Skip to main content
. Author manuscript; available in PMC: 2011 Jun 15.
Published in final edited form as: Stat Med. 2010 Jun 15;29(13):1391–1410. doi: 10.1002/sim.3876

Table 4.

Efficiency (ratio of observed variances in simulation studies) of the semiparametric “empirical” estimator and nonparametric estimator relative to the semiparametric maximum likelihood estimator of the predictiveness curve in nested case-control studies for the linear logistic model. SPE denotes the semiparametric “empirical” estimator, NPMLE denotes the nonparametric maximum likelihood estimator. Here n = ∞ denotes the asymptotic variance.

v = 0.1 v = 0.3 v = 0.5 v = 0.7 v = 0.9
R(v) 0.045 0.094 0.15 0.24 0.43
    n = 100 SPE 1.02 0.97 0.97 0.90 0.91
NPMLE 0.45 0.41 0.27 0.18 0.29
    n = 500 SPE 0.98 0.98 0.96 0.90 0.89
NPMLE 0.25 0.25 0.16 0.10 0.18
    n = 2000 SPE 0.99 0.98 0.96 0.90 0.91
NPMLE 0.17 0.16 0.10 0.06 0.11
    n = ∞ SPE 0.99 0.97 0.97 0.90 0.91
p = 0.045 p = 0.094 p = 0.15 p = 0.24 p = 0.43
R–1(p) 0.1 0.3 0.5 0.7 0.9
    n = 100 SPE 0.99 0.99 0.96 0.91 0.91
NPMLE 0.47 0.47 0.32 0.21 0.38
    n = 500 SPE 0.99 0.98 0.95 0.90 0.90
NPMLE 0.28 0.27 0.17 0.10 0.20
    n = 2000 SPE 0.99 0.98 0.96 0.91 0.91
NPMLE 0.18 0.16 0.10 0.06 0.12
    n = ∞ SPE 0.99 0.97 0.97 0.90 0.91