic origin, having passed through the blood–brain
barrier, although there is debate about the amount that is
produced de novo within the CNS [47]. Insulin has a signifi-
cant function in the hypothalamus and probably other
brain regions. Major known actions of insulin in the brain
include control of food intake (via insulin receptors located
in the olfactory bulb and thalamus) and effects on cogni-
tive functions, including memory [48, 49].

Possible common or interactive processes in T2DM and
AD have been reviewed [50–52].Within brain, insulin binds
to the a-subunit of the insulin receptor, activates tyrosine
kinase phosphorylation of the b-subunit of the receptor,
and leads to activation of several second-messenger trans-
duction pathways. The neural Shc/MAP (Src homology
collagen mitogen-activated protein) kinase pathway acti-
vates gene expression required for neuronal cell and
synapse growth, maintenance and repair processes. It also
serves as a modulator of hippocampal synaptic plasticity
that underlies learning and memory [53].Another pathway
involves binding of insulin receptor substrates 1 and 2
(IRS-1 and IRS-2) to phosphatidylinositol 3-kinase (PI3K),
which is necessary for synaptic plasticity and memory con-
solidation [54], retrieval and extinction of contextual
memory [55], and Ab-induced memory loss [56]. It also
induces the synthesis of nitric oxide, which in turn plays a
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role in learning and memory processes [57, 58]. Insulin
receptors also modulate neurotransmission by phospho-
rylation of NMDA glutamate receptors (increasing the
opening of the associated Ca2+ channel), through influence
on internalization of the AMPA receptor and by recruiting
GABA receptors to the postsynaptic site [59].

Abnormal insulin processing, insulin receptor defects
or postreceptor defects can lead to CNS problems [60],
including AD, Parkinson’s disease [61], Huntington’s
disease [62], malignancies [63], migraine headaches [64]
and schizophrenia [64, 65].

Insulin receptors
Insulin receptors located in the brain (InsRb) differ from
insulin receptors found in the periphery (InsRp) in size
(a-subunits are smaller in InsRb), glycosylation and insulin-
binding specifics (absence of negative co-operativity in
InsRb) [66]. The InsRb are widely and irregularly distributed
throughout the CNS in distinct patterns, with higher con-
centrations in olfactory bulb, cerebral cortex, hypothala-
mus, cerebellum and choroid plexus [67, 68]. The
distribution of InsRb mRNA is similar [69].

Another receptor from the same protein kinase recep-
tor family is the structurally similar receptor for human
insulin-like growth factor (IGF1R) [70–72]. Both consist of
two a- and two b-subunits and are the product of a single
gene: InsR on chromosome 19 and IGF1R on chromosome
15 [66]. Insulin and IGF bind to both receptors with differ-
ent affinities [73]. Another receptor in the same family,
IGF2R, is structurally distinct from InsR and IGF1R [66],
binds IGF-I and IGF-II (two different types of IGF), but does
not bind insulin [73]. The regional localization of InsRb,
IGF1R, IGF2R are similar, and the actions of insulin and IGF
overlap [66, 74].

Acetylcholine
Recent research suggests a possible link between blood
sugar, insulin resistance and inadequate production of ace-
tylcholine (ACh). Synthesis of ACh involves the enzyme
acetylcholine transferase (ChAT). Acetylcholine transferase
is expressed in insulin and IGF-I receptor-positive cortical
neurons; ChAT expression increases with insulin/IGF-1
stimulation; and ChAT co-localization in insulin or IGF-I
receptor-positive neurons is reduced in AD. Therefore, low
insulin levels and insulin resistance can contribute to a
decrease in ACh levels, which represents a possible bio-
chemical link between diabetes mellitus and AD [2, 75].

ApoE-e4
Diabetes is not only characterized by insulin/glucose
abnormalities, but also by dyslipidaemia [76]. As key
players in lipid metabolism [77], apolipoproteins are
receiving growing attention for their involvement in T2DM
[78].

Of particular interest in the area of AD is ApoE, owing to
a well-established positive correlation between an
increased risk and earlier onset of AD with expression of
apoE-e4 isoform [79, 80]. Along with proteoglycans and
serum amyloid, ApoE is a nonfibrillar component of cere-
bral and systemic amyloid deposits [79]. Compared with
other ApoE isoforms, apoE-e4 displays an enhanced ability
to deposit the neurotoxic Ab while simultaneously contrib-
uting to decreased clearance of plaque.While isomeric dif-
ferences in the CNS have yet to be entirely elucidated,
apoE-e4 exerts less protection against oxidative stress and
contributes to cholinergic dysfunction in AD [80]. Further-
more, the lipid-binding capacity of ApoE, influenced by
the cholesterol transporter ABCA1, may have implications
in AD. Poor lipidation of ApoE, which can result from

Table 1
Sample of studies that suggest a link between type 2 diabetes mellitus and Alzheimer’s disease

Reference Mechanism Synopsis

Munch et al., 1998 [135] AGE In diabetes, accelerated AGE formation is caused primarily by a higher level of plasma glucose.
Janson et al., 2004 [89] Amyloid deposition in islet

and brain cells
More islet amyloid in AD patients than control subjects. No greater brain amyloid in diabetic patients

compared with control subjects. In cases of T2DM patients with brain amyloid, the extent of amyloid
increased with longer duration of diabetes.

Rivera et al., 2005 [75] Low insulin and a decrease
in ChAT

Low insulin levels and low insulin sensitivity can contribute to a decrease in acetylcholine synthesis,
leading to AD.

Razay et al., 2007 [128] Metabolic syndrome AD patients, compared with healthy, normal patients, had a greater waist circumference, higher
triglyceride and glucose levels, and lower HDL cholesterol.

Beydoun et al., 2008 [126] Weight gain and obesity Baltimore Longitudinal Study of Aging. Obesity, central obesity and weight loss among women seem
to play a role in AD, while underweight and weight gain among men increase the risk.

Vilalta-Franch et al., 2008
[129]

Metabolic syndrome Patients with metabolic syndrome are diagnosed with AD at a younger age than AD patients without
metabolic syndrome.

Miklossy et al., 2010 [87] Amyloid and hyper-
phosporylated tau

Islet amyloid polypeptide and hyperphosphorylated tau were found in islet cells of the pancreas in
T2DM patients (on autopsy).

Beeler et al., 2009 [84] JNK, IB1 and hyperphosphorylated
tau with amyloid deposits

Both DM and AD involve co-localization of JNK, IB1 and hyperphosphorylated tau with amyloid
deposits.

AGE, advanced glycation end-products; AD, Alzheimer’s disease; T2DM, type 2 diabetes mellitus; ChAT, acetylcholine transferase; HDL, high density lipoprotein; JNK, c-Jun
N-terminal kinase; IB1, islet brain 1.
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transporter ABCA1 deficiency, confers a heavier amyloid
burden, while overexpression of ABCA1 in the CNS (i.e.
greater ApoE lipidation) results in significant reduction of
Ab plaque formation [81].

Another relationship involving the presence of the
apoE-e4 allele is its negative correlation with brain expres-
sion of IDE, a highly conserved endopeptidase that
degrades cerebral Ab [82]. However, in non-apoE-e4 carri-
ers, the IDE–Ab relationship may still be relevant, as hyper-
insulinaemia might confer competitive inhibition of the
binding (and hence, degradation) of Ab by IDE. While on
average apoE-e4 patients show decreased hippocampal
IDE, further investigation is required [83].

Amyloid and tau
Deposition of amyloid in brain and pancreatic islet cells
represents a pathogenic similarity between AD and T2DM
[84]. Pancreatic amyloid is produced in b-cells and is core-
leased with insulin [85]. A study of transgenic mice found
that excess accumulation of pancreatic amyloid leads to
b-cell dysfunction, disruption in glucose homeostasis and
T2DM [86]. In humans, on autopsy islet amyloid polypep-
tide and hyperphosphorylated tau were found in pancre-
atic islet cells of patients with T2DM [87]. An increased
amount of neurofibrillary tangles and amyloid plaques in
the hippocampus have been found on autopsy in patients
with diabetes [88].

A community-based study investigated whether there
is greater prevalence of pancreatic amyloid in patients
with AD and greater prevalence of cerebral amyloid in
patients with T2DM. Islet amyloid was more frequent and
extensive in AD patients than in non-AD control subjects,
but there was no increased frequency of brain amyloid in
T2DM patients compared with non-diabetic control sub-
jects. However, when cerebral amyloid was present, the
extent of accumulation correlated with the duration of
T2DM [89].

It is well established that Ab results from cleavage of
APP precursor by secretases (a, b, g) [90]. Senile plaques
develop from the release and accumulation of Ab peptide
[91]. The Ab interacts with signalling pathways that regu-
late the phosphorylation of the tau protein, leading to
hyperphoshorylation of tau and aggregation of neu-
rofibrillary tangles in neurons [92]. Tau phosphorylation in
both AD and T2DM involves activation of glycogen syn-
thase kinase-3 (GSK-3), which phosphorylates glycogen
synthase in the rate-limiting step of glycogen biosynthesis
[93–95]. Glycogen synthase kinase-3 is a crucial step in
formation of neurofibrillary tangles, and therefore, GSK-3
inhibition could be a common target treatment of both AD
and T2DM [96, 97]. Glycogen synthase kinase-3 is regulated
by the PI3K pathway discussed in the section Insulin pro-
cessing above.

Another potential link involves a c-Jun NH2-terminal
kinase (JNK) pathway [98]. JNK activity is induced in condi-
tions of chronic hyperglycaemia and insulin resistance,

leading to oxidative stress and programmed cell death
(apoptosis) of pancreatic b-cells [99]. Induction of the JNK
pathway also leads to phosphorylation of c-Jun and tau
found in brains of AD patients [100–102]. The protein JIP-1
[JNK-interacting protein 1; also known as ‘islet brain 1’ (IB1)
protein because it is primarily expressed in brain and
islet cells] is a key regulator of the JNK pathway [84].
Co-localization of JNK, IB1/JIP-1, hyperphosphorylated tau
and amyloid deposits in neurofibrillary tangles in the brain
and pancreatic islets suggests another possible link
between the pathogenesis of AD and T2DM [84].

Inflammation
Insulin resistance, a key aspect of T2DM, is associated with
inflammation [45], specifically with elevated levels of the
inflammatory mediators interleukin-6 (IL-6), C-reactive
protein and a-1-antichymotrypsin [103–105]. It is postu-
lated that elevated levels of acute-phase inflammatory
products are linked with immunological dysfunction,
which leads to insulin resistance [106].

Likewise, there is evidence that AD is associated with
inflammatory processes [107–109]. Inflammatory products
accumulate at different rates in Alzheimer’s patients com-
pared with healthy control subjects [110], the inflamma-
tory cytokine IL-6 is present in senile plaques of AD
patients [111], and elevated immunoreactivity to IL-6 is
found in lumbar and ventricular cerebrospinal fluid in
patients with AD [112]. At least two studies link C-reactive
protein with an increased risk of AD [113, 114]. There are
also reports of reduced incidence of AD in people who take
non-steroidal anti-inflammatory drugs for chronic pain
[115, 116].

Interestingly, peroxisome proliferator-activated
receptor-g (PPARg) agonists, a class of antidiabetic drugs
that reduce insulin resistance, appear to have anti-
inflammatory effects [117]. Such drugs should reduce the
levels of IL-6 and other inflammatory mediators [45] and
might be beneficial in treating or preventing AD.

Mitochondria and oxidative stress
Mitochondrial dysfunction and oxidative stress play key
roles in the pathogenesis of both AD and T2DM, and rep-
resent a possible link [118]. There is increased oxidative
stress in T2DM, with reduced antioxidant capacity [119],
which has been suggested can lead to neuronal injury with
mitochondria as specific targets [120]. In a rat model of
T2DM, brain mitochondria display age-related impairment
of the respiratory chain and an uncoupling of oxidative
phosphorylation [121], which is vital for ATP production.
Since mitochondria provide about 90% of the ATP required
for normal functioning of neurons, mitochondrial dysfunc-
tion results in neural degeneration and loss of metabolic
control.As the CNS is heavily dependent upon ATP produc-
tion, it is more susceptible than other systems [122, 123].
According to the ‘mitochondrial cascade hypothesis’, the
rate of accumulation of mitochondrial damage is deter-
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mined by the basal rate of production of reactive oxygen
species by the electron transport chain, which in turn is
determined by genetics. Oxidative changes in nucleic
acids, lipids and mitochondrial proteins amplify produc-
tion of reactive oxygen species and trigger cells to
generate Ab, tau phosphorylation and formation of neu-
rofibrillary tangles [124].

Obesity and metabolic syndrome
Obesity, especially central body obesity, is an independent
risk factor for metabolic syndrome, a disorder of dyslipi-
daemia, insulin resistance and hypertension. Obesity and
the metabolic syndrome are important risk factors for the
development of T2DM [125]. The following evidence sug-
gests that there may also be a link with AD: the Baltimore
Longitudinal Study of Aging found that men with weight
gain between the ages of 30 and 45 years and women with
a body mass index >30 at ages 30, 40 and 45 years had an
increased incidence of AD [2, 126]; a Swedish study found
that AD risk increased by 36% for every 1.0 increase in
body mass index at age 70 years [127]; men and women
with a midlife body mass index >30 kg m-2 have a greater
risk for AD [33]; and patients with AD have a significantly
larger mean waist circumference, higher mean plasma
concentration of triglycerides and glucose, and lower
mean plasma concentration of high-density lipoprotein
cholesterol [128].The significant role of leptin in regulating
brain function might also be involved. As recently sug-
gested by Han & Li [129], the proposed link between T2DM
and AD would be advanced by studying defective leptin
signalling in the absence of perturbed insulin signalling
[129].

Advanced glycation end-products
Advanced glycation end-products (AGEs) are created
when reducing sugars react nonenzymatically with the
amino groups of proteins and then undergo further reac-
tions, such as rearrangement, dehydration and condensa-
tion, to become irreversibly cross-linked, heterogeneous
derivatives [130]. Advanced glycation end-products were
originally identified in 1912 as end-products of the Mail-
lard reaction [131]. Advanced glycation end-products
accumulate in various cells due to normal ageing, but the
rate of accumulation is significantly elevated in DM [132,
133]. Increased formation of AGEs is also found in AD.
However, extracellular accumulation of AGEs in AD is more
likely to be caused by the accelerated oxidation of glycated
proteins, e.g. by redox-active iron bound to proteins in
amyloid plaques [134, 135]. Intracellular accumulation of
AGEs in both AD and DM is caused by the presence of
phosphates and reactive sugars, such as fructose. The
metabolic consequences include oxidative stress, glucose
hypometabolism and impaired cell function [135].
Advanced glycation end-products have been found in the
CNS of diabetic patients, which could provide a mechanis-
tic link [136].

Clinical trials of antidiabetic drugs
in Alzheimer’s patients

If there is, in fact, some biochemical link between T2DM
and AD, then could it be possible that a drug currently
approved for T2DM could also be useful for treating AD?
We summarize some ongoing trials below.

PPARg agonists
Peroxisome proliferator-activated receptor-g is a key neu-
romodulator found in increased amounts in the brain of
AD patients [137]. Peroxisome proliferator-activated
receptor-g plays a role in multiple processes thought to be
involved in the pathogenesis of both diabetes and AD,
including inflammatory and metabolic processes, cell
growth and differentiation [138]. Initially, the role of PPARg
was explored through the class of drugs known as thiazo-
lidinediones (in particular, rosiglitazone and pioglitazone).
Their mechanism involves the stimulation of PPARg action
in response to changes in insulin, thereby triggering a drop
in serum glucose [139]. These drugs improve insulin resis-
tance [45], promote cholesterol homeostasis [140] and
neuronal Ca2+ homeostasis in hippocampus [141], and
reduce cerebral inflammation through inhibition of IL-6
and tumour necrosis factor [117]. Such actions are hypoth-
esized to control the proliferation of b-amyloid peptide
and improve cognitive function in AD patients [45].

We found 12 studies (three pilot studies and nine
clinical trials) that were designed to explore the potential
benefits of PPARg agonists.Of the 12,three were terminated
early and one is currently ongoing. The remaining eight
studies were all placebo controlled (three open label, five
double blind). Seven evaluated placebo vs. rosiglitazone
2, 4 and/or 8 mg (monotherapy or concomitant with an
acetylcholinesterase inhibitor, frequently donepezil); one
assessed cognitive efficacy of donepezil compared with
rosiglitazone and placebo; and two evaluated pioglitazone
15–30 mg vs. placebo. The mean age range of patients
across the eight studies was 50–90 years. Subjects with
T2DM were only included in the three pilot studies.Enrolled
patients had either amnestic mild cognitive impairment
(MCI, a prodromal stage of AD [142]) and/or mild to
moderate AD (NINCDS/ADRDA classification [143]) with a
MMSE (Mini Mental State Examination) level of cognitive
impairment score of 10–26 (of a possible 30). Cognitive
measures included the Assessment Scale-Cognitive (ADAS-
Cog) test,Clinician’s Interview-Based Impression of Change
plus Caregiver Input (CBIC+) and MMSE, among others.
Sato et al. [144] also measured regional cerebral blood
flow via single photon emission computed tomography
studies.The mean duration of the studies was 24–48 weeks.

The results of Watson et al. [145] demonstrate a positive
correlation between insulin levels and cognitive improve-
ment (increase in recall and lower error rate) at month
6 with rosiglitazone compared with placebo. Plasma
Ab levels remained stable throughout rosiglitazone
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treatment. Although Risner et al. [146] did not initially
observe statistically significant differences between treat-
ment groups, subgroup analysis revealed that improve-
ment in cognitive function was related to ApoE genotype,
in particular, to the apoE-e4 negative allele. Subsequent
larger studies were unable to confirm such a connection,
except for one study that reported a small potential
benefit with rosiglitazone 2 mg and donepezil across all
ApoE genotypes. However, two recent pilot studies [144,
147] agreed with the results of Watson et al. [145]. Sato
et al. [144] reported that the pioglitazone cohort had an
increase in regional cerebral blood flow in the right and left
parietal lobe and some degree in the frontal lobe at month
6. The adverse effects most commonly noted in these
studies were peripheral oedema with rosiglitazone and
pioglitazone.

In summary, based on the eight studies reviewed, the
use of thiazolidinediones might confer some therapeutic
benefit as an adjunctive agent in select patients in the
pre-initial to initial stages of AD, especially if AD is a con-
sequence of insulin dysregulation and/or the patient has a
prior medical condition of T2DM.

Intranasal insulin
Another therapeutic strategy is intranasal administration
of insulin [148]. Insulin is able to enter the brain within a
short time via transport across olfactory and trigeminal
perivascular channels and axonal pathways [149].Two ran-
domized, placebo-controlled studies that explored the
effects of intranasal insulin on memory in individuals with
MCI or mild AD have been reported [150, 151]. Baseline
characteristics were similar for the insulin group and
placebo group with respect to age (mean range 60–80
years) and fasting glucose/insulin levels. Participants were
either diagnosed with AD (NINCDS-ARDA criteria) or had
amnestic MCI. In the study of Reger et al. [151], participants
were further subdivided based on ApoE genotype
(apoE-e4 –/+ allele), and cognitive function was measured
45 min postadministration of treatment agent.The partici-
pants treated with intranasal insulin (20 IU twice daily) dis-
played greater improvement in memory and attention on
day 21. Participants with apoE-e4 negative allele displayed
significant improvement in story recall at both 20 and
40 IU doses compared with the saline group and apoE-e4
positive group. In the assessment for word list recall,
patients in the apoE-e4 negative group taking 40 IU of
insulin performed better than patients in other groups,
while no significant difference was observed between
insulin groups and between insulin and placebo in the
parameters of attention and working memory. In the
apoE-e4 positive group, cognitive function (working and
verbal memory) was reduced with treatment. Plasma
insulin levels were unchanged. Given what is known about
AD and diabetes, it is not surprising that intranasal insulin
could have different effects depending on the apoE-e4
genotype. Adverse effects were minor and included head-

ache, nosebleed and nose soreness. Although the results
reveal statistically and clinically significant differences
between intranasal insulin vs. placebo, the studies were
preliminary. They provide a direction for larger studies.

Metformin
Metformin (N,N-dimethylimidodicarbonimidic diamide) is
an orally active biguanide that lowers blood glucose levels
by suppression of hepatic gluconeogenesis. It also
increases insulin sensitivity and peripheral uptake,
increases fatty acid oxidation, and decreases gastrointesti-
nal absorption of glucose. One phase II clinical trial is cur-
rently investigating the effect of metformin in patients
with MCI [152]. The results have not been reported at the
time of writing.

Type 1 diabetes mellitus and AD

Although the majority of recent attention has focused on
the association of T2DM with AD and is the subject of the
present review, it should be noted that cognitive deficits
(such as impaired learning, memory, problem solving and
mental flexibility) have been found to be more common in
patients with type 1 diabetes mellitus than in the general
population [153, 154], and type 1 diabetes mellitus nega-
tively affects brain pathology and cognitive performance
in a mouse model of AD [155].

Caveats

The link between T2DM and AD must still be considered a
postulate at this time. Critical evaluation of some aspects
of the cited studies reveals potential areas for further veri-
fication or elaboration. For example, because several of the
changes in markers of insulin homeostasis occur increas-
ingly in old age, AD as type 3 DM should be balanced
within the ageing spectrum; Takeda et al. [10] suggest that
the cognitive dysfunction noted in the T2DM ¥ APP cross
mice was probably caused by cerebrovascular changes
(this has implications for treatment where brain vascular
lesions have to be considered); overall, studies have found
little or no influence of T2DM on the progression of AD
lesions, but as the recent work of Sonnen et al. [156] shows,
increased risk of dementia or even AD (where there might
be mixed pathology) is associated with microvascular
pathology or small vessel disease rather than AD increased
pathology (this would be relevant to future therapeutic
approaches). Furthermore, while the epidemiological
studies are quite convincing, the observations regarding
decreases in insulin, insulin receptors and insulin/IGF-1 sig-
nalling in the AD brain are open to interpretation. For
example, it is possible that the decrease is in fact protective
and is reflective of what is occurring in the nerve cells that
survive, consistent with recent results showing that
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decreases in insulin or IGF1 signalling in AD mice prolong
lifespan, reduce Ab deposition and enhance cognitive
function [157–159]. Likewise, several studies have noted a
connection between diabetes and AD only in apoE-e4
negative individuals (e.g. [160]) and that intranasal insulin
transiently enhances cognitive function in normal indi-
viduals as well as AD patients [148], suggesting that the
effect is unrelated to the AD phenotype. Finally, safety con-
cerns have arisen about the use of the PPARg agonist
rosiglitazone for treating patients with diabetes (e.g. [161]).
In relation to this topic, rosiglitazone increases weight gain,
and obesity is a risk factor for cognitive dysfunction and
AD.

Summary

Diabetes and Alzheimer’s disease have traditionally been
thought to be independent disorders. However, the results
of recent epidemiological and basic science investigation
have suggested possible associations and some common
pathophysiological mechanisms. If true, common pharma-
cotherapy should be effective. There are currently clinical
trials testing the effectiveness of ‘antidiabetic’ drugs in AD
patients. The results will not only be important for poten-
tial new pharmacotherapy for AD patients, but will also
shed light on a connection between these otherwise
seemingly disparate serious disorders.
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