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cytokines including tumor necrosis factor�α and interleukin�12.

Over�activation of host defense systems may result in severe tissue

damage and requires regulation. Granulocyte colony�stimulating

factor and interleukin�10 are candidate cytokines for inducing

tolerance to lipopolysaccharide re�stimulation. We compared cyto�

kines secreted by lipopolysaccharide�stimulated blood cells from

patients who had survived gram negative bacterial pneumonia

(Pseudomonas aeruginosa, Escherichia coli or Proteus mirabilis,

n = 26) and age�matched healthy volunteers (n = 18). Interleukin�

12p70 and tumor necrosis factor�α expression was significantly

lower in patients (p = 0.0039 and p<0.001) compared to healthy

controls, while granulocyte colony�stimulating factor production

was markedly higher in patients (p<0.001). Levels of interleukin�

10 were comparable. Granulocyte colony�stimulating factor expres�

sion was inversely correlated with interleukin�12p70 (R = −0.71,

p<0.001) and tumor necrosis factor�α (R = −0.64, p<0.001) expres�

sion; interleukin�10 showed no significant correlation. In unstimu�

lated leukocytes from patients, cAMP levels were significantly

raised (p = 0.020) and were correlated inversely with interleukin�

12p70 levels (R = −0.81, p<0.001) and directly with granulocyte

colony�stimulating factor (R = 0.72, p = 0.0020), matrix metallo�

proteinase�9 (R = 0.67, p = 0.0067) and interleukin�10 (R = 0.54,

p = 0.039) levels. Our results demonstrate that granulocyte colony�

stimulating factor production by lipopolysaccharide�stimulated

leukocytes is a useful indicator of tolerance induction in surviving

pneumonia patients and that measuring cAMP in freshly isolated

leukocytes may also be clinically significant.
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IntroductionLipopolysaccharides (LPS) in the outer membrane of gram
negative bacteria are endotoxins that elicit strong immune

responses and act as well-recognized alarm signals in human
hosts.(1) Stimulating leukocytes with LPS in vitro induces the
secretion of proinflammatory cytokines such as tumor necrosis
factor (TNF)-α and interleukin (IL)-12 which kill the bacteria but
may also cause severe tissue damage in the host. The regulation of
over-activation of this defense system is therefore very important
to protect the host, especially when exposed to prolonged or
recurrent alarm signals such as LPS.
Critical roles for IL-12 have been identified not only in the T

helper type 1 immune response and host defenses against intra-
cellular microorganisms(2,3) but also in combating extracellular
microorganisms. Yamamoto et al. showed that IL-12 plays a
critical role in the early phase of bacterial pneumonia by pro-
moting the recruitment of neutrophils to infected lung tissues,
where TNF-α production is dependent on IL-12, using IL-12p40-
knockout mice.(4) IL-12 is a chemotactic factor for both neutro-
phils and NK cells and induces their adherence to vascular endo-
thelial cells.(5) Preoperative levels of IL-12 secretion by monocytes
stimulated in vitro with LPS were significantly lower in patients
who developed lethal postoperative sepsis, compared with the
survivors.(6) However, IL-12 has been closely associated with
lung tissue injury, as the development of bleomycin-induced
pneumopathy is prevented by treating normal mice(7) and IL-
12p40-knockout mice with anti-IL-12 antibody.(8) IL-12 also
reduces the expression of matrix metalloproteinase (MMP)-9,
which is associated with angiogenesis.(9)

Granulocyte colony-stimulating factor (G-CSF)(10) and IL-10(11,12)

are likely candidates for cytokines that induce tolerance to repeated
LPS stimulation. In vivo treatment with recombinant G-CSF not
only results in the mobilization of hematopoietic precursor cells(13)

and neutrophils(14) but also results in the appearance of immuno-
regulatory cells, such as type 2 dendritic cells(15) and type 2 helper
T cells,(16) in human blood. Pretreatment with G-CSF attenuates
the LPS-stimulated secretion of proinflammatory cytokines, such
as IL-12 and TNF-α, and simultaneously enhances IL-10 secre-
tion.(17) G-CSF treatment also increases serum protein levels of
hepatocyte growth factor(18) and plasma protein levels of MMP-
9.(19) In contrast, in neutrophils G-CSF is known to inhibit
apoptosis(20) and IL-10 reverses the anti-apoptotic effect of LPS.(21)

Taken together, these observations suggest that G-CSF acts not
only as an anti-inflammatory cytokine but also as a defense against
infections and a promoter of tissue repair.
A response to LPS requires its presentation by CD14 to Toll-like

receptor (TLR) 4.(22) Among circulating blood cells, monocytes
express relatively high levels of cell surface TLR4 and CD14,
while neutrophils also express them both but at low levels.
Basophils express TLR4 but not CD14 and eosinophils and most
lymphocytes express neither molecule.(23,24) Monocytes are an
important source of both the proinflammatory cytokines IL-12 and
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TNF-α and the anti-inflammatory cytokines G-CSF and IL-10.
However, human neutrophils have also been reported to produce
physiologically relevant levels of IL-12(24) and IL-10.(25)

In this study, we investigated the production of TNF-α, IL-12,
CSF and IL-10 in LPS-tolerant patients who had survived gram
negative bacterial pneumonia with no severe inflammatory symp-
toms. We also measured cyclic adenosine monophosphate (cAMP)
in unstimulated leukocytes from these patients to elucidate the
relationship between cAMP levels and the profile of cytokines
secreted in response to LPS, because recent in vitro studies have
shown that intracellular cAMP concentrations in monocytes can
determine the secretion of these cytokines(26–28) although LPS itself
does not affect cAMP levels.(29)

Materials and Methods

Patients. We enrolled patients over 50 years of age who had
survived aspiration pneumonia due to gram negative rods as
Pseudomonas aeruginosa (P. aeruginosa), Escherichia coli (E.
coli) or Proteus mirabilis (P. mirabilis). All patients had been
diagnosed with gram negative bacterial pneumonia from chest X-
rays, computed tomography and sputum cultures. Their informed
consent was obtained and blood samples were collected at least
one week after withdrawal of antibiotics and/or anti-inflammatory
drugs. Control blood samples were collected from healthy volun-
teers who had experienced no episodes of pneumonia within the
last 20 years or any infectious diseases within the last 3 months.

Quantifying cAMP levels in leukocytes. Blood (10 ml)

Fig. 1. Effect of aging on cytokine production by LPS�stimulated leukocytes. (A) Blood from healthy volunteers (n = 47) ranging from 20 to 96 y of
age was incubated in the presence of 10 μg/ml LPS for 24 h and cytokine concentrations in the supernatants were then measured by ELISA. Correla�
tion coefficients (R) were calculated by linear regression analysis. (B) Comparison of data from volunteers aged over 50 y (open squares) and 50 y or
under (closed squares).
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was collected using a syringe containing 0.5 ml of heparin
(Mochida Pharmaceutical, Tokyo, Japan), mixed with 5 ml 6%
dextran and incubated for 30 min at room temperature. The
enriched leukocyte fraction was collected and centrifuged at 400 g
for 5 min, and any residual erythrocytes were then lysed by adding
3 ml ACK lysing buffer (BioWhittaker, Walkersville, MD) for
7 min at room temperature. After washing three times with PBS,
the leukocytes were adjusted to 1 × 106 cells/ml. 200 μl aliquots
were lysed with ACK lysing buffer according to the manufacturer’s
instructions and used to measure cAMP concentrations with an
enzyme-linked immunosorbent assay (ELISA) kit (RPN225, GE
Healthcare, Buckinghamshire, UK).

Cell culture. LPS-stimulated supernatants were obtained from
40 μl aliquots of heparinized whole blood, which were mixed
with 160 μl DMEM (Life Technologies, Rockville, MD) in the
presence of 10 μg/ml LPS (Sigma, St. Louis, MO), in triplicate in
flat bottomed 96-well microplates (Becton Dickinson Labware,
NJ). After incubation for 24 h at 37°C in humidified air containing
5% CO2, the cells were centrifuged at 400 g for 5 min and the
supernatants were collected and stored at −80°C until their use in
assays.

Quantifying cytokines secreted by LPS�stimulated leuko�
cytes. The concentrations of IL-12p70 (the active heterodimer
of IL-12p40 and p35), TNF-α, G-CSF, IL-10 and MMP-9 in the
culture supernatants were quantified using commercial ELISA kits
(Biosource International, CA).

Statistical analysis. Data were imported into Statview 5.0
(SAS Institute, Cary, NC) and plotted using log-log, semi-log or
linear coordinates. Regression analyses were performed to assess
the correlation coefficients (R) and Fisher’s protected least signifi-
cant difference was used to evaluate the degree of fit of the data to
power-law distributions. The Mann-Whitney U test was used to
determine the statistical significance of differences between two
experimental groups.

Results

Effect of aging on the production of pro�inflammatory
and anti�inflammatory cytokines. Blood from 47 healthy
volunteers between 20 and 96 years of age were stimulated in vitro
with LPS and the cytokines secreted were measured. Fig. 1A
shows the relationship between the age of the volunteers and the
concentration of the pro-inflammatory and anti-inflammatory
cytokines secreted. TNF-α production was inversely correlated
with age (R = −0.51, p<0.001). IL-10 secretion also dropped
with age, but with a lower correlation (R = −0.38, p = 0.0060). In
contrast, production of IL-12p70 and G-CSF was not significantly
correlated with age, although amongst individuals aged over 50
there were no outliers showing high production of these cytokines.
The plots shown in Fig. 1B compare cytokine production in
volunteers over 50 (open squares) with those 50 years or younger
(closed squares). Interestingly, no older volunteers showed
extraordinarily high levels of production of any cytokine, com-
pared to younger volunteers, and there were no individuals who
showed exceptionally high levels of both IL-12p70 and G-CSF
production in response to LPS.

Cytokine production in patients surviving gram negative
bacterial pneumonia. Table 1 shows the clinical data for the
patients enrolled in this study. The 26 patients were aged between
54 and 95 years with a median age of 78 years. Sputum cultures
identified P. aeruginosa in 17 patients, E. coli in 5 patients, and
P. mirabilis in 4 patients. Methicillin-resistant Staphylococcus
aureus (MRSA) was also detected in 3 patients. The mean CRP
level was 2.6 ± 1.5 mg/dl and the mean leukocyte count in freshly
drawn blood was 6,885 ± 2,109 cells/μl. The proportion of neutro-
phils and monocytes was more than 50% of total leukocytes in all
patients. Percutaneous endoscopic gastrostomy tube (PEG) were
placed into 19 patient’s stomach and the mean level of total protein
(TP) of all the patients was 6.8 ± 0.5 g/dl.
Fig. 2A shows a comparison of the cytokines secreted by LPS-

Table 1. Clinical data for the enrolled patients

Patient Age Sex Bacteria in sputum cultures
Leukocyte 
(cells/μl)

CRP 
(mg/dl)

TP 
(g/dl)

DM CVD

1 54 Female E. coli 2,600 1.2 7.4 + +

2 55 Male P. aeruginosa 8,000 3.3 7.6 + +

3 67 Male P. aeruginosa 8,400 5.8 6.7 + +

4 68 Male P. aeruginosa 8,000 3.5 6.5 + +

5 68 Female P. aeruginosa 5,000 3.1 7.7 + +

6 70 Male P. mirabillis 6,300 1.5 6.8 + +

7 70 Female P. aeruginosa 5,000 0.7 7.7 – +

8 72 Male P. aeruginosa 6,500 1.4 7.7 + +

9 72 Male P. aeruginosa 6,900 1 7.1 + +

10 74 Male P. aeruginosa 9,800 4.2 6.5 � +

11 74 Female P. aeruginosa 4,000 1 6.8 � �

12 74 Female P. aeruginosa 8,500 1.5 6.8 + +

13 77 Female P. mirabillis 7,400 2.3 6.7 + +

14 79 Male E. coli 7,400 3.7 7.1 – –

15 79 Female P. mirabillis, MRSA 4,300 4.3 5.9 – +

16 82 Female P. aeruginosa 8,700 4.1 6.6 – +

17 82 Female P. aeruginosa 4,500 0.8 6.9 – +

18 84 Male P. aeruginosa, MRSA 11,000 3.9 7.1 – +

19 88 Male P. aeruginosa 9,100 1.9 7.1 + +

20 88 Male P. aeruginosa 7,600 2.8 7 + –

21 90 Female E. coli 8,700 1.5 5.7 – +

22 92 Male E. coli, MRSA 7,900 4.7 6.8 – +

23 93 Female P. aeruginosa 8,400 1.1 6.3 + +

24 94 Female P. mirabillis 5,200 3.4 7.1 – –

25 94 Female E. coli 6,500 1.2 6.3 – +

26 95 Female P. aeruginosa 3,300 4.1 6.1 – +
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stimulated blood from patients (n = 26), age-matched healthy
volunteers over 50 years old (n = 18) and healthy volunteers who
were 50 y old or younger (n = 29). In the patient group, production
of IL-12p70 was significantly lower (p = 0.0039) than in age-
matched healthy volunteers. TNF-α production was also lower in
the older, compared to younger, volunteer groups and lower still in
the patient group (p<0.001). G-CSF production was markedly
higher in patients compared to both healthy volunteer groups
(p<0.001), while IL-10 production was similar in all three groups.
Amongst the patient group, 13 people suffered from diabetes
mellitus (DM) and 22 people suffered from cerebrovascular
disease (CVD). However, these possible confounding factors did
not significantly affect the cytokine production in these patients,
as shown in Fig. 2B.

Correlation between production of pro�inflammatory
and anti�inflammatory cytokines. When we analyzed the pro-
duction of cytokines, we found that the correlation coefficients be-
tween any pair of cytokines we measured were higher in log-log
(power-law) distributions than in semi-log or linear distributions.
Fig. 3 shows curves modeled for the production of cytokine X
and cytokine Y using a power-law distribution in which Y is
proportional to Xa, where a is the exponent of the power law. The
production of IL-12p70 and TNF-α showed a strong direct
correlation (R = 0.57, p<0.001, a = 0.39). The production of G-

CSF was inversely correlated with the production of both IL-
12p70 (R = −0.71, p<0.001, a = −0.74) and also TNF-α (R =
−0.64, p<0.001, a = −0.45). These results cannot be fully explained
by secondary effects of secreted G-CSF, by an autocrine or
paracrine mechanism, because we found that the addition of even
a high concentration of recombinant G-CSF to the cultures
reduced the secretion of IL-12 by at most 34% and TNF-α by at
most 28%. The degree of correlation between G-CSF and IL-10
production was lower (R = 0.35, p = 0.020, a = 0.38) and IL-10
production showed no significant correlation with either IL-12p70
or TNF-α production.

Correlation between cytokine and MMP�9 production.
Secretion of MMP-9 by blood cells stimulated with LPS in vitro
was significantly higher in the patient group compared to healthy
volunteers (p = 0.011; Fig. 4A). As shown in Fig. 4B, MMP-9
production was very closely correlated with G-CSF (R = 0.64,
p<0.001, a = 0.36) and IL-10 (R = 0.35, p = 0.020, a = 0.26)
production. Conversely, MMP-9 levels were inversely correlated
with TNF-α levels (R = −0.41, p = 0.0047, a = −0.34), but there
was no significant correlation between MMP-9 and IL-12p70
production.

Correlation between cAMP levels in leukocytes and
cytokine production. We next quantified and analyzed the
cAMP content of freshly isolated leukocytes. As shown in

Fig. 2. Changes in cytokine production in patients with gram negative bacterial pneumonia. (A) Blood from volunteers aged 50 years and under
(n = 29), volunteers aged over 50 years (n = 18) and patients with gram negative bacterial pneumonia (n = 26) was incubated in the presence of
10 µg/ml LPS for 24 h and cytokine concentrations in the supernatants were compared statistically between different pairs of groups. (B) Comparison
of cytokine production in patients with or without the additional complications of diabetes mellitus (DM) and cerebrovascular disease (CVD).
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Fig. 5A, cAMP levels were significantly higher in patients
(p = 0.020) compared to healthy volunteers. Fig. 5B shows the
relationship between cAMP (X) and cytokine production (Y),
fitted to exponential curves in which Y is proportional to ebX,
where e is the base of the natural logarithm and b is a constant. The
levels of cAMP were inversely correlated with IL-12p70 produc-
tion (R = −0.81, p<0.001, b = −0.13) and directly correlated with
G-CSF (R = 0.72, p = 0.0020, b = 0.089), MMP-9 (R = 0.67,
p = 0.0067, b = 0.041) and IL-10 (R = 0.54, p = 0.039, b = 0.049)
production. These results helped to explain why the relationship
between cytokine production follows a power-law relationship.
No statistically significant correlation was detected between
cAMP and TNF-α levels in this experiment. In particular, the

production of IL-12p70 and G-CSF showed similar degrees of
sensitivity, as expressed by the values of b, to intracellular cAMP,
which explains the inverse relationship seen between IL-12p70
and G-CSF production seen in Fig. 3.

Discussion

LPS-stimulated monocytes from elderly humans have been
reported to produce low amounts of cytokines, including TNF-α
and G-CSF.(30) A significant association with age has also been
reported for IL-12, but not IL-10, expression in feline mono-
cytes.(31) In this study, using whole blood cells from 47 healthy
human volunteers, we have demonstrated that the LPS-induced

Fig. 3. Relationship between pro�inflammatory and anti�inflammatory cytokines secreted by LPS�stimulated leukocytes. Blood cells were collected
from patients (n = 26, closed triangle) or age�matched healthy volunteers (n = 18, open square), and stimulated with 10 μg/ml LPS for 24 h. Correla�
tions between pairs (X and Y) of the secreted cytokines (TNF�α, IL�12p70, G�CSF, IL�10) were analyzed. The degree of fit to a power�law distribution
in which Y was proportional to Xa was calculated. Correlation coefficient (R) between log X and log Y and the slope (a) of the regression line ((log Y)/
(log X)) are shown.
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secretion of TNF-α and IL-10 is reduced with age, although we
did not detect any statistically significant changes in IL-12 or
G-CSF expression. Furthermore, we found that most leukocytes
from people showing high IL-12 production secreted very small
amounts of G-CSF and vice versa.
Chen et al. reported that patients with acute bacterial infections

who had low serum G-CSF concentrations on hospital admission
were more likely to die.(32) Indeed maintaining high levels of G-
CSF is known to be important for sustaining hematopoiesis in
emergencies and for neutrophil differentiation, although it should
be emphasized that G-CSF also has a regulatory role in controlling
over-activation of host defense systems. TNF-α has an essential
role in the pathogenesis associated with septic shock and in
disseminated intravascular coagulation (DIC).(33) However, Weiss
et al. reported that in vitro, the LPS-inducible secretion of TNF-α
is downregulated and the secretion of G-CSF is upregulated in
patients with septic shock.(34) Since G-CSF upregulation occurs
earlier in the survivors than in the non-survivors, a rapidly elevated
and sustained G-CSF response might contribute to the regulation
of inflammation and so facilitate survival in endotoxin shock.(30)

It is well known that G-CSF administration improves survival in
animal models of sepsis and also endotoxin shock even when
administered therapeutically after the onset of sepsis.(35)

In terms of anti-inflammatory effects, IL-10, as well as G-CSF,
is a candidate cytokine for inducing tolerance to alarm signals
such as LPS. In vitro the inhibitory effects of IL-10 on the produc-
tion of IL-12 and TNF-α are much greater than the effects of G-
CSF, on a molar basis. Nevertheless, our study of gram negative
bacterial pneumonia has clearly demonstrated that the production
of IL-12 and TNF-α by the patients’ leukocytes was inversely
related to G-CSF production and not significantly related to IL-10

production. These results showed the significance of G-CSF in
protecting hosts from tissue injury resulting from prolonged or
repetitive alarm signals. G-CSF has been widely accepted to
enhance the healing process in skin wounds(36,37) as well as in
cardiac infarction,(38) but there has been no evidence for a direct
role for IL-10 in tissue repair. MMP-9 has been shown to have an
active role in tissue repair in the liver.(39) In the lung, Choi et al.
have reported a role for MMP-9 in tissue repair in cryptogenic
organizing pneumonia.(40) In the more common interstitial pneu-
monia, pulmonary structure is extensively remodeled, whereas
in cryptogenic organizing pneumonia architectural changes are
minimal; levels of MMP-9 in broncho-alveolar lavage fluid are
also higher in these patients. MMP-9 production was high in the
patients recovering from pneumonia in our study and was more
closely correlated with G-CSF production than IL-10 production.
The results of this study cannot in our view be adequately

explained by a mild regulatory effect of secreted G-CSF in vivo.
There is increasing evidence that intracellular cAMP levels deter-
mine cell functions such as patterns of cytokine production. For
example, cAMP-elevating agents have been shown to enhanced
G-CSF promoter activity and attenuation of TNF-α production in
a human monocytic cell line,(26) upregulate IL-10 mRNA expres-
sion in human peripheral blood mononuclear cells(27) and down-
regulate IL-12p40 mRNA levels in murine peritoneal macro-
phages.(28) Taken together, the upregulation of intracellular cAMP
levels results in increased G-CSF and IL-10 expression and
reduced IL-12 and TNF-α expression in vitro. Notably, recombi-
nant G-CSF has been shown to increase intracellular cAMP levels
in human PBMC in a dose-dependent fashion.(41) These reports
provide a molecular basis, supporting our in vivo results, for the
production of G-CSF and proinflammatory cytokines (IL-12,

Fig. 4. Relationship between MMP�9 and cytokines secreted by LPS�stimulated leukocytes. (A) Blood from age�matched healthy volunteers (n = 18)
and patients with gram negative bacterial pneumonia (n = 26) was incubated in the presence of 10 μg/ml LPS for 24 h and cytokine concentrations
in the supernatants were compared statistically. (B) Concentrations of cytokines and of MMP�9 secreted by LPS�stimulated blood cells from patients
(n = 26, closed triangle) or age�matched healthy volunteers (n = 18, open square) were plotted as X and Y. Correlation coefficients (R) were calculated
by fitting the data to a power�law distribution in which Y is proportional to Xa.
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TNF-α) being inversely related in leukocytes, while also
suggesting the importance of a positive feedback circuit in which
secreted G-CSF enhances intracellular cAMP levels.
Chemical mediators synthesized during host inflammatory

response, such as prostaglandin E2, histamine and the catechol-
amines, have been reported to increase intracellular cAMP levels
and suppress IL-12 production in monocytes and monocyte-
derived dendritic cells.(42–45) In addition, catecholamines potentiate
the LPS-induced expression of MMP-9 in human monocytes.(46)

Thus the host response to repeated alarm signals such as LPS
involves elevating cAMP levels and promoting both anti-
inflammatory and tissue repair systems. This mechanism could

be a reasonable host adaptation for surviving severe acute inflam-
matory episodes, even though prolonged suppression of normal
host responses might be expected to cause susceptibility to infec-
tion and carcinogenesis.
We have shown in this study that both G-CSF production by

leukocytes stimulated with LPS in vitro and also the cAMP levels
in freshly isolated leukocytes are useful indices of tolerance induc-
tion in patients who have survived gram negative bacterial
pneumonia. From a clinical viewpoint, it is much more significant
that we can predict the tolerant status of patients by simply
measuring cAMP levels in leukocytes, as culturing cells with
LPS is more time-consuming and costly.
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