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Summary
The predictiveness curve is a graphical tool that characterizes the population distribution of
Risk(Y) = P(D = 1|Y), where D denotes a binary outcome such as occurrence of an event within a
specified time period and Y denotes predictors. A wider distribution of Risk(Y) indicates better
performance of a risk model in the sense that making treatment recommendations is easier for
more subjects. Decisions are more straightforward when a subject's risk is deemed to be high or
low. Methods have been developed to estimate predictiveness curves from cohort studies.
However early phase studies to evaluate novel risk prediction markers typically employ case-
control designs. Here we present semiparametric and nonparametric methods for evaluating a
continuous risk prediction marker that accommodate case-control data. Small sample properties
are investigated through simulation studies. The semiparametric methods are substantially more
efficient than their nonparametric counterparts under a correctly specified model. We generalize
them to settings where multiple prediction markers are involved. Applications to prostate cancer
risk prediction markers illustrate methods for comparing the risk prediction capacities of markers
and for evaluating the increment in performance gained by adding a marker to a baseline risk
model. We propose a modified Hosmer-Lemeshow test for case-control study data to assess
calibration of the risk model that is a natural complement to this graphical tool.
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1. Introduction
Criteria for evaluating a biomarker depend on the purpose for which it will be used. The key
performance measure for a diagnostic marker is its classification accuracy, i.e. the ability to
provide the correct diagnosis given a subject's true disease status. Classification accuracy of
a continuous marker has been commonly assessed by the receiver operating characteristic
(ROC) curve [1]. Classification, however, is not always the objective. Sometimes a marker
is used mainly to predict risk of disease and to stratify the population into risk groups geared
towards different treatment recommendations. Because of its popularity in the field of
diagnostic testing, the ROC curve has been used frequently in this setting as well. However,
as pointed out by Gail and Pfeiffer [2], Cook [3], and Pencina and others [4], criteria for
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evaluating a classification marker might be unnecessarily stringent for evaluating a risk
prediction marker. In other words, the ROC curve may not be optimal when selecting a
marker for risk prediction.

The predictiveness curve [5] was proposed by Pepe and others [6] and Huang and others [7]
to evaluate a risk prediction marker or model. It characterizes the performance of a risk
prediction model by displaying the population distribution of risk endowed by the model.
Arguments for displaying the risk distribution have also appeared recently in the clinical
literature [8]. A binary outcome D is considered here such as presence of disease or
occurrence of an event within some specified time period. We write D = 1 for cases, subjects
with a bad outcome and D = 0 for controls, subjects with a good outcome. Let Y be a vector
of predictors of interest and let Risk(Y) = P(D = 1|Y) be the risk calculated based on Y. The
predictiveness curve displays the risk distribution through the population quantiles, R(v) vs v
for v ∈ (0, 1), where R(v) is the vth quantile of Risk(Y). Equivalently, the inverse function,
R−1(p)= P{Risk(Y) ≤ p}, is the proportion of the population with risks less than or equal to
p, the cumulative distribution function. If pH corresponds to a high risk threshold, the
capacity of the risk model to identify high risk subjects is 1 − R−1(pH). If pL is a low risk
threshold, R−1(pL) quantifies the capacity of the model to identify low risk subjects. Better
risk markers put more subjects into high and low risk categories and fewer people into the
intermediate range where treatment decisions are more difficult. In other words, a risk
prediction model with larger variability in population quantiles, i.e. steeper predictiveness
curve, has a better capacity to stratify risk.

For cohort studies, Huang and others [7] developed a semiparametric estimator of the
predictiveness curve. However case-control studies, being smaller and more cost efficient
than cohort studies, are the design of choice in early phases of biomarker development
[9,10]. Thus one objective of the current manuscript is to extend estimation to case-control
designs. We describe two semiparametric methods. Large sample theory for these estimators
was developed in Huang and Pepe [11] when Y is univariate. Here we consider the practical
application of these methods. We examine methods for making inference in practical sample
sizes and evaluate them using simulation studies. Importantly we extend the methods to
accommodate multiple predictors as this often arises in real applications. In practice,
robustness to modeling assumptions is always a concern. Another objective of the current
paper is to develop a nonparametric estimator. We compare its performance with the
semiparametric methods in simulations and in a real dataset. Moreover, we propose a
measure accompanying the estimated predictiveness curve to formally test for calibration of
the risk model.

We begin with models including only a single continuous marker or a pre-defined marker
combination and later examine the extension to a general risk model. The problems caused
by developing combinations and assessing them in the same dataset have been well
recognized and the assessment of a predefined combination with independent test data is
encouraged [12,13]. In these circumstances our methods apply to evaluations with the test
data. For example, Buyse and others [14] recently reported the performance of a gene
expression signature combination previously developed by van't Veer and others [15] and
van de Vijver and others [16]. Other examples of well known predefined combination
scores are the Framingham score for cardiovascular events [17] and the Gail score for breast
cancer risk [18].

Let ρ = P(D = 1) denote the prevalence of the bad outcome. We assume either that ρ is fixed
at a specified value or that an estimate  is available in addition to the case-control sample.
For example, the prevalence is essentially known if obtained from a large population
registry; alternatively, one can entertain various fixed values for ρ that might reflect
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prevalences in different populations, performing a “what if” exercise that allows one to
surmise in which populations the biomarker would be useful and in which populations it
might not. Settings where a prevalence estimate is available includes estimates from an
independent cohort study reported in the literature, or estimates calculated from a parent
cohort within which the case-control study is nested [10,19]. When an estimate of ρ is
obtained from an independent cohort or the parent cohort, variability in  must be taken into
account in computing variance of the predictiveness estimator.

We make the assumption that P(D = 1|Y) is monotone increasing in Y. If the risk is
decreasing in Y, the marker can be negated to satisfy this assumption. Extensions discussed
in section 6 accommodate non-monotone risk functions. Under the monotone increasing risk
assumption, the vth quantile of the marker corresponds to the vth quantile of risk which
implies that R(v) = Risk{F−1(v)}. For estimation purposes we therefore need to estimate the
risk function, Risk(Y) = P(D = 1|Y), as well as the marker distribution F(y) = P(Y ≤ y), and
combine the two estimands to get the estimator for the risk quantile.

2. Estimation of the Risk Function
In this section, we consider estimation of the risk function as the first step in estimating the
predictiveness curve. The risk can be estimated either using parametric or nonparametric
methods. The former gives rise to semiparametric predictiveness curve estimates while the
latter gives rise to fully nonparametric estimates.

2.1 Parametric Risk Functions: Logistic Regression
For case-control data, a logistic regression formulation of the risk model is convenient. We
write it as

(2.1)

where η is monotone increasing in Y. For example, η(θ1, Y) can take a linear form θ1Y with
θ1 > 0. A more general and flexible model can involve the Box-Cox type transformation
[20]. That is η(θ1, Y) = θ11Y(θ12) with θ11 > 0, where Y(θ12) = (Yθ12 − 1)/θ12 when θ12 ≠ 0
and Y(θ12) = log Y when θ12 = 0. In case-control studies, since the sampling rate of cases
versus controls is fixed by design, the intercept term θ0 in the risk model is not estimable.
However, the odds ratio is still estimable, a fact that is routinely exploited in epidemiology
[21]. The maximum likelihood estimator of the odds ratio from the retrospective likelihood
can be obtained by maximizing the prospective likelihood of the case-control sample,
pretending that the outcome is random and ignoring the outcome-dependent nature of the
sampling [22,23].

Let nD and nD ̄ be the number of cases and controls respectively in the case-control sample.
Applying the logistic regression model (2.1) to the data and then applying a shift

 to the intercept, we obtain , the maximum likelihood
estimator of θ. This follows because the population odds is related to the sample odds as a
result of the Bayes’ theorem:
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where S is the indicator of being included in the case-control sample. Therefore to calculate
the population risk from the model fit to case-control data, we add the term

 to the estimated intercept.

2.2 Nonparametric Risk Functions: Isotonic Regression
A more robust approach is to estimate the risk model nonparametrically. Again the risk is
assumed to be monotone increasing in Y. We compute the nonparametric maximum
likelihood estimator for the risk function subject to monotonicity using isotonic regression
[24]. A heuristic explanation of the algorithm in this particular circumstance was given by
Lloyd [25]. Specifically, marker data {y1, . . . , yn} are arranged in increasing order,
followed by repetitive blocking and pooling of adjacent blocks until the sample proportion
of cases within each block is non-decreasing. Finally, we calculate P̂(D = 1|Y = yj, S), the
proportion of diseased subjects within the block containing yj. Case-control sampling again
requires an adjustment to estimate the population risk function. Specifically we use the
relationship

3. Estimation of the Marker Distribution and the Predictiveness Curve
In a case-control study, F cannot be estimated directly but can be estimated as a weighted
average of the distributions of Y in the case and control subpopulations. Specifically, since F
= ρFD + (1 − ρ)FD ̄, we estimate ρ, FD and FD ̄ and substitute the estimates to obtain the
estimate of F. Two approaches to estimating FD and FD ̄ are possible under the parametric
and nonparametric risk modeling assumptions.

3.1 The Semiparametric Estimators of the Predictiveness Curve
3.1.1 The Semiparametric “Empirical” Estimator—A natural strategy to estimate FD ̄
and FD is to use the corresponding empirical estimators which we denote by F̃D ̄ and F̃D.

Estimating F with , the resulting semiparametric “empirical” estimators
of R(v) and R−1(p) are

where G−1(θ, p) = inf{y : G(θ, y) ≥ p}.

3.1.2 The Semiparametric “Maximum Likelihood” Estimator—Let fD and fD ̄
denote density functions of the marker Y in the case and control populations respectively.
Observe that the risk model (2.1) implies an exponential tilt relationship between marker
densities among cases and controls

(3.1)
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where  is called the likelihood ratio of Y. This relationship is not exploited when FD
and FD ̄ are estimated empirically [26,11]. We have shown that by employing an empirical
likelihood approach [27,28,29], the maximum likelihood estimators for FD ̄ and FD are

where  is the logistic regression intercept adjusted by , and  is the
maximum likelihood estimator of  [11]. We use these estimators to compute

, and then plug  and F̂ into G to get the semiparametric maximum
likelihood estimators of R(v) and R−1(p):

Note that the semiparametric estimators developed here for case-control studies generalizes
the semiparametric estimator developed for cohort studies in Huang and others [7]. That is,
when plugging in  from a cohort study, both the semiparametric maximum likelihood
estimator and the semiparametric “empirical” estimator of the predictiveness curve equal to
the cohort version proposed earlier [11].

Asymptotic distribution theory for the two estimators can be found in Huang and Pepe [11].
As an example, consider an ordinary logistic risk model: ,
where r(Y) is some monotone increasing function of Y. Suppose  is estimated from a cohort
independent of the case-control sample, or the parent cohort within which the case-control
sample is nested, with the size of the cohort λ times the size of the case-control sample.
Then we have

(3.2)

Analytic forms for VM1, VM2, VM3 are provided in Appendix A. Similarly, we have

(3.3)

Huang and Pepe Page 5

Stat Med. Author manuscript; available in PMC 2011 June 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



where analytic forms for VE1, VE2, VE3 are provided in Appendix A. Moreover, for v =
R−1(p), var {R̃(v)} ≃ {∂R(v)/∂v}2 var {R̃−1(p)} and var {R̂(v)} ≃ {∂R(v)/∂v}2 var {R̂−1(p)}.
When ρ is fixed, essentially we have λ → ∞, thus terms involving 1/λ vanish in (3.2) and
(3.3).

3.2 The Nonparametric Estimator
Similar to the semiparametric approach, we can estimate FD and FD ̄ empirically with F̃D ̄ and

F̃D yielding . Substituting the non-parametric risk estimator and F̃ we
derive the nonparametric “empirical” estimators of R(v) and R−1(p)as

Alternatively, we can incorporate the estimated risk function into estimation of the marker
distribution, as was done for the semiparametric procedure. Lloyd [25] showed that
maximizing the joint likelihood of D and Y can be achieved by first obtaining P̂(D = 1|Y, S),
and then estimating fD ̄ and fD based on the relationship

In particular, let ŵ(Y) = P̂(D = 1|Y, S)/P̂(D = 0|Y, S) and let κ denote {k : ŵ(Yk) = ∞}. He
demonstrated that by maximizing

 with μ a normalizing
factor, the estimators of fD ̄ and fD are

(3.4)

in the absence of ties. He also suggested that  could be found by solving

(3.5)

which is monotone increasing in μ.

The following new result, proved in Appendix B1, shows that when P(D = 1|Y, S) is
estimated using isotonic regression,  can be written down explicitly as a function of nD ̄ and
nD.

Theorem 1 When P(D = 1|Y, S) is estimated using isotonic regression, .

Plugging  into (3.4), we have
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Estimating F with , where F̂D and F̂D ̄ denote the corresponding
cumulative distribution functions, the nonparametric maximum likelihood estimators of R(v)
and R−1(p) are

Interestingly, we have found that even if the nonparametric “empirical” and maximum
likelihood procedures described above lead to different estimators of the marker distribution
F, the corresponding predictiveness curve estimators are the same (Theorem 2). This fact is
not true for the semiparametric estimators. A proof can be found in Appendix B2.

Theorem 2 When the risk model is estimated nonparametrically with isotonic regression, R̂
(v) = R̃(v) and R̂−1(p) = R̃−1(p).

3.3 Area under the Predictiveness Curve

The area under the true predictiveness curve, , is equal to ρ [7]. This facilitates
visual comparisons of predictiveness curves for two different risk models because, in a
sense, it maintains them both on exactly the same scale. The steepness of curves can be
compared more easily when both integrate to ρ. An analogous result holds for the
nonparametric and semiparametric maximum likelihood estimators (Theorem 3) but not for
the semiparametric “empirical” estimator.

Theorem 3 Let R̂(v) be the nonparametric or semiparametric maximum likelihood estimator

of R(v) for v ∈ (0, 1) using the prevalence estimator . Then , the area under the
predictiveness curve estimate equals to .

Proof of Theorem 3 is presented in Appendix B3. An implication of Theorem 3 is that for
the nonparametric and semiparametric maximum likelihood estimators, the two areas
sandwiched between the curve and the horizontal line are equal. To see this, let

, then the area below the horizontal line at  and above the estimated

predictiveness curve is equal to , while the area above the horizontal line at

 and below the estimated predictiveness curve is equal to . According to
Theorem 3,

4. Simulation Studies
We conducted simulation studies in two settings to evaluate the performances of the
proposed estimators. In each setting, data were generated to mimic a two-phase study. In the
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first phase, a random cohort sample is obtained and the disease status of every subject is
determined. In the second phase, cases and controls were selected independently from the
parent cohort and biomarker data was ascertained. The size of the cohort is chosen to be five
times that of the nested case-control sample.

4.1 Simulation Setting 1
In the first simulation setting, a binary outcome status was generated with ρ = 0.2 from a
cohort of size 5n and marker data were generated according to YD ̄ ~ N(0, 1) and YD ~ N(μD,
1), for equal numbers of cases and controls, nD = nD ̄ = n/2. The resulting risk function
follows a linear logistic model. We explored sample sizes n ranging from 100 to 2,000. For
each scenario, 5,000 Monte-Carlo simulations were conducted.

The semiparametric (based on the linear logistic model) and nonparametric estimators of the
predictiveness curve were estimated using  obtained from the cohort. Variance estimates
for the semiparametric estimators were calculated using analytic formulae from the
asymptotic theory which incorporates variability in  (as provided in Appendix B1).
Bootstrapping was also performed by separately resampling cases and controls for Y and
resampling D from the parent cohort. Results pertaining to the choice μD = 1 are presented
in Tables 1 - 4 for v = 0.1, 0.3, 0.5, 0.7, and 0.9 and for the corresponding values of p, p =
R(v).

First we consider the performance of the semiparametric estimators for R(v) and R−1(p). We
see that they have minimal bias for sample sizes as small as 100 (Table 1). Variance
estimators that are based on analytic formulas from asymptotic theory agree well with the
empirical variance from simulations when nD + nD ̄ ≥ 500. This was also true for the
bootstrap variance (results not shown). Coverage of the 95% Wald confidence intervals
using asymptotic or bootstrap variance estimates are fairly close to the nominal level, except
for a little undercoverage when nD + nD ̄ ≤ 200 (Table 2). The intervals shown in Table 2
assumed that the logit transform of the estimator was normally distributed and had better
coverage than symmetric intervals for the untransformed estimators.

Results are also shown in Table 3 for confidence intervals employing percentiles of the
bootstrap distribution. We found that these confidence intervals performed best overall.
Moreover, the corresponding lower and upper confidence limits are monotone increasing in
v. This is a desirable property because, by definition, the predictiveness curve itself is
monotone increasing. Having lower and upper pointwise confidence limit curves that are
monotone increasing is consistent with monotonicity of the predictiveness curve. To see that
the pointwise confidence limits are increasing in v, let R̂b(v) be the estimate of R(v) based on
the bth bootstrap sample. We have R̂b(v1) ≤ R̂b(v2) for v1 ≤ v2 according to our estimation
methods. As a result, the αth percentile of R̂b(v1) is always smaller than or equal to the αth

percentile of R̂b(v2) among the same set of bootstrap samples. In our simulations, we chose α
= 0.025 and α = 0.975.

The nonparametric estimator of the predictiveness curve performed poorly relative to the
semi-parametric estimators in this simulation setting. When sample sizes are smaller than
500, biases in estimates of R(v) and R−1(p) are substantial, and confidence intervals suffer
from undercoverage or overcoverage in many settings (Tables 2,3). Their efficiency is
dramatically worse than the efficiencies of the semiparametric estimators (Table 4). This is
especially true in large samples.

The two semiparametric estimators have similar performances in the simulations. Of note,
the semiparametric “empirical” estimator is fairly efficient relative to the semiparametric
maximum likelihood estimator (Table 4). Based on these limited simulations we recommend
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use of either of the semiparametric estimators in practice with confidence intervals
constructed from percentiles of the bootstrap distribution when resampling is feasible, or
from the logit transform with corresponding analytic variance formulas when bootstrapping
is not feasible.

4.2 Simulation Setting 2
We investigated another simulation setting where marker Y follows a standard normal
distribution, and the risk quantile follows a piece-wise linear form with cutpoint at the
quintiles. Specifically, R(v) takes value 0, 0.1, 0.16, 0.2, 0.24, 0.3 at cutpoints v = 0, 0.2, 0.4,
0.6, 0.8, 1, and is linear in between. As before, we first simulate a cohort of size 5n, and then
randomly sample nD = n/2 cases and nD ̄ = n/2 controls from the cohort. The semiparametric
estimators again are obtained assuming a linear logistic model. Tables 5 and 6 present bias,
efficiency (in terms of mean squared error), and coverage of the 95% percentile bootstrap
confidence intervals for the semiparametric and nonparametric estimators, for case-control
sample sizes varying from 500 to 2,000. The semiparametric estimators that assume an
incorrect working model, have poorer performance compared to that in the first simulation
setting. For estimation of both R(v) and R−1(p), they have nonignorable biases that do not
dissapate as sample size increases. As a result, coverages of their confidence intervals are
often seriously below the nominal level, especially in large sample size. The performance of
the nonparametric estimator, nevertheless, is fairly consistent with that in the first simulation
setting. Its bias is much smaller compared to that of the semiparametric estimators and
decreases as sample size increases. Consequently, for certain quantiles, the mean squared
error of the nonparametric estimator is smaller than that of the semiparametric estimators. In
general, for a sample size greater than 500, the confidence interval constructed from the
nonparametric estimators maintain coverage close to the nominal level.

Because of its robustness, the nonparametric estimator might be preferred in large studies
where bias rather than precision is the major concern. On the other hand, in practice it is
important to make the semiparametric model flexible to ensure a good fit, in light of its
sensitivity to the risk model assumption. Comparing the nonparametric estimator with the
semiparametric estimator provides an avenue for model checking. Later in this paper we
propose a goodness-of-fit test to assess calibration formally.

5. Illustration
Levels of prostate specific antigen (PSA) and recent increases in levels of PSA (PSA
velocity) are markers for prostate cancer. We evaluate them as predictors of the risk that a
man will be diagnosed with prostate cancer if biopsied. These markers should only be used
in decisions to take a biopsy if they are sufficiently informative of this risk. Data for
evaluating these markers come from the Prostate Cancer Prevention Trial, a randomized
prospective study with 7 years of follow-up [30]. Subjects were at least 55 years old, had
serum PSA value less than 3.0 ng/ml at baseline and were scheduled for annual blood draws
to measure serum PSA. Almost all subjects had a prostate biopsy taken at the end of study.
We analyze data for the 5519 men on the placebo arm of the trial that had a prostate biopsy,
a PSA measure during the year prior to biopsy and at least 2 PSA values from the 3 years
prior to biopsy to calculate PSA velocity. The prevalence of prostate cancer in the cohort is

. We selected 250 cases and 250 controls at random from the cohort to simulate a
nested case-control study. Thus the data for analysis consist of the prevalence estimate from
the 5519 men in the parent cohort and PSA and PSA velocity for subjects in the case-control
subset.

To implement the semiparametric methods for estimating predictiveness curves, for each
marker a logistic regression risk model was employed using a Box-Cox transformation of
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the marker. The two semiparametric estimators of the predictiveness curves are very similar
to each other for both PSA and PSA velocity and so only the semiparametric maximum
likelihood estimators are displayed in Figure 1. Also displayed in Figure 1 are the
nonparametric predictiveness curve estimates. Observe that the semiparametric curves are
much smoother than the nonparametric ones, but agree with them, suggesting a good-fit for
the semiparametric models. Overall, PSA has a steeper predictiveness curve, indicating that
it is a better marker for predicting risk of prostate cancer than PSA velocity.

For the semiparametric estimators, the asymptotic and bootstrap variance estimates for R̂(v)
and R̂−1(p) are similar in magnitude (results not shown). Moreover, the Wald confidence
intervals for R(v) and R−1(p) are close to those based on percentiles of the bootstrap
distributions. Here we present only the latter. The pointwise 95% percentile bootstrap
confidence intervals for R(v) constructed from the semiparametric maximum likelihood
estimators are displayed in Figure 2(a)(b). They are much narrower in comparison to those
constructed from the nonparametric estimators.

We next compare the predictive capacities of the two markers in terms of the 10th and 90th

percentiles of their risk distributions and sizes of risk strata corresponding to a low risk
threshold of 10% and a high risk threshold of 30% (Table 7 (a)). Results are presented for
both the semiparametric maximum likelihood estimators and for the nonparametric
estimators. P-values employ Wald tests based on differences in R(v) and R−1(p) with
variances estimated with the bootstrap. Using the semiparametric methods, PSA appears to
have a better capacity to predict high risk of prostate cancer than does PSA velocity given
that it has a larger value for R(0.9) as well as better capacity to predict low risk given that it
has a smaller value for R(0.1). In addition, PSA categorizes more people into the low and
high risk ranges as can be seen from semiparametric estimates of R−1(0.1) and 1 − R−1(0.3).
In contrast, these comparisons are not significant based on the nonparametric methods due
to their large sampling variabilities.

6. Extending Semiparametric Estimation to Multiple Markers
The semiparametric estimators can be extended naturally to accommodate multiple
predictors or to settings where the monotone increasing risk assumption is not true.

6.1 Inference
We present the generalized estimators here as well as their asymptotic distribution theory. In
practice, since estimation of the asymptotic variance involves both numerical differentiation
and nonparametric density estimation, we rely on resampling techniques rather than on
asymptotic theory for inference.

Let Y be a vector of predictors that may include different functional forms of a single
predictor (e.g. a set of spline basis functions) as well as interactions among predictors. Let
FR, FDR, FD ̄R indicate the cumulative distribution functions for Risk(Y) in the general, case
and control populations respectively. As before, we calculate  as the predicted risk
for subject i based on fitting a standard logistic regression model to case-control data with

offset . To estimate FR we write FR = ρFDR + (1 − ρ)FD ̄R and substitute
estimates for each component. The components FDR and FD ̄R can be estimated

“empirically” using  and

.
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A more efficient approach is to use the semiparametric maximum likelihood estimates that
are derived using arguments similar to those provided in Huang and Pepe [11] for the single
marker setting:

where .

We write  and R̂−1(p) = F̂R(p) for the semiparametric maximum likelihood
estimators of the predictiveness curve and R̃(v) = F̃R(p) and R̃−1(p) = F̃R(p) for the
semiparametric “empirical” estimators. The following results are proved in Appendix B4.
Here variability of  is taken into account in calculating asymptotic variance of the
predictiveness curve estimators, with details provided in Appendix B4.

Theorem 4 As n → ∞,

i.
 converges to a normal random variable with mean zero and

variance

ii.
 converges to a normal random variable with mean zero and

variance Σ1M.R(v) = {∂R(v)/∂v}2 Σ2M.R{R(v)}, where

iii.
 converges to a normal random variable with mean zero and

variance
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iv.
 converges to a normal random variable with mean zero and

variance Σ1E.R(v) = {∂R(v)/∂v}2 Σ2E.R{R(v)}, where

6.2 Illustration
We illustrate using the data described in Section 5. We compare the logistic risk model
based on PSA alone with a more comprehensive risk model that combines PSA and other
risk factors, namely family history of prostate cancer, digital rectal exam, and previous
negative biopsies. All of these factors are highly statistically significant factors in
determining risk [30].

A fundamental preliminary step in assessing the value of a risk model concerns calibration
or model fit. The predictiveness curve can be helpful in this assessment [6]. We now
illustrate how the assessment can be made with data from a nested case-control study by
application to the model that includes other risk factors in addition to PSA. We let 
be risk estimates from the model employing PSA and other risk factors and partition the
observations into deciles of the distribution for . For k ∈ {1, . . . , K =10}, we
estimate P̂(D = 1|k, S) as the observed proportion of cases within the kth group. The
population risk within the kth group, P(D = 1|k) is then estimated according to

At the midpoints of the kth group, a visual comparison can be made between these points and
the predictiveness curve by superimposing the value of P̂(D = 1|k) on the predictiveness
curve plot. This comparison of observed risk and average risk within deciles of modeled risk
provides a graphical display of calibration as suggested previously [6] but now generalized
to case-control data. According to Figure 3(a), there does not to appear be serious lack of fit
of the risk model.

Let  be the risk estimate from the logistic regression applied to the case-control sample
without correcting for the intercept term. We propose a Hosmer-Lemeshow measure of
calibration to accompany the plot:

(6.1)

where  is the average of  within the kth group, and R̂k is a population version of it
corrected for the biased sampling
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Within each discretized risk group, the term in the numerator of (6.1) is the squared
difference between the ‘observed’ and ‘expected’ disease proportion in the population, while
the term in the denominator is the estimated variance of this difference. Comparing this

measure T with a  distribution, we obtain a p-value for the test of calibration. The
calculation of R̂k and justification for this test are outlined in Appendix C. Our measure is a
modification of the established Hosmer-Lemeshow test for case-control study [32], which
compares observed and expected disease proportion in the case-control sample. The test
without modification yields a valid test with case-control data. But the modified test is more
tightly linked to the predictiveness curve and the measure of calibration upon which it is
based does not vary with the case-control design. In our example, the modified test yields a
p-value of 0.170 for the predictiveness curve employing PSA and other risk factors,
suggesting a reasonable representation of the risk distribution in the population provided by
the predictiveness curve.

Figure 3(a) displays the semiparametric maximum likelihood estimators of the
predictiveness curves for PSA alone and for the model that includes other factors (the
semiparametric “empirical” estimators are similar). The two risk models have very similar
predictiveness curves. Confidence intervals for R(v) constructed with the semiparametric
maximum likelihood estimators are presented in Figure 3(b). Sampling variability of
estimates derived from the two risk models appears to be similar in magnitude.

Detailed results comparing the predictiveness curves of the two models are shown in Table
7(b). Briefly, the percentages of people classified into the low, high, or equivocal risk ranges
are not significantly different between the two models, nor are the 10th and 90th percentiles
of risk significantly different. Thus including other factors in the model in addition to PSA
does not lead to a significant improvement in risk stratification even when these factors are
all statistically significant in the multivariate logistic regression model. It reinforces our
earlier argument that the risk model by itself is not enough to characterize the population
performance of a risk prediction model.

An important issue pertaining to models with multiple predictors is over-fitting when the
number of predictors gets large relative to the sample size. To account for potential over-
fitting, we implemented 10-fold cross-validation to compare the predictiveness of the two
models. Again, including other factors beside PSA in the risk model has trivial influence on
risk stratification.

7. Discussion
It has been argued in both the applied [8] and biostatistical literature [2,6] that displaying the
population distribution of risk is useful for evaluating the potential impact of a risk model
for risk stratifying the population. The key ideas of risk stratification tables, introduced by
Cook and others [33] and Cook [34], are closely related. In particular, the margins of the
two-way risk stratification table show the population distribution of risk achieved by the two
models, albeit using discrete risk categories. Janes and others [35] show that the key
information pertinent to comparing models is contained in the margins rather than in the
cells of the table. Predictiveness curves provide more complete descriptions of the marginal
risk distributions since they show risk distributions over a continuum of risk thresholds that
could be used to define risk categories rather than only at a few pre-specified risk thresholds.

Methods for estimating predictiveness curves from cohort studies were developed
previously. However, case-control designs are often preferred in biomarker development [9]
and the goal of the current paper is to develop estimation procedures for use with case-
control data. Here we discussed semiparametric methods that rely on a logistic regression
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form for the risk and a non-parametric method that relies on isotonic regression for
estimating the risk. Another approach developed by Huang and Pepe [36] is based on the
relationship between the predictiveness curve and the ROC curve. Here, we found that the
nonparametric method is inefficient compared with the semiparametric methods and that
valid inference requires large sample sizes. We recommend the semiparametric methods for
use in practice because (i) simulations indicate that inferential procedures are adequate with
realistic sample sizes, (ii) they accommodate risk models with multiple predictors, and (iii)
they can be made flexible by employing flexible forms for the predictors in the logistic
regression model. The last point is important to ensure good model fit by the semiparametric
model. The nonparametric estimator has the advantage that it is completely robust but
potentially very inefficient. Therefore it can be useful in large studies where precision is not
an issue and minimum bias is desired. And it can be used for comparison with the
semiparametric estimator in a single marker setting to further assess its goodness-of-fit. For
a general logistic risk model allowing for multiple markers, we proposed a modified
Hosmer-Lemeshow test assessing calibration of the risk model. It extends the established
Hosmer-Lemeshow test for case-control data by mapping the difference between observed
and established disease proportion at the case-control sample level to that at the population
level. As a result, performance of the test under alternative hypothesis would potentially be
less sensitive to factors such as case-control ratio. Based on limited simulation studies
(results not shown), this modified test appears to have power comparable to that of the
standard Hosmer-Lemeshow test and is more powerful in some settings when the proportion
of cases in the case-control sample is high.

Pepe and others [6] proposed displaying the predictiveness curve and curves displaying true
and false positive rates together for maximum information. Specifically, to evaluate a risk
prediction marker, one will be interested in knowing not only 1 − R−1(p), the proportion of
the population with risk above p, but also the proportion of diseased subjects correctly
classified (the true positive rate TPR(p) = P{Risk(Y) > p|D = 1}) and the proportion of non-
diseased subjects incorrectly classified (the false positive rate FPR(p) = P{Risk(Y) > p|D =
0}), according to the classification rule ‘Risk(Y) > p’. Our semiparametric and nonparametric
procedures developed in this manuscript yield estimators of FDR, FD ̄R and FR as by-

products. These can be directly plugged into  and

 to estimate these quantities. Asymptotic theory for corresponding
semiparametric estimators can be developed using techniques similar to those employed for
estimators of the predictiveness curve.

Finally, for interested readers, fitting of the logistic regression and isotonic regression
models can be performed using standard statistical software such as R. R programs for
estimating the corresponding predictiveness curves and their asymptotic variances are
available from the authors upon request.
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Appendix A: Analytic Forms of the Asymptotic Variances for the
Semiparametric Estimators of the Predictiveness Curve (for the Example in
Section 3.1)

Let α = θ0 − log{ρ/(1 − ρ)}, β = θ1, and let η = nD/nD ̄, we have
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where

with A0 = A0(∞), A1 = A1(∞), A2 = A2(∞).

Appendix B: Proof of Theorems

B1: Proof of Theorem 1
Suppose there are m pooled groups after isotonic regression with ŵ(Y) < ∞. In the ith group,
there are mi observations, among which mDi are cases. Then for subject k (k ∉ κ) belonging
to the ith group, ŵ(Yk) = mDi/(mi − mDi).

Plugging  into (3.5) results in

Since the term on the left-hand side of (3.5) is monotone increasing in μ,  is the
unique solution.

B2: Proof of Theorem 2
At the end of the isotonic regression, the estimated risks are constant within each block of
marker values. Suppose there are m blocks with mi subjects and mDi cases in the ith block.
Let y(1), ..., y(n) be the marker values in the case-control sample ordered increasingly, with
y(i1), ..., y(imi) belonging to the ith block, then P̂(D = 1|Y) is constant for Y ∈ {y(i1), ..., y(imi)}.
Because the quantile function F−1 is defined to be left continuous by convention, the
nonparametric estimator R̂(v) or R̃(v) vs v is a step function where a jump is ready to be
made (but not yet) at every v corresponding to the largest element in a block, i.e. v = F̂
{y(imi)} or v = F̃{Y(imi)} for i = 1, ..., m.
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Therefore, to show the equivalence between the two predictiveness curve estimators, all we
need to show is that the sets of v′s where jumps are about to happen is the same between the
two curves. In other words, we want to show that F̃ {y(imi)} = F̂ {y(imi)} for i = 1, ..., m.

Notice that

and that

Consequently under the monotone increasing risk model assumption, the nonparametric
“empirical” and model-based approaches lead to the same estimator of the predictiveness
curve.

B3: Proof of Theorem 3
For a continuous marker Y, it has been shown that there is a one-to-one relationship between
the predictiveness curve and the ROC curve [36]. That is, suppose P(D = 1|Y) is monotone
increasing in Y, R(v) vs v can be represented as

A similar result can be proved for the semiparametric maximum likelihood estimator.
Suppose the unique marker value within the case-control sample is {y1, ..., yn} in increasing
order. For a marker value yi,

Next we generate the ROC curve, , corresponding to the semiparametric maximum
likelihood estimator of the predictiveness curve: (1) we order the support of the marker
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decreasingly; (2) we estimate the pair of TPF(c), FPF(c) where c = {yn, ..., y1, −∞} (here we
define positive as Y > c instead of Y ≥ c to accommodate the convention that F̂ is right

continuous); (3) we connect neighboring points by a straight line and define  to be
the right-hand derivative of . Suppose F̂D ̄(yi) = 1 − ti, since

, we have that R̂(v) vs v can be represented as

For the semiparametric maximum likelihood estimator, P̂(Y = yi|D = 0) > 0, thus we have
. That is, the derivative of the corresponding curve

is always finite. Therefore, the semiparametric maximum likelihood estimator of the
predictiveness curve corresponds to an ROC curve which is continuous and piecewise
differentiable everywhere. Moreover the ROC curve is concave since P(D|Y) is monotone
increasing in Y. We have

For the nonparametric maximum likelihood estimator of the predictiveness curve, we can
obtain the corresponding ROC curve similarly. This ROC curve is piecewise differentiable
with finite derivative everywhere if P̂(D = 1|Y = y) < 1 for every y in the support of the
marker. However, when we use isotonic regression to estimate the risk model, the estimated
risk could be 1 if the largest marker measure comes from the case sample. This would lead
to a vertical line from (0, 0) to (0, nκ/nD) in the corresponding ROC curve, where nκ is the
number of observations in κ. Nevertheless, the area under the estimated predictiveness curve
is still equal to  in this scenario because

B4: Proof of Theorem 4
For the semiparametric maximum likelihood estimator,

where
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where * holds under appropriate equicontinuity conditions [37].

Suppose  is estimated from a cohort independent of the case-control sample, or the parent
cohort where the case-control sampled is nested within. Assume the size of the cohort is λ

times the size of the case-control sample. Let  be the counterparts of QM,  if we plug

in true ρ where  is originally used. Note that  is independent of  for a logistic
regression risk model. Then, we have

To show this, use the first result as an example, note that

Since the two terms in (*) are asymptotically uncorrelated, we have
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Finally, results for semiparametric “empirical” estimators can be derived following similar
arguments.

Appendix C: The modified Hosmer-Lemeshow test for case-control data
Let observations in a case-control sample by divided into K groups according to distribution
of , the unmodified Hosmer-Lemeshow test for case-control study is defined as

Based on Bayes’ theorem, we have  and  for

Then for k = 1, . . . , K, we have . Its variance under

H0 can be shown to be approximately equal to  through Delta

method. Therefore under  and

 are asymptotically equivalent, which
proves the asymptotic equivalence between T and HL.
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Figure 1.
The predictiveness curves for PSA and PSA velocity for predicting prostate cancer.
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Figure 2.
The 95% pointwise confidence intervals constructed from percentiles of the bootstrap
distribution for the predictiveness curves of PSA and PSA velocity. SPMLE: semiparametric
maximum likelihood estimator; NPMLE: nonparametric maximum likelihood estimator.
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Figure 3.
(a) The semiparametric maximum likelihood estimates of predictiveness curves for PSA and
PSA plus other factors for predicting risk prostate cancer,the dots are average risk within
deciles of modeled risk based on the latter model; (b) their 95% pointwise confidence
intervals using percentiles of the bootstrap distribution. The horizontal lines indicate disease
prevalences.
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