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ABSTRACT

DNA cytosine methylation (5-meC) is a widespread
epigenetic mark associated to gene silencing. In
plants, DEMETER-LIKE (DML) proteins typified by
Arabidopsis REPRESSOR OF SILENCING 1 (ROS1)
initiate active DNA demethylation by catalyzing
5-meC excision. DML proteins belong to the
HhH-GPD superfamily, the largest and most func-
tionally diverse group of DNA glycosylases, but the
molecular properties that underlie their capacity to
specifically recognize and excise 5-meC are largely
unknown. We have found that sequence similarity to
HhH-GPD enzymes in DML proteins is actually
distributed over two non-contiguous segments con-
nected by a predicted disordered region. We used
homology-based modeling to locate candidate
residues important for ROS1 function in both
segments, and tested our predictions by
site-specific mutagenesis. We found that amino
acids T606 and D611 are essential for ROS1 DNA
glycosylase activity, whereas mutations in either of
two aromatic residues (F589 and Y1028) reverse the
characteristic ROS1 preference for 5-meC over T.
We also found evidence suggesting that ROS1
uses Q607 to flip out 5-meC, while the contiguous
N608 residue contributes to sequence-context spe-
cificity. In addition to providing novel insights into
the molecular basis of 5-meC excision, our results
reveal that ROS1 and its DML homologs possess a
discontinuous catalytic domain that is unprecedent-
ed among known DNA glycosylases.

INTRODUCTION

DNA methylation at carbon 5 of cytosine (5-meC) is a
reversible epigenetic mark for transcriptional gene
silencing that plays critical roles in development and re-
production of most eukaryotic species. Animal DNA

methylation is mostly confined to symmetrical CG se-
quences, but plants also have significant levels of
methylated cytosines in CHG and CHH sequences
(where H is A, C or T) (1,2). DNA methylation patterns
are subject to dynamic regulation involving both methy-
lation and demethylation processes (3,4) and dysfunction
of methylation control is a key factor in several forms of
human disease, including cancer (5,6). Active DNA
demethylation in mammals occurs in early embryos and
primordial germ cells but its molecular mechanisms are
poorly understood (7). In plants, biochemical and
genetic analyses have identified a family of DNA
glycosylases that remove 5-meC as a free base and
initiate a base excision repair demethylation pathway
(8–12).
Plant 5-meC DNA glycosylases are typified by

Arabidopsis ROS1 (REPRESSOR OF SILENCING 1)
and DME (DEMETER) (8,9), which together with
paralogs DML2 and DML3 (DEMETER-LIKE
proteins 2 and 3) (13,14) are the founding members of
the DML family. All four proteins remove 5-meC from
DNA and cleave the phosphodiester backbone by succes-
sive b,d-elimination, leaving a gap that has to be further
processed to generate a 30-OH terminus suitable for poly-
merization and ligation (10,11,13,14). In vivo, ROS1,
DML2 and DML3 are needed to counteract the robust
RNA-dependent DNA methylation pathway at hundreds
of discrete regions across the plant genome (13–15),
whereas DME contributes to genome-wide demethylation
during endosperm development and is required for im-
printing (11,16–18). Genes encoding putative DML
proteins are only found in plant genomes, including
mosses and unicellular green algae. Members of the
DML family are large polypeptides containing a region
that shows sequence similarity with members of the
well-known HhH-GPD superfamily of DNA repair
glycosylases (19). In addition, they also share a
carboxy-terminal domain of unknown function (10), and
a short amino-terminal domain significantly rich in lysine
(20) (Supplementary Figure S1).
In an ongoing effort to elucidate the molecular basis of

active DNA demethylation, we have chosen ROS1 as an
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archetypal 5-meC DNA glycosylase for detailed analysis.
We have recently reported that the short lysine-rich
amino-terminal domain is not required for catalytic
activity, but mediates strong methylation-independent
binding to DNA, and allows efficient excision of 5-meC
in long substrates (20). However, it remains unknown how
the enzymes of the DML family specifically recognize
5-meC in DNA and distinguish it from unmethylated C.
The fact that ROS1 activity is strongly inhibited by re-
placement of the C5 methyl group by halogen derivatives,
even if these substituents decrease the strength of the
scissile C10-N glycosidic bond, suggests an important
role for selective steric recognition of the target base at
the active site (21). After 5-meC excision, ROS1 remains
bound to its reaction product (20,21). This binding leads
to a highly distributive behavior of the enzyme on DNA
substrates containing multiple 5-meC residues, and may
help to avoid generation of double-strand breaks during
processing of bimethylated CG dinucleotides or densely
methylated DNA regions (21).
A comprehensive understanding of how plant 5-meC

DNA glycosylases specifically recognize and excise their
target base will require solving their crystal structure in
complex with DNA. Nevertheless, some useful informa-
tion may still be obtained by combining structural infor-
mation available from DNA glycosylases of the
HhH-GPD superfamily and the analysis of amino acids
specifically conserved in the DML group. All HhH-GPD
DNA glycosylases share a common core structure that
consists of two helical domains whose interface contains
the enzyme active site (22,23). One of these domains
contains the signature HhH-GPD motif (a helix–
hairpin–helix and Gly/Pro rich loop followed by a
conserved catalytic aspartate) (19), which interacts with
the DNA minor groove. An extensive body of evidence
strongly suggests that all DNA glycosylases, including
HhH-GPD enzymes, perform extrahelical base excision
through a reaction path that involves (i) DNA distortion
and base flipping, which gives enzyme access for a nucleo-
philic attack on the anomeric C10carbon, and (ii) insertion
of the base lesion into a substrate recognition pocket
(22,23). In this base-flipping mechanism, the properties
of the active site pocket rather than the HhH-GPD
motif are a major component of the base specificity of
each enzyme.
In the present study, we performed multiple sequence

alignment and structural homology analysis to predict the
location of several candidate ROS1 residues important for
recognition and/or catalysis that were functionally-tested
by site-directed mutagenesis. In addition to providing in-
structive clues on the molecular origins of 5-meC recogni-
tion and excision, our results reveal that proteins of the
DML family are endowed with a discontinuous DNA
glycosylase domain.

MATERIALS AND METHODS

Homology-based modeling

A multiple sequence alignment of DML proteins and
several members of the HhH-GPD superfamily was

performed using the program T-Coffee (24). The align-
ment was viewed, adjusted and refined manually with
Jalview (25). A 3D model structure of the two aligned
regions from Arabidopsis ROS1 (amino acids 567–625
and 883–1062) was built using Swiss-Model (26) and the
3D structure of Bacillus stearothermophilus Endonuclease
III as a template [Protein Data Bank accession code: 1P59,
(27)]. Nucleic acid coordinates extracted from 1P59 were
used to superimpose a DNA structure with a flipped-out
abasic (AP) site analog onto the ROS1 model. The struc-
tural figures were prepared with PyMOL (http://www
.pymol.org). Protein structural disorder predictions were
performed with VL3H [http://www.ist.temple.edu/disprot/
Predictors.html; (28)].

DNA substrates

Oligonucleotides used as DNA substrates (Supplementary
Table S1) were synthesized by Operon and purified by
PAGE before use. Double-stranded DNA substrates
were prepared by mixing a 5 mM solution of a
50-fluorescein- or alexa-labeled oligonucleotide (upper-
strand) with a 10 mM solution of an unlabeled oligomer
(lower-strand), heating to 95�C for 5min and slowly
cooling to room temperature. Annealing reactions for
the preparation of the 1-nt gapped duplex were carried
out at 95�C for 5min in the presence of a 2-fold molar
excess of both unlabeled 50-phosphorylated oligonucleo-
tide (P30_51) and unlabeled oligonucleotide (CGR) with
respect to the 50-alexa-labeled 30-phosphorylated oligo-
nucleotide (Al-28P), followed by cooling to room
temperature.

Production of ROS1 variants derivatives

Site-directed mutagenesis was performed using the
Quick-Change II XL kit (Stratagene). The mutations
were introduced into the expression vector pET28a
(Novagen) containing the full-length wild-type (WT)
ROS1 cDNA using specific oligonucleotides
(Supplementary Table S2). Mutational changes were con-
firmed by DNA sequencing and the constructs were used
to transform Escherichia coli BL21 (DE3) dcm� Codon
Plus cells (Stratagene). WT and mutant versions were ex-
pressed and purified as N-terminal His-tagged proteins, as
previously described (21) (Supplementary Figure S2).
Protein stability was measured by limited proteolysis
with thermolysin (29). WT and mutant proteins
(160 mM) were preincubated (4 h) or not under DNA
glycosylase assay conditions (see below) in the absence
of DNA substrate, and then digested for 5min with
5 mg/ml thermolysin. Samples were analyzed by SDS/
PAGE and relative band intensities were used to
estimate the percentage of stable protein remaining after
pre-incubation (Supplementary Figure S2).

Enzyme activity assays

Double-stranded oligodeoxynucleotides (20 nM, unless
otherwise stated) were incubated at 30�C for the indicated
times in a reaction mixture containing 50mM Tris–HCl
pH 8.0, 1mM EDTA, 1mM DTT, 0.1mg/ml BSA, and
the indicated amounts of WT ROS1 or mutant variant in a
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total volume of 50 ml. When reactions included AP endo-
nuclease 1 (APE 1, 5U; New England BioLabs), EDTA
was omitted and 5mM mM MgCl2 was added. Reactions
were stopped by adding 20mM EDTA, 0.6% sodium
dodecyl sulphate and 0.5mg/ml proteinase K, and the
mixtures were incubated at 37�C for 30min. DNA was
extracted with phenol:chloroform:isoamyl alcohol
(25:24:1) and ethanol precipitated at �20�C in the
presence of 0.3mM NaCl and 16 mg/ml glycogen.
Samples were resuspended in 10 ml of 90% formamide
and heated at 95�C for 5min. When measuring DNA
glycosylase activity, samples were treated with NaOH
100mM and immediately transferred to 90�C for 10min.
After adding an equal volume of 90% formamide, samples
were heated at 95�C for 5min. Reaction products were
separated in a 12% denaturing polyacrylamide gel con-
taining 7M urea. Fluorescein-labeled DNA was visualized
in a FLA-5100 imager and analyzed using Multigauge
software (Fujifilm).

When measuring AP lyase activity, a fluorescein-labeled
oligonucleotide duplex containing U opposite G (200 nM)
was incubated at 30�C for the indicated times in a reaction
mixture containing 50mM Tris–HCl pH 8.0, 1mM
EDTA, 1mM DTT, 0.1mg/ml BSA, 2.5U of E. coli
Uracil DNA glycosylase (New England BioLabs), and
the indicated amounts of WT ROS1 or mutant variant
in a total volume of 5 ml. Reactions were stopped by
adding 20mM EDTA, 0.6% sodium dodecyl sulphate,
and 0.5mg/ml proteinase K. After adding 10 ml of 90%
formamide, samples were heated at 95�C for 5min.
Products were resolved and analyzed as described above.

Kinetic analysis

As we have shown previously (20,21) ROS1 does not
exhibit significant turnover in vitro due to strong
product binding, and therefore a simple Michaelis–
Menten model is inadequate for a correct kinetic
analysis of this enzyme. Accordingly, we have used a pre-
viously described method (30) successfully employed to
measure and compare single-turnover kinetics with differ-
ent orthologs of thymine DNA glycosylase (TDG) (31).
The standard reaction conditions were equimolar (20 nM)
enzyme/substrate ratios and incubation at 30�C. Data
were fitted to the equation [Product]=Pmax[1 – exp

(–kt)]
using non-linear regression analysis and the software
Sigmaplot. For each mutant enzyme and substrate, we
determined the parameters Pmax (maximum substrate pro-
cessing within an unlimited period of time), T50 (the time
required to reach 50% of the product plateau level, Pmax),
and the relative processing efficiency (Erel=Pmax/T50).
Representative examples of 5-meC DNA glycosylase
assays and kinetic analysis are shown in Supplementary
Figure S3.

Electrophoretic mobility shift assay

Standard band-shift reactions were performed with the
indicated amounts of protein and 100 nM fluorescein-
and/or alexa-labeled duplex oligonucleotides. Binding
reactions were carried out at 25�C for 60min, unless
otherwise stated, in 10 nM Tris–HCl pH 8.0, 1mM

DTT, 10 mg/ml BSA, 1mM EDTA, in a final volume of
10 ml. Complexes were electrophoresed through 0.2%
agarose gels in 1� TAE. Electrophoresis was carried out
in 1� TAE for 40min at 80V at room temperature.
Fluorescein- and/or alexa-labeled DNA was visualized in
a FLA-5100 imager and analyzed using Multigauge
software (Fujifilm).

RESULTS

An unusual sequence insertion is present in the DNA
glycosylase domain of DML proteins

To gain insight into residues that comprise the DNA
glycosylase domain of DML proteins, we performed a
multiple sequence alignment that included Arabidopsis
ROS1 and DME, Nicotiana tabacum ROS1, and several
HhH-GPD proteins (Figure 1). The alignment revealed
that sequence similarity to HhH-GPD enzymes in DML
proteins is actually distributed over two non-contiguous
segments. The first segment corresponds to a region that
in HhH-GPD members contains the base-flipping wedge
and its flanking alfa-helixes, as well as some of the residues
that line the active site pocket (32). The second segment
includes the HhH-GPD motif and its invariant aspartate,
which is absolutely required for catalysis of 5-meC
excision by DML proteins (10,11,13,14). This region also
contains a lysine residue that is only present in the subset
of HhH-GPD proteins with bifunctional DNA
glycosylase/lyase activity (19) and a [4Fe–4S] cluster
loop (FCL) motif that in some HHh-GPD proteins,
such as E. coli Endo III and MutY, ligates a [4Fe–4S]
cluster (19) (Figure 1B). The two separate segments with
sequence similarity to HhH-GPD proteins are intercon-
nected by a non-conserved linker region that is highly
variable in sequence and length among members of the
DML family (Figure 1B and Supplementary Figure S1).
We applied a well-characterized disorder predictor [VL3H
(28)] to analyze the location of ordered and disordered
regions in ROS1 (Supplementary Figure S4). The results
predict a high disorder content within this linker region,
thus suggesting that it is intrinsically unstructured under
native conditions.
We used the crystal structure of Bacillus

stearothermophilus Endonuclease III [Protein Data Bank
accession code: 1P59, (27)] as a template to generate a 3D
model structure of the two ROS1 polypeptide segments
that show sequence similarity to HhH-GPD proteins
(amino acids 567–625 and 883–1062) (‘Materials and
Methods’ section). The model predicts a typical
HhH-GPD core structure with two alpha domains: a
six-helix barrel domain (6a–6f), and a four-helix domain
formed by one N-terminal (4a) and three C-terminal
(4b–4d) helixes (Figure 1). The non-conserved linker
region of 258 amino acids is inserted between helixes 6b
and 6c, which are part of the characteristically sequence-
continuous six-helix barrel domain (Figure 1). Two other
HhH-GPD proteins (AlkA and Ogg1) contain at this same
location position a much shorter insertion (13 and 11
amino acids, respectively) (Figure 1). The model also
predicts a second DML-specific insertion between helixes
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Figure 1. An unusual sequence insertion is present in the DNA glycosylase domain of members of the DML family. (A) Schematic diagram showing
ROS1 regions conserved among DML proteins. (B) Multiple sequence alignment of DML proteins and several HhH-GPD superfamily members.
Listed above the primary sequence are indicated secondary structure assignments from the ROS1 model prediction shown in (C), colored according

Continued
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4c and 4d. Thus, homology modeling predicts that
proteins of the DML family have a discontinuous DNA
glycosylase domain structure interrupted by an unusually
long insertion.

T606 and D611 are critical residues for ROS1 DNA
glycosylase activity

In order to identify residues specifically involved in 5-meC
recognition and catalysis, we used this tentative model as a
guide to design site-specific mutations of the ROS1 DNA
glycosylase domain. Following a general approach that
has been well detailed elsewhere (33), we searched not
only for residues conserved among DML proteins and
other HhH-GPD enzymes, but also for residues specific-
ally conserved within the DML group. The former class
may be important for the general catalytic mechanism,
whereas the latter may contribute to specific recognition
of 5-meC.

In E. coli Endonuclease III, amino acids S39 and D44
are both required for catalytic activity (34), and their hom-
ologous residues in ROS1 are T606 and D611, respectively
(Figure 1B). The modeled structure of ROS1 predicts that
T606 and D611 are positioned at the mouth of the groove
that separates the six-helix barrel domain and the
four-helix domain (Figure 1D). In HhH-GPD DNA
glycosylases this groove lies between the DNA base
stack from which the lesion is extruded and the base rec-
ognition pocket where it is inserted (35), and contains
residues suitably disposed to access the N-glycosyl bond

of the flipped base. To test the prediction that T606 and
D611 have a role in catalysis, we mutated them to Leu
(T606L) and Val (D611V), respectively.
We examined the ability of WT and mutant proteins to

process a 51-mer duplex oligo substrate that contained
either 5-meC or T opposite G at position 29 in a CG
context (Table 1). Consistent with our previously
reported observations (10,21) we found that WT ROS1
processed 5-meC with higher relative processing efficiency
than T (Table 1). We found that both the T606L and
D611V mutations abolished the catalytic activity of
ROS1 on both substrates (Table 1). For both ROS1
variants, neither 5-meC:G nor T:G processing was
detected even after prolonged incubation times (data not
shown). The DNA-binding capacity of WT and mutant
proteins was assessed by electrophoretic mobility shift
assay with different labeled substrates (Figure 2). As pre-
viously reported, ROS1 bound with similar efficiency to
methylated and non-methylated DNA, and displayed a
higher affinity for the 1-nt gapped reaction product. The
T606L mutant enzyme exhibited a somewhat reduced
binding activity compared to that of WT ROS1, whereas
the D611V variant displayed higher binding capacity
(Figure 2).
Since ROS1 is a bifunctional enzyme, we asked whether

these mutant proteins lack DNA glycosylase activity, lyase
activity or both. To differentiate 5-meC excision and
strand incision, we analyzed the reaction products
generated by different ROS1 variants with or without

Figure 1. Continued
to regions shown in (A). The helix–hairpin–helix of the HhH-GPD motif is shown in cyan. ROS1 amino acids mutated in this study are indicated by
inverted triangles and highlighted in green (Q584 and W1012), blue (F589 and Y1028), yellow (T606 and D611) or red (Q607 and N608). The lysine
residue that is diagnostic of bifunctional glycosylase/lyase activity, and the conserved aspartic acid residue in the active site are indicated by asterisks.
The HhH-GPD and the [4Fe–4S] cluster loop (FCL) motifs are boxed. Names of organisms are abbreviated as follows: Ath, Arabidopsis thaliana;
Nta, Nicotiana tabacum; Bst, Bacillus stearothermophilus; Eco, Escherichia coli; Mth, Methanobacterium thermoautotrophicum; Mmu, Mus musculus;
Hsa, Homo sapiens. Genbank accession numbers are: Ath ROS1: AAP37178; Ath DME: ABC61677; Nta ROS1: BAF52855; Bst EndoIII: 1P59;
Eco EndoIII: P20625; Mth Mig: NP_039762; Eco MutY: NP_417436; Mmu MBD4: 1NGN; Hsa OGG1: O15527; Eco AlkA: P04395.
(C) Ribbon diagrams of the structural model for the DNA glycosylase domain of ROS1 and the crystallographic Bst EndoIII structure used as
template. Structural elements are colored as in (A). The duplex DNA is shown in orange. Nucleic acid coordinates extracted from the Bst
EndoIII-DNA trapped complex were used to superimpose a DNA structure with a flipped-out AP site analog onto the ROS1 model.

Table 1. Relative substrate processing efficiencies of WT and mutant variants of ROS1a

ROS1 variant 5-meC:G T:G

Pmax (nM) T50 (h) Erel Pmax (nM) T50 (h) Erel

WT 10.24±0.17 3.30 3.10±0.05 7.64±0.18 4.83 1.58±0.04
Q584L 12.23±0.45 5.07 2.41±0.09 9.93±0.51 5.42 1.83±0.09
F589A 1.84±0.11 5.10 0.36±0.02 3.22±0.21 4.76 0.68±0.04
T606L n.d.b n.a.c n.a. n.d. n.a. n.a.
Q607A 1.19±0.09 2.63 0.45±0.04 0.29±0.04 0.62 0.48±0.06
N608A 13.64±0.35 4.73 2.88±0.07 12.07±0.33 9.38 1.29±0.04
D611V n.d. n.a. n.a. n.d. n.a. n.a.
W1012A 7.99±0.27 5.01 1.60±0.06 5.41±0.45 6.62 0.82±0.07
Y1028S 7.76±0.22 5.11 1.50±0.04 10.87±0.62 5.66 1.92±0.11

aPurified proteins (20 nM) were incubated at 30�C with 51-mer double-stranded oligonucleotide substrates (20 nM) containing either a single
5-meC:G pair or a T:G mispair. Reaction products were separated in a 12% denaturing polyacrylamide gel and quantified by fluorescence
scanning. Shown are the plateau levels of substrate nicking (Pmax) and the time required for processing of 50% of Pmax (T50). Relative processing
efficiency was calculated as Erel=Pmax/T50. Values are mean±SE from two independent experiments.
bn.d., none detected.
cn.a., not applicable.
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additional alkaline treatment with NaOH (Figure 3A).
Incisions in the absence of NaOH reveal the combined
DNA glycosylase/AP lyase action of the enzyme,
whereas the alkaline treatment cleaves all AP sites
generated by the enzyme and reflects DNA glycosylase
activity. Consistent with our previously reported observa-
tions (21), we found that the amount of incision products
generated by WT ROS1 was only slightly increased after
NaOH treatment, thus suggesting that glycosyl bond
scission is usually coupled to the AP lyase step. The
same pattern was observed for all ROS1 mutant
enzymes except T606L and D611V, which did not
generate detectable incision products either in the
absence or the presence of NaOH. The incapacity of
both mutants to generate abasic sites was confirmed by
performing reactions in the presence of human AP endo-
nuclease APE1 (Figure 3B). We next tested whether
T606L or D611V retained AP lyase activity by incubating
both proteins with a 51-mer duplex oligo substrate that
contained an AP site opposite G at position 29 in a CG
context (Figure 3C). Although a significant level of spon-
taneous AP incision is observed in the absence of enzyme,
the amounts of enzyme-dependent strand incision after
0.5, 2 and 24 h incubation were similar to those generated
by WT ROS1 (Figure 3C; a representative gel is shown in
Supplementary Figure S5). We also found that the incision
product generated by both WT and mutant proteins
migrates as a b-elimination product (Supplementary
Figure S5). Altogether, these results indicate that both
T606L and D611V mutants lack DNA glycosylase
activity but retain AP lyase activity. In addition, they
provide experimental evidence of the location of critical

catalytic residues in the first segment of the discontinuous
ROS1 DNA glycosylase domain.

F589A and Y1028S mutations change ROS1 preference
for 5-meC over T

To investigate residues possibly contributing to 5-meC
specificity, we focused on two aromatic amino acids
(F589 and Y1028) that are specifically conserved within
the DML family (Figure 1B). Their positions correspond
to residues that in other HhH-GPD enzymes interact with
the lesion base (27,32,36), and the modeled ROS1 struc-
ture suggests that they are located in the base binding
pocket of the enzyme (Figure 1D). To test the prediction
that F589 and Y1028 are involved in the specific recogni-
tion of 5-meC, we substituted them with Ala (F589A) and
Ser (Y1028S), respectively. Both F589A and Y1028S dis-
played a somewhat higher non-specific DNA-binding
capacity than the WT protein (Figure 2).

We found that mutation Y1028S produced a protein
with a 2-fold reduced efficiency on 5-meC:G pairs,
but with slightly increased activity on T:G mispairs
(Table 1). On the other hand, the F589A mutation
reduced enzyme efficiency on 5-meC:G �9-fold, but
decreased activity on T:G only 2.3-fold (Table 1). As a
result, both F589A and Y1028S exhibit a higher prefer-
ence for T over 5-meC (Figure 4), which is just the
opposite of the base specificity characteristic of WT
ROS1 and its homologs (10,14). We also tested the
effect of both mutations on excision of 5-HU and found
that the mutant protein F589A exhibited a similar activity
to that of WT ROS1, whereas Y1028S displayed �2-fold
increased efficiency (Figure 4). ROS1 activity is strongly

Figure 2. Binding of WT and mutant ROS1 proteins to substrate and product DNA. DNA-binding reactions were performed incubating increasing
concentrations of WT ROS1 or mutant variants with 100 nM of fluorescein-labeled 5-meC:G substrate (upper panel), alexa-labeled homoduplex
(center panel) or alexa-labeled 1-nt-gapped duplex product (lower panel). After nondenaturing gel electrophoresis, the gel was scanned to detect
fluorescein- or alexa-labeled DNA. Protein–DNA complexes were identified by their retarded mobility compared with that of free DNA, as indicated.
The fraction of bound DNA is indicated below each lane. The asterisk depicts 50-end labeling of the upper strand. M: 5-meC.
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inhibited by replacement of the C5 methyl group by
halogen derivatives (21), and we confirmed that all
ROS1 variants, including F589A and Y1028S, retained a
very low activity on 5-BrC and 5-BrU (Supplementary
Figure S6). Altogether, these results indicate that F589
and Y1028 contribute to ROS1 preference for 5-meC
over T, and suggest that they may be located in the base
specificity pocket of the enzyme.

Q607 is required for ROS1 base excision activity and
stable DNA binding

HhH-GPD DNA glycosylases use a loop between two
a-helixes to wedge into the minor groove of DNA, thus
helping to extrude the lesion from the base stack (32).
Despite structural conservation, the amino acid sequence

of this loop, and in particular the identity of the residue
that fills the vacant space left behind by the flipped base,
varies widely among the HhH-GPD enzymes. Thus, the
base-flipping residue is Q42 in Bst EndoIII (27), N149 in
Hsa Ogg1 (37) and L125 in Eco AlkA (38) The alignment
in Figure 1B shows that the homologous position in ROS1
corresponds to N608, and the modeled ROS1 structure
suggests that N608 is located close to the DNA base
stack (Figure 1D). However, we found that a N608A
variant retained full catalytic activity, exhibiting the
same processing efficiency than WT ROS1 on both
5-meC:G and T:G (Table 1), as well as a comparable
DNA-binding capacity (Figure 2). Since mutation of the
base flipping residue invariably causes a significant reduc-
tion in catalytic activity of DNA glycosylases (39–41),
these results argue against the accuracy of our
homology-based structure prediction in this portion of
the ROS1 DNA glycosylase domain. This is not unexpect-
ed, given the low sequence conservation of the base
flipping loop in HhH-GPD enzymes, and the high vari-
ability in the identity of the specific residue inserted into
the DNA helix.
We searched for an alternative candidate residue

conserved in DML proteins and, since most glycosylases
use a bulky-side chain as nucleotide flipper, we decided to
mutagenize the contiguous Q607. Mutation of Q607 to A
resulted in an enzyme with strongly reduced activity on
substrates containing either 5-meC or T (Table 1). The

Figure 3. T606 and D611 are essential for ROS1 DNA glycosylase
activity. (A) The generation of incision products was measured by
incubating purified WT ROS1 or mutant variants (20 nM) at 30�C
for 2 h with a double-stranded oligonucleotide substrate (20 nM) con-
taining a single 5-meC:G pair. Samples were treated with or without
NaOH 100mM, and immediately transferred to 90�C for 10min.
Products were separated in a 12% denaturing polyacrylamide gel and
the amounts of incised oligonucleotide were quantified by fluorescent
scanning. (B) Purified WT ROS1 or mutant variants (20 nM) were
incubated at 30�C for 2 h with a double-stranded oligonucleotide sub-
strate (20 nM) containing a single 5-meC:G pair, either in the absence
or the presence of human APE I (5U), as indicated. Products were
separated in a 12% denaturing polyacrylamide gel and the incised
products were detected by fluorescent scanning. (C) A double-stranded
oligonucleotide substrate containing an AP site opposite G (200 nM)
was incubated at 30�C either in the absence of enzyme or in the
presence of purified WT ROS1, T606L or D611V (100 nM).
Reactions were stopped at the indicated times, products were separated
in a 12% denaturing polyacrylamide gel and the amount of incised
oligonucleotide was quantified by fluorescent scanning. Values are
means±SE (error bars) from two independent experiments. The aster-
isks indicate that the incision levels were significantly different
(P< 0.05) from those observed in the absence of enzyme. The respective
P-values were calculated using a Student’s unpaired t-test.

Figure 4. F589 and Y1028 contribute to 5-meC specificity.
(A) Chemical structures of substrate DNA bases tested. (B) Substrate
processing ability of WT ROS1 and the mutant variants F589A and
Y1028S. Relative processing efficiencies were determined in kinetic
assays as described in ‘Materials and Methods’ section. Purified
proteins (20 nM), were incubated at 30�C with 51-mer double-stranded
oligonucleotide substrates (20 nM) containing at position 29 of the
labeled upper-strand different target DNA bases paired with G.
Reaction products were separated in a 12% denaturing polyacrylamide
gel and quantified by fluorescence scanning. Values are means±SE
(error bars) from two independent experiments.

Nucleic Acids Research, 2011, Vol. 39, No. 4 1479



observed reduction in relative processing efficiency is
higher for the 5-meC:G pair (6.9-fold) than for the T:G
mispair (3.3-fold). Furthermore, and unlike all other
ROS1 variants tested in this study, the Q607A mutant
exhibited drastically reduced DNA binding to both
methylated and non-methylated DNA, as well as to the
1-nt gapped reaction product (Figure 2). We reasoned that
the Q607A mutation might compromise the stability of the
protein–DNA complex. In order to investigate this possi-
bility, we performed DNA-binding measurements at dif-
ferent time points to analyze the ability of Q607A to
remain bound to DNA (Figure 5 and Supplementary
Figure S7). We found that the mutant protein formed a
detectable complex with either the methylated substrate or
the gapped reaction product, but rapidly dissociated from
both DNA probes. Altogether, these results indicate that
Q607 is essential for base excision activity and stable DNA
binding, and strongly support the hypothesis that it is a
DNA-intercalating residue.

N608 modulates 5-meC excision in different sequence
contexts

Since plant DNA methylation is deposited in different
sequence contexts, it is not surprising that DML
proteins exhibit the capacity to excise 5-meC at CG,
CHG and CHH sequences (10–14). The context specificity
of DML family members has not been exhaustively
characterized, but excision of 5-meC in vitro is apparently
more efficient on those sequences more likely to be
methylated in vivo. For example, DME and ROS1
remove 5-meC from a CHG context more efficiently
when H=A than when H=C (10), in agreement with

the fact that CCG is the sequence showing the lowest
methylation level among CHG sites (42).

In order to determine whether any of the mutated
residues contributes to sequence-context specificity, we
tested all ROS1 variants for their relative capacity to
excise 5-meC from CG, CHG and CHH sequences
(Figure 6A). We found that all mutants except N608A
exhibited a sequence-context specificity similar to that of
WT ROS1. Unlike the WT enzyme and the rest of ROS1
variants, the N608A mutant showed a significantly
reduced activity on the asymmetric CHH context
(Figure 6A). To confirm this result, we performed a
kinetic analysis to compare the relative processing
efficiencies of WT ROS1 and N608A on 5-meC located
in CG, CHG or CHH contexts (Figure 6B). We found that
both enzymes displayed a similar efficiency on CG sites,
and also showed a very low activity on the CHG context
when H=C. However, the N608A mutation caused a
higher efficiency than WT ROS1 on CAG sequences,

Figure 6. N608 contributes to sequence-context specificity. (A) Purified
WT ROS1 or mutant variants (20 nM) were incubated at 30�C for 4 h
with 51-mer double-stranded oligonucleotide substrates (20 nM) con-
taining at position 29 of the labeled upper-strand a 5-meC residue in
different sequence contexts. Products were separated in a 12%
denaturing polyacrylamide gel and the amount of incised oligonucleo-
tide was quantified by fluorescent scanning. For ease of comparison,
the incision values for each substrate are normalized to the total
incision detected in all four substrates for each individual enzyme.
(B) Substrate processing ability of type ROS1 and the mutant variant
N608 in different sequence contexts. Relative processing efficiencies
were determined in kinetic assays as described in ‘Materials and
Methods’ section. Purified proteins (20 nM), were incubated at 30�C
with 51-mer double-stranded oligonucleotide substrates (20 nM) con-
taining at position 29 of the labeled upper-strand a 5-meC residue in
different sequence contexts. Reaction products were separated in a 12%
denaturing polyacrylamide gel and quantified by fluorescence scanning.
Values are means±SE (error bars) from two independent experiments.

Figure 5. Q607 is required for stable ROS1 binding to substrate and
product DNA. Purified WT ROS1 or mutant variant Q607A (100 nM)
were incubated with a mixture of 100 nM fluorescein-labeled 5-meC:G
substrate and 100 nM alexa-labeled 1-nt gapped product, and the reac-
tions were monitored for 60min. After non-denaturing gel electrophor-
esis, the gel was scanned to detect fluorescein- (upper panel) or
alexa-labeled (lower panel) DNA. Protein–DNA complexes were
identified by their retarded mobility compared with that of free
DNA, as indicated. The asterisk depicts 50-end labeling of the upper
strand. M: 5-meC.
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and a strongly reduced activity on the asymmetric CHH
context. These results indicate that N608 contributes to
the sequence context specificity of ROS1, and suggest
that this residue may contact the DNA bases surrounding
the 5-meC.

Functional consequences of Q584L and W1012A
mutations

We also tested the functionality of Q584 and W1012
residues. Q584 is located at an LVQ motif that is also
present in mammalian MBD4 proteins (Figure 1B). The
homologous Q423 in murine MBD4 is positioned in the
active site, and modeling studies suggest it can make a
hydrogen bond to the protonated N-3-H of thymine
(43). W1012 is positioned in a short DML-specific
sequence insertion between helixes 4c and 4d
(Figure 1B). We substituted these two residues with Leu
(Q584L) and Ala (W1012A), respectively. Both variants
retained the same DNA-binding capacity than WT
ROS1 (data not shown) and a similar base specificity
(Supplementary Figure S6). The relative processing effi-
ciency of Q584L was somewhat reduced on 5-meC:G
pairs, and slightly increased on T:G mispairs, whereas
W1012A exhibited �2-fold reduced activity on both
5-meC:G and T:G (Table 1). For both mutant enzymes,
however, 5-meC remained as the preferred target.

DISCUSSION

A DNA glycosylase domain with a bipartite structural
organization

A main finding of this study is that the DNA glycosylase
domain of ROS1 and its homologs is composed of two
non-contiguous segments connected together through a
linker region that is highly variable in sequence and
length across members of the DML family. It should be
noted that a much shorter sequence insertion is present at
an homologous position in two other DNA glycosylases
(OGG1 and AlkA) (37,38), which suggests that this
location has undergone a much more limited sequence
expansion in other HhH-GPD enzymes. A remarkable
feature of the linker region that connects the two DNA
glycosylase segments in ROS1 is its predicted intrinsic
disorder. Intrinsically disordered regions lack well
defined conformation under native conditions and are
common in a significant proportion of eukaryotic
proteins (44). We can only speculate about the possible
functions of such an unfolded region in the functionality
of ROS1 and other DML proteins. A possibility is that the
disordered link helps the protein to find its target. Thus, it
has been proposed that a protein with disordered regions
may sample the surrounding solution in search of a
binding site with a higher capture radius than in the
folded state, in a mechanism known as ‘fly-casting’ (45).
In such a scenario, ROS1 would be partially unfolded
before a productive encounter with DNA, and folding
would be induced by DNA binding.

The first segment of the ROS1 discontinuous DNA
glycosylase domain contains two essential residues for
catalytic activity

We have found that both T606 and D611 residues are
critical for ROS1 glycosylase catalysis, but they are dis-
pensable for AP lyase activity and DNA binding. Their
homologous residues in E. coli Endonuclease III, S39 and
D44 respectively, are also required for catalytic activity
(34). Thus, an S39L mutation abolishes the glycosylase
activity of E. coli Endonuclease III but does not affect
its AP lyase activity (34), which agrees with our data.
However, a D44L mutant Endo III retains glycosylase
activity but exhibits a greatly reduced lyase activity (34),
which is the opposite result to what we found with a ROS1
D611L mutant. Such a discrepancy indicates that there
must be specific differences in the precise catalytic mech-
anism followed by both enzymes. This is not unexpected,
given the nature of their reaction products; whereas
Endonuclease III and its orthologs only generate
b-elimination products (46), in all DML proteins tested
to date a significant amount of b-elimination incisions
proceed to b,d-elimination products (10–14). In any case,
the fact that both T606 and D611 are required for cata-
lytic activity strongly suggests that the first segment of
what we propose as a bipartite DNA glycosylase domain
truly contains residues located at the active site of ROS1.

The aromatic residues F589 and Y1028 are strong
candidates for interaction with 5-meC in the base
specificity pocket

In this work we have also aimed to identify molecular
determinants of ROS1 substrate specificity. Similarly to
other DNA glycosylases, such specificity is probably
governed by direct contacts between the target base and
residues in the active site pocket of the enzyme. Our
homology modeling analysis allows a tentative identifica-
tion of several residues that are likely located in the
5-meC-binding pocket of ROS1. Among these, we
selected two amino acids (F589 and Y1028) that were spe-
cifically conserved in the DML family but not in the re-
maining HhH-GPD proteins. We have found that
replacing either of these two residues (F589 to A or
Y1028 to S) changes ROS1 substrate preference from
5-meC:G to T:G.
Our results are consistent with a role of F589 and

Y1028 in base substrate specificity. Nevertheless, it could
be also argued that, since melting a 5-meC:G base pair is
less favorable than melting a T:G mispair, any shifting in
preference in favor of T might be alternatively explained
by a reduced base flipping efficiency irrespective of the
substrate base. However, this hypothesis does not agree
with the fact that the activity against a 5-HU:G mispair is
unchanged in the F589A mutant, and is even higher than
the WT in the Y1028S mutant (Figure 4). A reduced base
flipping efficiency would be also difficult to reconcile with
the fact that both F589A and Y1028S mutants do not
display a reduced DNA-binding capacity (Figure 2). As
discussed below, mutagenesis studies consistently report
reduced DNA binding in base-flipping deficient mutants,
both in DNA glycosylases and in other proteins that also
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rotate bases. Therefore, our results suggest that F589 and
Y1028 play a role in base substrate specificity rather than
base flipping.
Obviously, in the absence of detailed structural infor-

mation it is not possible to identify the precise interactions
providing the basis for specific base recognition However,
it is conceivable that the aromatic side chains of F589 and/
or Y1028 could help to stabilize the flipped-out 5-meC
into the substrate-binding pocket of ROS1 through
stacking interactions. Such stacking interactions have
been suggested to be important in the recognition and
binding of alkylated base lesions by 3-methyladenine
DNA glycosylase MagIII (47). Interestingly, stacking
interactions have also been reported as relevant for
specific recognition of 5-meC by UHRF1, a mammalian
protein that binds hemimethylated sites and is required for
maintenance of DNA methylation (48–50). UHRF1 does
not perform any catalytic reaction on 5-meC, but its SRA
domain flips the methylated base out of the DNA helix
and places it in a tight binding pocket, stacked between
two aromatic residues (48–50).

N608 may contact bases adjacent to 5-meC

To our knowledge, no detailed information has been
reported about the sequence context preference of any
HhH-GPD DNA glycosylase. The only relevant data
available pertain to human TDG, a DNA glycosylase be-
longing to another structural superfamily (51). TDG
excises T from T:G mismatches with a preference for a
CG context, and the crystal structure of the enzyme has
revealed that part of this sequence-context specificity is
due to contacts between base pairs neighboring the T:G
mismatch and amino acids adjacent to the enzyme
base-flipping residue (52).
ROS1 removes 5-meC from CG, CHG and CHH

contexts (10–14), although shows a strongly reduced
activity on a CHG sequence when H=C (10). We
tested all ROS1 variants for altered context specificity
and found that all of them retained a very low preference
for CCG sequences. However, the N608A mutant ex-
hibited a higher activity than WT ROS1 on a CAG
context and a marked lower efficiency on an asymmetric
CHH context. Our homology analysis initially predicted
that N608 is the base-flipping residue of ROS1, but this
hypothesis is unlikely since the N608A mutant retains
both full catalytic activity and DNA-binding capacity.
In fact, our results rather suggest that ROS1 uses the
side chain of the contiguous amino acid (Q607) for base
flipping (see below). However, given that these two
residues are adjacent on the primary ROS1 structure, it
is very likely that N608 forms part of the wedge used by
ROS1 to contact the DNA minor groove. Altogether our
results suggest that N608 is probably located in a position
suitable disposed to make contacts with DNA bases sur-
rounding the methylated cytosine.

Q607 is a putative base flipping residue required for
stable DNA binding

Our results suggest that Q607 functions as a critical
anchor to stabilize the protein–DNA complex, and

support the hypothesis that ROS1 uses this residue to
flip out 5-meC and compensates its extrusion by filling
in the vacant space in the DNA base stack. Base flipping
is a widespread mechanism used to gain access to the
DNA helix by those proteins that need to interact with
the bases rather than the phosphodiester backbone (53).
Accumulating evidence point to the conclusion that such
an extrusion process also plays a key role in stabilizing
protein–DNA complexes. Thus, a consistent result repeat-
edly observed with structurally different DNA
glycosylases is that mutating their base-flipping residue
strongly reduces not only their base excision activity, but
also their DNA-binding capacity (39–41), just as we
observe with the ROS1 Q607A mutant. The relevance of
base flipping for stable DNA binding has been also docu-
mented for cytosine-5 DNA methyltransferases (54), and
there is evidence that also plays an important role in
proteins that do not perform chemistry on bases. Thus,
a mutation in the base-flipping residue of the SRA domain
of UHRF1 results in a protein with significantly lower
affinity for DNA (50). Recently, it has been reported
that base flipping is also essential for stable DNA
binding of MTERF1, a human mitochondrial transcrip-
tional terminator (55).

Interestingly, we have found that the Q607A mutation
is not only detrimental for stable ROS1 binding to
methylated substrates but also for non-specific binding
to unmethylated DNA. We have recently reported that
methylation-independent DNA binding by ROS1 is
largely mediated by a lysine-rich domain located at the
amino terminus of the enzyme (20). The results reported
here indicate that this domain is necessary but not suffi-
cient for stable DNA binding. Furthermore, they strongly
suggest that base flipping is a feature of both specific and
non-specific DNA binding by ROS1, thus hinting at the
possibility that the enzyme performs extrahelical interro-
gation of unmethylated base pairs.

It has been suggested that DNA glycosylases operating
on modifications causing little or no disturbance of the
DNA helix must extrude every base they encounter to
recognize their target (56). Recent views, mostly gained
through a combination of biophysical and structural
approaches with the well-studied DNA glycosylases
UNG, hOGG1 and MutM (57–59), propose that interro-
gation of normal bases is a transient phase of a general
multi-step mechanism for base damage search and detec-
tion (60). The process would initially involve DNA sliding
by the DNA glycosylase in a conformation designed as the
‘search complex’, followed by formation of a transient
‘interrogation complex’ that would extrude normal and
damaged bases for inspection, and finally the conversion
to a catalytically productive ‘excision complex’ upon en-
countering the cognate base modification (60). Unlike
UNG, hOGG1 or MutM, the non-specific complexes of
ROS1 with DNA do not dissociate rapidly and are fairly
stable. The capacity to form stable non-specific complexes
is also found in other DNA glycosylases such as TDG
(51,61). It is therefore possible that each enzyme have
evolved a different balance among the relative magnitudes
of the search, interrogation, and excision stages of base
repair.
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