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Abstract
We consider inference for data from a clinical trial of treatments for metastatic prostate cancer.
Patients joined the trial with diverse prior treatment histories. The resulting heterogenuous patient
population gives rise to challenging statistical inference problems when trying to predict time to
progression on different treatment arms. Inference is further complicated by the need to include a
longitudinal marker as a covariate. To address these challenges, we develop a semi-parametric
model for joint inference of longitudinal data and an event time. The proposed approach includes
the possibility of cure for some patients. The event time distribution is based on a non-parametric
Pólya tree prior. For the longitudinal data we assume a mixed effects model. Incorporating a
regression on covariates in a non-parametric event time model in general, and for a Póolya tree
model in particular, is a challenging problem. We exploit the fact that the covariate itself is a
random variable. We achieve an implementation of the desired regression by factoring the joint
model for the event time and the longitudinal outcome into a marginal model for the event time
and a regression of the longitudinal outcomes on the event time, i.e., we implicitly model the
desired regression by modeling the reverse conditional distribution.
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1 Introduction
We discuss inference for data from a phase III clinical trial on treatments of metastatic
prostate cancer. The challenges include patient heterogeneity due to prior treatment history
and the need to include a regression on prostate specific antigen (PSA) as a longitudinal
marker. We constuct a semi-parametric Bayesian model to address these challenges. It
implements joint inference on event time and longitudinal observations, with the possibility
that some patients are cured.

Let T be the event time and Y be the longitudinal covariate. Most existing approaches are
based on factoring the joint model as P(T, Y) = P(Y)P(T | Y). The first factor is the
longitudinal submodel P(Y), typically assumed to be a mixed model. The second factor is
the survival submodel P(T | Y). In the following discussion, we use the terms event time,
survival time, time to progression and failure time exchangably. There is an extensive
literature on the joint modeling of longtitudinal and event time data without a cured fraction
(De Gruttola and Tu, 1994; Tsiatis et al., 1995; Lavalley and De Gruttola, 1996; Wulfsohn
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and Tsiatis, 1997; Dafni and Tsiatis, 1998; Henderson et al., 2000; Xu and Zeger, 2001; Lin
et al., 2002; Ibrahim et al., 2004). A review can be found in Tsiatis and Davidian (2004).
Less work has been published on the joint modeling of longitudinal and event time data with
cure. Law et al. (2002) proposed a model with the longitudinal process described by an
exponential-decay-exponential-growth model and a mixture model to accomodate cure. The
imputed values of the longitudinal measurements are covariates in a proportional hazard
model. Brown and Ibrahim (2003) and Chen et al. (2004) assume event times to arise from
the development of an unobserved number of metastatis-competent tumer (MCT) cells,
modeled by a Poisson distribution. Subjects with zero MCT cells constitute the cure group.
Yu et al. (2004) provide a recent review of joint longitudinal-survival-cure models.

Specific to modeling PSA, Pauler and Finkelstein (2002) propose a joint analysis using a
change-point regression model for PSA trajectory, and a Cox model for cancer recurrence
time with time-dependent covariates including functions of longitudinal parameters and
imputed PSA mean function. Lin et al. (2002) considered a latent class model to uncover
subpopulation structure for both PSA trajectories and a survival outcome. Given latent class
membership, the longitudinal marker and outcome are assumed independent. The model
assumes class-specific baseline hazard functions and accommodates possibly time-
dependent covariates. Yu et al. (2008) investigated individual prediction in prostate cancer
studies using a joint longitudinal-survival-cure model. A logistic model is specified for the
probability of an individual being in the susceptible group and separate nonlinar mixed
effect models are assumed for the cure and susceptible groups. The event-time process is
modeled by a proportional hazard model with time-dependent covariates including the
current slope and current value of the PSA trajectory.

In the joint analysis of longitudinal and event time data, most researchers assume parametric
or semi-parametric models for P(T | Y). However, it is difficult to implement non-parametric
models for P(T | Y) because most non-parametric models do not allow straightforward
incorporation of a regression on covariates. We propose to use the alternative factorization,
P(T, Y) = P(T)P(Y | T). We proceed under the Bayesian paradigm. Choosing a non-
parametric model for P(T) is the traditional problem of non-parametric inference for an
event time. The model P(Y | T) is part of a convenient factorization of the joint model. It
should not be interpreted as a predicting model of Y by future outcome T. We propose a
mixed effect model for P(Y | T), with T conveniently included as a univariate covariate. The
opposite, including a high-dimensional covariate Y in a non-parametric model for T, would
pose challenging technical problems (This is distinct from the related problem of non-
parametrically modeling a mean function E(T | Y), e.g., kernel smoothers). Both
factorizations lead to a joint model, P(T, Y), describing the dependence between T and Y. It
is this joint model that ultimately allows improved prediction of the event time given
repeated measurements of the marker. Under the factorization P(T) P(Y | T) the desired
regression P(T | Y) is not explicitly parametrized, but implied by Bayes theorem. In a
parametric model and using maximum likelihood estimation the same factorization is used
in Pawitan and Self (1993) to model longitudinal markers for AIDS patients. They assume
Weibull models for the infection time and disease occurrence and a generalized linear model
for the longitudinal measurements of T4 counts and T4/T8 ratio, with the intercept and slope
being functions of the event times.

We use a Polya tree (PT) prior to model the event time distribution. The reasons for this
modeling choice are the possibility to model multimodal distributions reflecting the diversity
of the patient population, the computational simplicity, and the easy a priori centering at a
parametric model. A PT prior can be constructed to give probability one to the set of
continuous or absolutely continuous probability measures (Lavine, 1992).
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Muliere and Walker (1997) implemented PT models in a survival analysis. Walker and
Mallick (1997; 1999) applied PT priors in hierarchical generalized linear models, frailty
models, and accelerated failure time models. Hanson and Johnson (2002) developed a
general approach to modeling residual distributions with a mixture of PT. Neath (2003) used
PT to model censored data. Paddock et al. (2003) developed randomized PT models, which
uses random partitions to smooth out the effect of partitions on posterior inference. Hanson
et al. (2007) used mixtures of PTs to construct a joint model for time-dependent covariates
and survival time. They introduced flexible PT priors for the baseline distributions in the
Cox model, the proportional odds model, and an accelerated failure time model
accommodating time-dependent covariates. Their approach uses the factorization P(T, Y) =
P(Y)P(T | Y). See Hanson (2006) for a review of recent development in finite PT models.

2 A Clinical Study
Androgen ablation (AA) is the preferred treatment for metastatic prostate cancer. AA
therapy alters the natural history of the disease by disrupting the growth promoting effects
mediated by androgen receptor signaling, which is usually accomplished by medical
suppression of testicular endocrine function. Unfortunately, most patients with clinically
detectable metastatic disease when the AA therapy started will eventually progress to
androgen independent prostate cancer (AIPC). AIPC is a relentlessly progressive disease
state, and is the cause of death for the vast majority of men in whom it develops. By this
mechanism, prostate cancer leads to an annual death toll of more than 27,000 men in the
United States.

To date, no treatment has been found to be curative for AIPC, and it is only fairly recently
that some therapies are shown to alter the natural history of the disease. A chemotherapy
demonstrated a survival advantage over historical results in a phase II trial conducted at
M.D. Anderson Cancer Center (Ellerhorst et al., 1997). This therapy, dubbed KA/VE, treats
patients with ketoconazole and doxorubicin alternating with vinblastine and estramustine.

In this paper we analyze data from a phase III trial at M.D. Anderson Cancer Center that
comapred conventional AA therapy versus AA therapy plus three 8-week cycles of KA/VE.
The aim of this trial was to investigate whether better clinical benefit can be achieved by
applying the chemotherapy “early”, i.e., before the metastatic prostate cancer develops into
the far-advanced AIPC. The two treatment arms are denoted by AA and CH, respectively.
The patient population includes metastatic prostate cancer patients whose high risk of
developing AIPC justifies long-term, sustained, androgen ablation. The primary endpoint is
the time to progression (TTP) to AIPC, which is diagnosed by the following criteria: 1)
Symptoms attributed by the treating physician to reflect progressive cancer; 2) Radiographic
progression; 3) Rising PSA, with value greater than 1 and doubling time < 9 months; 4)
Treatment with chemotherapy. The first 3 also require demonstration of testosterone < 50
and withdrawal of antiandrogens. More details about the clinical trial can be found in
Millikan et al. (2008).

Besides TTP, we also observed the longitudinal measurements of PSA level from each
patient. Carter et al. (2006) demonstrated that PSA velocity is associated with prostate
cancer death even 10–15 years before diagnosis. To further improve the understanding of
this important marker we propose to build a joint model of TTP and PSA.

To statisticians, a challenge posed by this clinical trial is the considerable heterogeneity
among patients. Before coming to M.D. Anderson Cancer Center these patients had been
treated by different physicians with different therapies at different institutions. These
differences might have a long-term impact on the development of prostate cancer. Second,
there is no completely satisfactory way to define “early” in the natural history of metastatic
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prostate cancer. As a practical solution, the clock start of the trial is defined as the initiation
of the AA therapy. Thus at the beginning of the trial, the true stage of cancer might not be
exactly the same for each patient.

3 Notation and Model
We use v = 1, 2 to denote the two treatment arms (1 for CH and 2 for AA). Let nv be the
number of subjects in each arm. For the i-th subject on arm v, we use yvi = {yvij, j = 1, ⋯ ,
mvi} to denote the longitudinal PSA measurements, where mvi is the number of repeat
measurements. We define Tvi to be the TTP, which is the time between the start of the CH/
AA treatment and the progression to AIPC. We use tvi to denote the censoring time for
censored observations, and the actual TTP for non-censored observations. We introduce a
failure indicator dvi with dvi = 1 if Tvi = tvi and dvi = 0 if Tvi > tvi. The number of observed
and unobserved TTP in each arm are denoted by nv1 and nv0, respectively. In summary, the
observed data from each subject is (yvi, tvi, dvi). We use [X] and [X | Y] to generically
indicate the probability model for a random variable X and the conditional distribution of X
given Y.

3.1 The Likelihood
We define the sampling model for the observed data (yvi, tvi, dvi) from each patient. If dvi =
1, the progression time Tvi is observed. Therefore all subjects with dvi = 1 belong to the
susceptible group. On the other hand, we only observe Tvi > tvi when dvi = 0. In this case the
subject could be either in the susceptible group or in the cure group. We define a variable
ωvi = 0/1 indicating membership in the susceptible/cure group. For dvi = 1, we have ωvi ≡ 0
by definition, and Tvi = tvi. The following discussion simplifies greatly by introducing latent
variables Tvi and ωvi for subjects with censored TTP, dvi = 0.

If ωvi = 0, the subject is at risk of developing AIPC. We assume Tvi to be a random sample
from distribution Gv, i.e., [Tvi | ωvi = 0,Gv] = gv(Tvi). Here gv(·) is the density function of Gv.
If ωvi = 1, the subject is a long-term survivor. We assume Tvi = tc, where tc is an extremely
long TTP that could not be observed in the clinical trial. Thus the model for TTP is [Tvi |
ωvi,Gv] = {δ(tc)}ωvi{gv(Tvi)}1−ωvi, where δ(tc) denotes a point mass at tc. We assume

 Bernoulli(pv) with pv being the probability of cure under treatment v. In summary,
we assume that Tvi arises from the mixture of a point mass and a continuous distribution.
The prior distribution of TTP is Gv for all susceptible subjects under treatment v. The
posterior distribution of TTP given PSA, however, may be very different across subjects.

Given Tvi, the longitudinal measurements yvi are modeled by a mixed effects model [yvi | Tvi,
Ψ], indexed by parameters Ψ. We include Tvi in [yvi | Tvi, Ψ] via a regression on u(Tvi), as a
subject-specific covariate. Here u(·) is a certain function of Tvi. With different specifications
of u(Tvi) and [yvi | Tvi, Ψ], we can model various mechanisms between Tvi and yvi. In
summary, the likelihood factors corresponding to (yvi, tvi, dvi) are

(1)

Note that Lvi0 is an augmented likelihood with latent variable Tvi and ωvi.

For Lvi0, the two values taken by ωvi lead to two models of different dimensions. If ωvi = 0,
Tvi is a random parameter with prior Gv. In contrast, Tvi is fixed at Tvi = tc if ωvi = 1. Such a
change in dimension complicates posterior simulation (Green, 1995). We use the pseudo
prior approach by Carlin and Chib (1995) to avoid this complication. In words, we augment
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the smaller probability model under ωvi = 1 by defining a prior probability model for a
hypothetical Tvi (but keep tc in the regression for yvi). The new variable Tvi has no
meaningful interpretation under ωvi = 1. It is only introduced to match the model
dimensions. The pseudo prior mechanism serves the same purpose as reversible jump
(Green, 1995), but avoids the changing dimension of the parameter vector (Dellaportas et
al., 2002). See Web Appendix A for implementation details.

3.2 The Prior Probability Model

We assume prior independence, . The prior
specification [Ψ] and posterior inference for mixed models of repeated measurements have
been discussed extensively. See, for example, Ibrahim et al. (2004). For priors [pv], v = 1, 2,
we assume pv ~ Beta(ap, bp) with ap and bp being fixed hyperparameters.

For the unknown survival distribution Gv, we consider two choices. The first choice is a
parametric model assuming Gv to be indexed by a finite-dimensional parameter vector. In
this case the prior specification involves assigning priors to these parameters. Recall that Gv
is the therapy-specific prior TTP distribution for susceptible subjects, who might be different
in many important aspects. A parametric model may not suffice to characterize the
complexity of Gv. This difficulty motivates the second choice, a non-parametric method. A
Bayesian non-parametric prior defines Gv as a random probability measure, i.e., a prior for
the unknown distribution Gv, denoted by PT(Πv, v).

A PT prior is indexed by two hyper-parameters: a nested sequence of partitions Π = {B0, B1,
B00, B01, …, Bε0,Bε1, …} of the sample space S, with S = B0 ∪ B1 and Bε = Bε0 ∪ Bε1; and
parameters = {α0, α1, α00, α01, …, αε0, αε1, …}. Here ε = ε1 ⋯ εm denotes a binary
sequence of length m. We can center the PT prior around a given distribution G ̃, by setting
αε0 = αε1 and defining Bε at level m to coincide with quantiles G ̃−1(k/2m), k = 0, 1, ⋯ , 2m.
The parameter has a similar role as the precision parameter in a Dirichlet process prior.
Berger and Guglielmi (2001) considered a family of the form αε1, ⋯, εm = c·ρ(m), where ρ(m)
= m2, m3, 2m, 4m or 8m, and c > 0 is a constant. In general, any ρ(m) such that

 guarantees the PT to be absolutely continuous. See Hanson (2006) for a
recent review. More details are presented in Web Appendix B.

3.3 Posterior Inference and Model Validation
To facilitate discussion, we define the following notation. The set of observed and
unobserved TTPs under treatment v are denoted by ,
respectively. We also define  to be the set of unknown indicators of cure.
Without loss of generality, we assume that dvi = 0 for i = 1, ⋯ , nv0, and dvi = 1 for i = nv0+1,
⋯ , nv. Let Λ denote the collection of model parameters, including . We
have the full posterior distribution:

(2)

where (Y, t, d) = {(yvi, tvi, dvi) : v = 1, 2; i = 1, ⋯, nv}. We implement posterior inference by
Markov Chain Monte Carlo (MCMC) posterior simulation.
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Before proceeding with posterior MCMC, we analytically marginalize (2) with respect to
Gv. Recall that each subject with ωvi = 0 is assumed to have a TTP arising from Gv. Define

 to be the set of observed and unobserved TTP in the susceptible

group. The size of . Finally, let  denote the j-th element in , with
the index j assigned arbitrarily. The joint probability model of  and Gv is

. We marginalize Gv by replacing

. Here  is the
(posterior) predictive distribution under a PT model, defined in Web Appendix B. The
marginalization is important. Instead of working with the infinite dimensional random
distributions Gv, it allows us to manipulate only the (finite dimensional) set of event times

. Details of the MCMC transition probabilities are presented in Web Appendix C.

We compare the proposed model with four natural alternatives. Details of the competing
models and results are described later, in Section 5. We use the conditional predictive
ordinates (CPO) proposed by Gelfand et al. (1992) to compare different models. The CPO
for subject i in group v (henceforth subject (v, i)) is defined as the posterior predictive
distribution evaluated for the observation from subject (v, i), conditional on all the data
minus the response from subject (v, i). Formally, letting (Y(−vi), t(−vi), d(−vi)) = (Y, t, d) \ (yvi,
tvi, dvi), we define CPOvi = [yvi, tvi | Y(−vi), t(−vi)], where dvi is assumed given. Then we
compute a summary statistic called the logarithm of the pseudomarginal likelihood (LPML),

. A small value of LPML suggests disagreement between the
observations and the model. Gelfand et al. (1992) show how the CPO for each subject, in
our case v = 1, 2 and i = 1, …, nv, can be evaluated through an importance sampling scheme.
We describe the computation of CPO in Web Appendix D.

4 A Phase III Study of Prostate Cancer
We return to the clinical trial from Section 2. The phase III trial for advanced prostate cancer
had a total enrollment of 286 patients, with n1 = 137 in the CH arm and n2 = 149 in the AA
arm. Starting from the diagnosis of prostate cancer, the PSA level of each patient was
monitored for up to 10 years. On average, about 30 PSA measurements were collected from
each patient. We use yvij (j = 1, ⋯ ,mvi) to denote the log-transformed longitudinal PSA
measurement, yvij = log(1 + PSA). The age at which yvij was recorded is denoted by svij. As
reference points, the age at diagnosis of prostate cancer is denoted by uvi0, and the age at the
initiation of the CH/AA treatment is denoted by uvi1. The number of observed TTP events in
the two treatment arms are n11 = 87 and n21 = 98, respectively. Figure 1 shows the Kaplan-
Meier estimates of the survival function under the two treatments. There are plateaus at the
end of the curves. This observation suggests that a significant portion of subjects have an
excessively long event time and a cure model is appropriate.

PSA level normally increases as the prostate enlarges with age. When prostate cancer
develops, however, it increases much faster. The typical effect of a treatment on PSA level
is a sharp drop in PSA level immediately after the treatment. Then gradually, the body
adjusts to offset the treatment effect, and the PSA level bounces back. The speed of rebound
depends on the progress of cancer. Web Figure 1 plots the longitudinal profiles of four
randomly selected patients. Note the variability among the profiles. Exploratory analysis
indicates a negative correlation between the PSA slope and TTP. Based on these
considerations, the longitudinal submodel [yvi | Tvi, Ψ] is specified as yvij = fvi(svij) + evij
with
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(3)

where (x)+ = x if x > 0, and (x)+ = 0 otherwise. We assume independent normal residuals,

. The first two terms define a line with intercept θ0vi and slope θ1vi, describing
the baseline linear trend of PSA over age. The coefficients are subject-specific. Parameters
ηv and φ1v model the size and the slope of the drop after the intervention with CH or AA. As
age svij moves beyond uvi1, ηv{exp[−φ1v(svij − uvi1)+] − 1} drops from 0 and eventually
levels off at −ηv, i.e., ηv controls the depth and φ1v controls the slope of the drop. A smaller
value of φ1v indicates that the treatment effect persists longer. Similarly, parameters γ2vi and
φ0vi model the size and the slope of the drop due to the initial therapy right after the
diagnosis of prostate cancer. We assume γ2vi and φ0vi to vary individually since information
about the initial therapy is unavailable. We use γ1v to model the average change of slope in
the baseline trend, induced by treatment v. Finally, model (3) reflects our belief that subjects
with flatter longitudinal profiles take longer to progress. To see this, first we observe that in
(3) the slope after treatment, i.e., the coefficient of (svij − uvi1)+, is θ1vi + γ1v + (θ1vi + γ1v)
[exp(−ξvTvi) − 1]. Here ξv is constrained to be positive. With Tvi changing between 0 and
+∞, the slope changes from θ1vi + γ1v to 0. We substitute a realistic upper bound for the
limiting Tvi → ∞ using tc = 18 years. Matching with the earlier notation [yvi | Tvi, Ψ] used in
(2), we have Ψ = (θ0, θ1, γ1, γ2, η, φ0, φ1, ξ, σ2). Here θ0 = {θ0vi, v = 1, 2; i = 1, ⋯, nv}, η =
{ηv, v = 1, 2}, and θ1, γ2, φ0, φ1, ξ are defined in the same fashion. In (3) we use u(Tvi) =
exp(−ξvTvi) − 1. In summary, besides TTP, the covariates considered include age, treatment,
and time under treatment.

As for the PT priors, Gv ~ PT(Πv, v), we use Π1 = Π2 = Π and 1 = 2 =  Thus E(Gv) =
G ̃ for v = 1, 2. That is, the two PTs are centered around the same distribution a priori. The
matching hyperprior parameters for the two PT priors ensures that posterior inference about
the differences between two treatment groups reflects the evidence from data. For the
centering measure G ̃, we assume a Weibull distribution, G ̃(t) = Weibull(t; τ, β). Here β and τ
are, respectively, the shape and scale parameter. The partition Π is specified by the dyadic
quantile sets of G ̃. The elements of at the mth level are specified to be c·m2, with c being a
constant.

The mixture probability pv is assumed to be Unif(0, 1), i.e., ap = bp = 1. The prior of Ψ and
other hyperprior parameters are specified as follows. We assume (θ0vi, θ1vi, γ2vi)′ | µ, Σ ~
N3(µ,Σ), γ1v ~ N(0, 100), ηv ~ N(0, 100), ξv ~ Ga(a, b), φ0vi ~ Ga(a, b), φ1v ~ Ga(a, b), and
1/σ2 ~ Ga(a, b), all with a = b = 0.01. Here Ga(a, b) denotes a Gamma prior with mean a/b.
We further assume µ ~ N3(0, 100I) and Σ ~ IW(3, 0.01I3). Here IW(ν, A) indicates an
inverse Wishart prior with ν degree of freedom and matrix parameter A. The specification of
hyper-parameter (τ, β) for G ̃ is based on estimation of the Weibull model M2, described in
Section 5. We set τ = 4.52 and β = 1.23, which are the posterior means of Weibull
parameters from the CH group.

5 Results
Model Selection

To validate the proposed model we consider comparisons with four alternative models. Let
M1 denote the proposed model (2). The second model, M2, is also based on the factorization
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P(T, Y) = P(T)P(Y | T), with P(Y | T) as in (3), but P(T) being fully parametric. We assume a
Weibull regression model for (Tvi | ωvi = 0) with an indicator of treatment as the covariate.
The third model, M3, assumes no cure group. It is obtained from model (2) by setting ωvi = 0
for all patients. The last two models, M4 and M5, are constructed under the factorization P(T,
Y) = P(Y)P(T | Y), where the longitudinal submodel P(Y) is specified as yvij = fvi(svij) + evij
with

and evij ~ N(0, σ2). The survival submodel P(T | Y) is assumed to be a proportional hazard
model with a cure fraction pv. The mean longitudinal process, fvi(svij), together with the PSA
slope, , are included as time-dependent covariates (Yu et al., 2004). We
assume the following hazard function,

(4)

where hv0(t) is the baseline hazard and (ζ1v, ζ2v) are scaling parameters. Under M4, we
model hv0(t) as a piecewise constant function of J = 8 steps. For 0 < q1 < q2 < ⋯ < qJ−1 <
∞, we assume hv0(t) = κv1 if t ≤ q1, hv0(t) = κv2 if q1 < t ≤ q2, ⋯, and hv0(t) = κvJ if t > qJ−1.
Gamma priors are assumed for κvj. More details can be found in Ibrahim et al. (2004). Under
M5, we model hv0(t) by a Weibull hazard, with Gamma priors for the scale and shape
parameters. The priors of the other parameters are specified as in M1.

The estimated LPML under M1 through M5 are 4833.6, 5115.2, 5007.9, 4889.1, and 5155.0,
respectively. Clearly M1 achieves the best performance. The nonparametric PT model allows
the density function to deviate from the form imposed by the Weibull assumption. Assuming
a cure group further improves the model fit. Model M4 has the second best performance,
which indicates that the PSA trajectory does play an important role in prostate cancer
progression. The inferior performance of M5 suggests that the Weibull hazard assumption
might be too restrictive for our data. We further validate the survival and cure aspect of the
model based on subject specific martingale residuals (Barlow and Prentice, 1988; Therneau
et al., 1990; Lin et al., 2002). The residuals are scattered horizontally over age (with three
outliers), suggesting no evidence against the proposed model. The residual plot is shown in
Web Figure 2.

The posterior distribution of TTP
The estimated cure probabilities pv (v = 1, 2) for the CH and AA treatments are 0.167 and
0.154, respectively. For advanced prostate cancer patients, here “cure” means that those
patients take a very long time to progress to AIPC. Figure 2a shows the estimated densities
of TTP in the susceptible group, E(Gv | Y, t, d), under the two treatments. The horizontal
axis is in years after the treatments. For comparison, Figure 2b plots the posterior estimate of
Weibull densities under M2. Figure 2 clearly shows deviation from the parametric Weibull
distribution. For example, there is a small bump in the CH density curve around 7.5, which
is also visible in the Kaplan-Meier estimates in Figure 1. This feature can not be captured by
M2. In Figure 1 we also plot the posterior estimate of the survival function under model M1,
where TTP are assumed to arise from the mixture of a point mass at tc and an unknown
distribution Gv. Because a PT prior with a fixed partition has discontinuities at the partition
points, we used additional kernel smoothing for the densities shown in Figure 2. Finally, we
can assess the posterior uncertainty on Gv by plotting multiple random samples from its
posterior distribution (Web Figure 3).
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The dependence of event times on longitudinal profiles
Under model M1, different PSA profiles lead to different posterior distributions of Tvi. In
Figure 3 we compare for four patients with censored TTP the PSA profiles (1st column) and
the estimated posterior probability of “cure” P(ωvi = 1) and the conditional hazard curve of
Tvi given ωvi = 0 (2nd column). Each row corresponds to one patient, with the first two
under treatment CH, and the last two under AA. We plot the PSA profiles after initiation of
the therapies. Figure 3 demonstrates the flexibility of M1. Each patient has a hazard curve of
a different shape.

The longitudinal model parameters
Web Figure 1 plots the longitudinal PSA profiles of four patients together with fitted values.
Table 1 lists the posterior means and standard deviations of some parameters in M1. The
posterior estimates of ξv (v = 1, 2) are practically identical, implying that the impact of TTP
on the trajectory of PSA profiles are similar across the two treatments. The estimates of γ1v
indicate that the PSA profiles of patients in the AA arm on average have an increased slope
after treatment. The level and slope of the drop in PSA after the CH/AA treatment are
modeled by lv(t) = ηv[exp(−φ1vt) −1], where t ≥ 0 is the time from the start of treatment v.
The patients under CH therapy experience a deeper and longer drop in PSA. We plot lv(t) in
Web Figure 4.

Continuously reassessing the risk of progression
Given a currently observed PSA profile, we can use the proposed method to obtain the
predictive distribution of TTP, which provides a good assessment of progression risk. This
predictive distribution can be continuously updated with additional PSA measurements. We
demonstrate this learning process in Figure 4. The left panel plots the PSA profiles of two
hypothetical patients from the AA arm. Each point denotes a PSA measurement. The two
patients have their PSA level measured at the same time points. Within the first two years
the two PSA profiles are identical, and then they deviate: the first patient’s PSA level stays
low, while the second gradually rises. The center panel shows the continuously updated
posterior estimates of P(ω = 1 | y−t), with y−t being the accumulated PSA measurements up
to the time of assessment. We interpret P(ω = 1 | y−t) as the individual probability of long
term survival. The right panel shows the continuously updated posterior estimates of E(T | ω
= 0, y−t).

Sensitivity analysis
We conducted a sensitivity analysis to explore the impact of tc and c on posterior inference.
We tried two values for c, (0.1, 1), and three values for tc, (15, 18, 20). The posterior means
of pv and LPML are listed in Table 2. The estimated cure rate slightly increases with larger
c, which implies stronger shrinkage of Gv to the parametric centering measure G ̃. The
parametric Weibull model G ̃ can not represent the secondary mode that we see in the data
and in the non-parametric inference for Gv. Compensating the missing secondary mode by
an increased cure fraction could explain the change in the posterior means of pv. The
estimated LPML indicates the sensitivity of model fitting to tc and c. This issue can be
resolved by expanding the model with hyperpriors on c and tc. We set them fixed to keep the
discussion focused.

6 Discussion
The proposed model allows researchers to relax parametric assumptions on the survival
submodel imposed by existing methods. An important limitation is that P(T, Y) = P(T)P(Y |
T) does not explicitly state how T is affected by Y. Given a particular longitudinal profile,
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we need to carry out posterior simulation to learn about the posterior survival distribution
given Y. The proposed approach can readily be generalized to problems with more than two
treatments. The longitudinal data model (3) is appropriate for the discussed application to
the prostate cancer trial. In general, any well specified model with a regression on the event
time could be used.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
The horizontal axis indicates years after treatment. The censoring times are marked by +.
“K-M Est.” denotes Kaplan-Meier estimates. “Model Est.” denotes estimates based on
model M1, where TTP are assumed to arise from the mixture of a point mass at tc and an
unknown distribution Gv. For T < 6 the Kaplan-Meier estimates and the model based
estimates of the survival curves are virtually indistinguishable.
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Figure 2.
Posterior estimated E(Gv | Y, t, d) under M1 and M2. The horizontal axis shows years after
treatment.
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Figure 3.
Posterior prediction of TTP (hazard given ω = 0 and P(ω = 1)) for four censored patients.
The horizontal axis is time in years from the start of the AA/CH therapy.
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Figure 4.
The left panel plots the PSA profiles of two hypothetical patients from the AA arm. The
horizontal axis is time in years from the initiation of treatment. Each point denotes a PSA
measurement. The center panel shows the continuously updated posterior estimates of P(ω =
1 | y−t), where y−t denotes the PSA measurements up to the point marked by the
corresponding grey shades in the left panel. The dotted(solid) line denotes the first(second)
patient. The third panel shows the continuously updated posterior estimates of E(T | ω = 0,
y−t).
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Table 1

Parameter Estimates in M1

Posterior Mean Standard deviation

σ2 0.209 0.005

μθ0 −23.310 1.382

13.903 2.681

μθ1 0.483 0.023

0.004 0.001

γ11 0.447 0.122

γ12 0.689 0.139

μγ2 3.654 0.211

0.131 0.016

φ11 11.077 0.864

φ12 9.471 0.585

η1 1.447 0.046

η2 1.948 0.047

ξ1 0.325 0.034

ξ2 0.326 0.034
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Table 2

Sensitivity Analysis

c=0.1 c = 1

tc = 15 (0.169, 0.153), −4930.50 (0.188, 0.159), −4889.98

tc = 18 (0.167, 0.154), −4833.62 (0.182, 0.160), −4936.39

tc = 20 (0.164, 0.154), −4979.03 (0.181, 0.160), −4845.34

In each cell we list the posterior estimations of (p1, p2) and LPML.
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