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Abstract
In neurodegenerative disorders, such as Alzheimer’s disease, neuronal dendrites and dendritic
spines undergo significant pathological changes. Because of the determinant role of these highly
dynamic structures in signaling by individual neurons and ultimately in the functionality of

Correspondence to: Jennifer I. Luebke, jluebke@bu.edu.
This review is dedicated to the memory of our beloved friend, mentor, and colleague Susan L. Wearne, who passed away in
September 2009.

NIH Public Access
Author Manuscript
Brain Struct Funct. Author manuscript; available in PMC 2011 February 28.

Published in final edited form as:
Brain Struct Funct. 2010 March ; 214(2-3): 181–199. doi:10.1007/s00429-010-0244-2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



neuronal networks that mediate cognitive functions, a detailed understanding of these changes is
of paramount importance. Mutant murine models, such as the Tg2576 APP mutant mouse and the
rTg4510 tau mutant mouse have been developed to provide insight into pathogenesis involving the
abnormal production and aggregation of amyloid and tau proteins, because of the key role that
these proteins play in neurodegenerative disease. This review showcases the multidimensional
approach taken by our collaborative group to increase understanding of pathological mechanisms
in neurodegenerative disease using these mouse models. This approach includes analyses of
empirical 3D morphological and electrophysiological data acquired from frontal cortical
pyramidal neurons using confocal laser scanning microscopy and whole-cell patch-clamp
recording techniques, combined with computational modeling methodologies. These collaborative
studies are designed to shed insight on the repercussions of dystrophic changes in neocortical
neurons, define the cellular phenotype of differential neuronal vulnerability in relevant models of
neurodegenerative disease, and provide a basis upon which to develop meaningful therapeutic
strategies aimed at preventing, reversing, or compensating for neurodegenerative changes in
dementia.
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Introduction
Neocortical pyramidal neurons possess extensive apical and basilar dendritic trees, which
integrate information from thousands of excitatory and inhibitory synaptic inputs. Dendrites
respond to inputs with postsynaptic potentials, which are relayed to the soma where they are
summed; if a threshold potential is exceeded, an action potential is generated. Voltage
attenuation in space and time along dendrites is fundamental to summation and is influenced
by a number of interacting morphological properties (such as diameter and length) and
active properties (such as distribution of ion channels) of the dendritic shaft (Hausser et al.
2000; Kampa et al. 2007; Stuart and Spruston 2007; Henry et al. 2008). Further complexity
arises from the presence of thousands of biophysically active dendritic spines, the principal
receptive site for excitatory glutamatergic inputs to a neuron.

Dendrites and dendritic spines in particular are dynamic structures, which undergo
significant changes across the life span. Under non-pathological conditions, the number of
spines on pyramidal neuron dendrites increases substantially over the course of
development, is reduced during maturation to adulthood, and remains relatively stable
during adulthood (for review see Bhatt et al. 2009). Then, during normal aging, significant
changes in spine number, distribution, and morphology occur (Duan et al. 2003). Spines also
undergo significant structural modifications under conditions where synaptic strength is
experimentally modified, usually with protocols designed to evoke longterm potentiation or
long-term depression (for review see Alvarez and Sabatini 2007; Bhatt et al. 2009; Holtmaat
and Svoboda 2009). In many neurodegenerative diseases, significant alterations in the
dendritic arbor occur, together with substantial spine loss and alterations in spine
morphology (reviewed in Halpain et al. 2005). Gaining an understanding of these sublethal
changes to neurons, which detrimentally impact neuronal signaling, and ultimately cognitive
function, is an important goal.

Transgenic mouse models have been useful for elucidating mechanisms of amyloid-and tau-
induced pathology, although no single model fully recapitulates human disease (for review
see Duff and Suleman 2004; Spires et al. 2005). Two of the most commonly employed
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mouse models of neurodegenerative disease are the Tg2576 amyloid precursor protein
(APP) mutant mouse and the rTg4510 tau mutant mouse, which develop significant
pathological aggregations of amyloid-beta (Aβ) and tau proteins, respectively. Tg2576
transgenic mice overexpress the Swedish double mutation of the human APP gene, which
leads to progressive formation of soluble Aβ peptides and fibrillar Aβ deposits in the form
of amyloid plaques. Increased Aβ levels in these mice are associated with progressive
structural changes to neurons (although not with neuron death), and cognitive impairment
(Hsiao et al. 1996). In the rTg4510 mouse model, expression of the P301L mutant human
tau variant leads to progressive development of neurofibrillary tangles (NFTs), neuronal
death, and memory impairment reminiscent of the pathology observed in human tauopathies
(Santacruz et al. 2005).

In this review, we discuss changes in the structure and function of dendrites and spines of
pyramidal neurons that are associated with pathological aggregation of Aβ and tau in these
and other mouse models of neurodegenerative disease. We also discuss, as a point of
comparison, the impact of normal brain aging on the morphofunctional properties of
pyramidal neurons in aged macaque monkeys. This is not a comprehensive review of the
literature on such changes in human neurodegenerative diseases or of the many studies of
these changes in mouse models (for reviews see Duff and Suleman 2004; Spires and Hyman
2004; Lewis and Hutton 2005; Duyckaerts et al. 2008; Giannakopoulos et al. 2009). Rather,
the focus here is specifically on our multidimensional collaborative efforts to understand the
functional consequences of pathological changes in the structure of individual layer 3 frontal
cortical pyramidal neurons in commonly employed mouse models of neurodegeneration.
These studies focus on layer 3 pyramidal neurons in the neocortex because they are the
principal neurons involved in corticocortical circuits that mediate many cognitive functions
of the frontal cortex and may be selectively targeted in neurodegenerative disease (Morrison
and Hof 1997, 2002; Hof and Morrison 2004). Following a brief overview of the normal
structure and function of dendrites and spines, we describe technical details of our
experimental approach and the analytical tools we have developed to reconstruct and
quantify dendritic and spine structure in 3D in mouse and macaque monkey models
(Rodriguez et al. 2003, 2006, 2008, 2009; Wearne et al. 2005; Rocher et al. 2008, 2009;
Kabaso et al. 2009). Next, empirical structural and electrophysiological data obtained from
frontal cortical pyramidal neurons in in vitro slices prepared from transgenic versus wild-
type mice are discussed. Finally, we end with a description of the computational modeling
approaches currently used by our group to provide insights on structure–function
relationships in pyramidal neurons under pathological conditions mimicking those seen in
human neurodegenerative diseases (Rothnie et al. 2006; Henry et al. 2008; Weaver and
Wearne 2008; Kabaso et al. 2009).

Normal structure and function of dendrites and spines
Dendrites

The architecture of dendritic arbors varies extensively, from the relatively simple arbors of
anterior horn neurons in the spinal cord, to the more complex cortical pyramidal neurons, to
the extreme elaboration seen in cerebellar Purkinje neurons. Despite the large variability in
the numbers of dendritic branches and their overall extent, most dendrites share certain
fundamental characteristics, including that they are wide at the base and taper as they extend
distally, and they branch at angles <90°. The organelles in dendrites are similar to those
found in the soma; rough and smooth endoplasmic reticulum, free ribosomes, mitochondria,
neurofilaments, and microtubules are all present, abundantly in the wide proximal bases, and
decreasingly as dendrites move distally and decrease in diameter. As shown in Fig. 1a, layer
3 cortical pyramidal neurons have a skirt of basilar dendrites originating from the base and a
main apical dendrite originating from the apex of their soma. The main apical dendrite gives
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rise to several oblique branches and, approximately at the intersection between layers 2 and
1, to an apical tuft that ascends to the pial surface. Importantly, the basilar and apical
dendritic domains receive and integrate inputs from anatomically and functionally distinct
presynaptic sources (for review see Spruston 2008). Basilar and proximal apical dendrites
receive inputs from layer 4 neurons and from local-circuit neurons (Lubke et al.
2000;Feldmeyer et al. 2002). The apical tuft, which can comprise up to 50% of the dendritic
arbor of a given neuron, is the principal recipient of monoaminergic modulatory inputs
(Thierry et al. 1990), thalamic inputs (van Groen et al. 1999), and feedback intracortical
connections (Rockland and Pandya 1979).

The structural properties of dendrites underlie their passive membrane (cable) properties,
which are membrane capacitance Cm, specific membrane resistance Rm and axial resistivity
Ra. These cable properties determine, at a fundamental level, the degree of summation of
synaptic inputs and the spatial distribution of electrical signals. Because summation of
synaptic inputs by dendrites is determined in large part by their structure, dendritic
morphology plays a critical role in action potential generation (Mainen and Sejnowski 1996;
Koch and Segev 2000; Euler and Denk 2001; Vetter et al. 2001; Krichmar et al. 2002;
Ascoli 2003). Importantly, both branching topology and surface irregularities including
dendritic varicosities (Surkis et al. 1998) contribute to the excitable properties of neurons.
For example, recent simulation studies have demonstrated that marked differences in the
efficacy of action potential back propagation in different neural types are attributable in
large part to variations in dendritic morphology (for review see Stuart et al. 1997; Waters et
al. 2005).

Integration of synaptic inputs by dendrites is mediated not only by basic passive cable
properties, but also by active properties, which include the number and distribution of
voltage, ligand, as well as second messenger-gated transmembrane ionic channels (reviewed
in Migliore and Shepherd 2002; Magee and Johnston 2005; Johnston and Narayanan 2008;
Nusser 2009). Dendrites possess a rich array of sodium, calcium, and potassium channels
that are distributed either uniformly or non-uniformly across a given dendrite (for reviews,
see Johnston et al. 1996; Migliore and Shepherd 2002; Magee and Johnston 2005; Johnston
and Narayanan 2008; Nusser 2009). For example, layer 5 cortical pyramidal neuron
dendrites possess a gradient of the hyperpolarization-activated mixed cationic HCN
channels that increase in density from the soma to the apical tuft (Berger et al. 2001; Lorincz
et al. 2002). The interaction of intrinsic ionic and synaptic conductances with passive
properties determined by dendritic morphology can effectively alter the cable properties of
the dendritic tree (Bernander et al. 1991; Segev and London 2000; Bekkers and Hausser
2007) adding a further layer of complexity to signaling by individual neurons.
Computational modeling approaches have been extensively employed to shed light on
dendritic structure–function relationships and into potential interactions between a multitude
of dendritic active and passive properties. These approaches, as discussed at the end of this
review, have been useful for gaining insight on dendrites that are too thin to be studied with
electrophysiological approaches, and for providing empirical researchers with testable
hypotheses relevant to the functional consequences of dendritic dystrophy in
neurodegenerative diseases.

Dendritic spines
Dendrites of glutamatergic pyramidal neurons are studded by thousands of dendritic spines,
which are the site of most of the glutamatergic synapses in the brain, that confer further
functional complexity to these processes. Spine density, shape, and distribution are all
important contributors to neuronal excitability that are superimposed on the
electrophysiological properties of dendritic shafts (Wilson 1988; Stratford et al. 1989; Baer
and Rinzel 1991; Tsay and Yuste 2002). Spines are small appendages that extend from
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approximately 0.5–3 lm from dendritic shafts and are usually <1 μm in diameter (Fig. 1b, c).
Mouse layer 3 frontal cortical pyramidal neurons typically possess approximately 6,000
dendritic spines (Rocher et al. 2008). Spines can be broadly categorized as falling into one
of several different morphological types, namely “thin”, “stubby”, “mushroom”, and
“filopodia” which are normally seen in large numbers only during development (for review
see Yuste and Bonhoeffer 2004; Bourne and Harris 2007). Although most spines do fall into
one of these broad categories, serial electron microscopy reveals that there is also a
continuum between the different morphological subtypes (Bourne and Harris 2007). Spine
morphology determines the strength, stability and function of excitatory synaptic
connections that subserve the neuronal networks underlying cognitive function. Smaller
spines, such as the thin and filopodia types are less stable and more motile (Trachtenberg et
al. 2002; Kasai et al. 2003; Holtmaat et al. 2005) and as a result, are more plastic than large
spines such as the mushroom and stubby types (Grutzendler et al. 2002). The size and
morphology of the spine head is correlated with the number of docked presynaptic vesicles
(Schikorski and Stevens 1999) and the number of postsynaptic receptors (Nusser et al.
1998), and hence with the size of synaptic currents and synapse strength. In addition, a small
head size permits fast diffusion of calcium within the spine, while the neck length shapes the
time constant for calcium compartmentalization (for review see Yuste and Bonhoeffer 2001;
Nimchinsky et al. 2002), modulating postsynaptic mechanisms that play an important role in
synaptic plasticity linked to functions, such as learning and memory (Holthoff et al. 2002;
Alvarez and Sabatini 2007; Bloodgood and Sabatini 2007). Spine neck length and diameter
also affect diffusional coupling between dendrite and spine (Svoboda et al. 1996; Yuste et
al. 2000; Bloodgood and Sabatini 2005), and spine density and shape regulate the degree of
anomalous diffusion of chemical signals within the dendrite (Santamaria et al. 2006). Spine
morphology also varies dynamically in response to synaptic activity (Lendvai et al. 2000;
Hering and Sheng 2001; Zuo et al. 2005).

Over the past few decades, it has become increasingly evident that local dendritic spine
structure and distribution (Matus and Shepherd 2000) play a key role in the electrical and
biochemical signaling of dendrites (Nimchinsky et al. 2002; Matus 2005; Bourne and Harris
2007). However, spines present challenges to the standard cable model of dendrites. The
common way to model the effects of spines in a passive cable equation model is to reduce
the membrane resistance and increase the membrane capacitance by a factor proportional to
the increased membrane surface area due to spines (Jaslove 1992). This modification
predicts that voltage should attenuate more drastically in space along spiny dendrites,
relative to their smooth counterparts. Because of their capacity for plasticity and because
they are the location of most excitatory synapses in the cerebral cortex, accurately
characterizing the structure of dendritic spines is essential for understanding their
contributions to neuronal, and ultimately to cognitive function.

Current methods used to study the structure of dendrites and spines
Experimental approaches

The most widely employed method used to study the dendritic structure of neurons has
historically been the Golgi impregnation method, in which neurons are impregnated by
silver chromate following incubation in potassium dichromate and silver nitrate. This
method was developed by Camillo Golgi and used by Ramón y Cajal in his seminal
descriptions of neurons at the turn of the twentieth century (Ramón y Cajal 1911; Garcia-
Lopez et al. 2007). The Golgi method has been used in innumerable studies designed to
examine the normal structure of neurons, as well as changes in neuronal structure across the
lifespan or under pathological conditions. This approach has been used in a number of
studies designed to examine the effects of Alzheimer’s disease (AD) on neuronal structure
(Paula-Barbosa et al. 1980; Probst et al. 1983; Ferrer et al. 1990; Flood 1991; Gertz et al.
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1991; Scott 1993; Garcia-Marin et al. 2007). However, the Golgi technique has a number of
significant drawbacks that make it suboptimal for high-resolution analyses of neuronal
structure. First, it is capricious; neurons are stained in a random and unpredictable manner.
Second, axons and distal dendritic processes are often incompletely impregnated, and given
that dendritic retraction and extension is a common feature of pathological states, this is a
significant methodological drawback. Third, as neurons are not fluorescently labeled, they
cannot be analyzed at very high resolution in 3D with confocal laser scanning microscopy
(CLSM) or with multiphoton laser scanning microscopy (MPLSM).

Improved techniques using fluorescence labeling to assess the details of dendrite and
dendritic spine structure are now available. These techniques are ideally suited for imaging
neurons at a very high resolution with CLSM/MPLSM for subsequent 3D reconstruction. In
lightly fixed tissue, neurons can be well filled by intracellular injection of fluorescent dyes,
such as Lucifer Yellow (Rho and Sidman 1986; Buhl and Lübke 1989). In living tissue,
DiOlistic labeling using the ballistic delivery of lipophilic dye-coated particles (Moolman et
al. 2004; Tsai et al. 2004) and GFP labeling with the gene transfer technique by viral vectors
(Spires et al. 2005) have been used in the examination of changes in the structural properties
of neurons in transgenic mouse models of AD. In these studies, transcranial two-photon
laser scanning microscopy of fluorescently labeled neurons was used to great advantage in
the study of dendritic and spine changes in vivo, as a consequence of proximity to amyloid
plaques in cortical pyramidal neurons in Tg2576 APP mutant mice (e.g., Tsai et al. 2004;
Spires et al. 2005). Injection of biocytin during electrophysiological recordings and
subsequent incubation of the tissue with fluorescent avidin compounds is a useful means by
which both the function and structure of individual neurons can be characterized. We have
used this approach to examine structure–function relationships in neurons from mouse
models of neurodegenerative disease (Rocher et al. 2008, 2009) and from normally aging
macaque monkeys. Biocytin filling during recordings yields exquisitely labeled dendrites,
spines and axons (Figs. 1, 2, 3, 4, 5), and allows for the correlation of high-resolution
morphometric data with detailed electrophysiological data, providing important information
on structure–function relationships.

3D reconstruction and analytical approaches
Early methods for digitizing 3D neuronal structures relied on interactive manual tracing
from a computer screen (Capowski 1985). These methods were time-consuming, subjective,
and lacked precision. In recent years, automated methods have been developed that use
image analysis algorithms to extract neuronal morphology directly from 3D microscopy and
overcome the limitations of manual techniques (Koh et al. 2002; He et al. 2003; Wearne et
al. 2005). Newer methods use pattern recognition routines to track or detect a structure
locally without the need for global image operations (Al-Kofahi et al. 2002; Streekstra and
van Pelt 2002; Schmitt et al. 2004; Myatt et al. 2006; Santamaria-Pang et al. 2007). Most are
designed to work on a broad range of signal-to-noise ratios and even on multiple imaging
modalities. This results in increased computational complexity, which makes the use of
these methods as interactive reconstruction tools for high-resolution data less than optimal.

In our studies of neuronal structure, morphological reconstruction is performed using
NeuronStudio, a neuron morphology reconstruction software tool
(http://www.mssm.edu/cnic/tools.html), developed by Wearne et al. (2005) and Rodriguez et
al. (2006, 2008, 2009). Neuron- Studio has been designed for low computational complexity
to allow interactive semi-automated extraction of neuronal morphology from medium to
high-quality de-convolved 3D CLSM and MPLSM image stacks of fluorescently labeled
neurons. It features automated extraction of dendrites and dendritic spines as well as a rich
set of manual editing and visualization modalities. Figure 2a shows an xy projection of
CLSM data from a wild-type mouse layer 3 cortical pyramidal neuron and Fig. 2b shows the
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automated reconstruction of the neuron’s dendritic arbor obtained using NeuronStudio.
Because fluorescence intensity can vary with adequacy of filling, imaging depth and xy
spatial extent in CLSM and MPLSM image stacks, data segmentation within NeuronStudio
adapts the iterative self-organizing data analysis (ISODATA) method (Ridler and Calvard
1978) to compute local thresholds dynamically. This method is appropriate for datasets
exhibiting a bimodal distribution of intensity values, such as the grayscale images
characteristic of de-convolved LSM image stacks.

Automated 3D reconstruction of dendritic arbors
To reconstruct the dendritic arbors automatically from an image, we first look to extract the
‘centerline’ of each dendritic segment: the line that identifies the center of the dendrite as it
traverses through space (blue line in Fig. 2c). In NeuronStudio, dendritic centerline
extraction is performed using the voxel scooping method (Rodriguez et al. 2009). Voxel
scooping is an efficient algorithm for centerline extraction from volumetric datasets of
fluorescently labeled neurons obtained by CLSM imaging. Starting from a seed location
inside the structure, the method iteratively carves thin cross sectional layers of object voxels
(‘scoops’) that are clustered based on the connectivity. Each cluster contributes a node along
the centerline, which is created by connecting successive nodes until all object voxels are
exhausted. The actual position where each node is created depends on a number of cluster
parameters to ensure proper centering along the dendrite. The addition of voxels to each
cluster is also done in a way that allows the algorithm to advance into the structure while
adjusting for directional changes. The scooping method provides an optimal balance
between computational efficiency and tracing accuracy that is suitable for interactive neuron
tracing applications. The resulting model is amenable to manual editing and is compatible
with compartment modeling packages such as NEURON (Carnevale and Hines 2006) and
GENESIS (Bower and Beeman 1998), and with morphometry analysis software such as L-
Measure (Scorcioni and Ascoli 2001).

Diameter estimation in NeuronStudio is performed using the Rayburst sampling algorithm
(Rodriguez et al. 2006) to determine the minimum wall-to-wall span at each node location
inside the dendrite or spine (Fig. 2d). For data acquired by LSM, the point-spread function
of the microscope can distort the apparent thickness of branches significantly along the
direction of the optic axis (usually the z axis of the data). Although this is largely reduced by
deconvolution, residual smear along the optic axis is not uncommon. The 2D variant of the
Rayburst algorithm is insensitive to residual smear along the optic axis, and can produce a
reliable estimate of branch diameter regardless of the orientation of the branch within the
image stack when run centrally within a branch of approximately circular cross section.

Automated 3D reconstruction of dendritic spines
The assessment of spine numbers and distribution and their classification into subtypes has
historically been a labor intensive and relatively inaccurate process. Spine numbers could
only be estimated because spines extending primarily in the z plane relative to the dendritic
shaft could not be counted. With the advent of CLSM, accurate 3D spine assessment came a
step closer, but was still a highly timeconsuming and labor-intensive undertaking. Improving
upon previous spine detection algorithms (Koh et al. 2002; Cheng et al. 2007), Rodriguez et
al. (2008) devised an efficient and robust method for automated spine detection, available in
NeuronStudio. To detect spines, NeuronStudio begins by building concentric layers of
voxels around a previously computed model of the dendritic structure. Voxels are segmented
by interpolating ISODATA thresholds computed at each node along the dendritic model.
The algorithm only processes object voxels within a maximum user-specified distance from
the model and makes use of space partitioning to achieve faster processing. Individual
spines are detected by clustering voxels in layers starting from the most distal voxels. For
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each processed object voxel, the algorithm computes the distance to the model’s surface
(DTS). Any voxel having no neighbor with a greater DTS is considered a local maximum or
tip and is evaluated as a possible spine. Using this maximum as a first layer, each iteration of
the algorithm builds a new layer by first adding unvisited voxels directly connected to the
previous layer and then expanding the new layer with any connected voxels having a DTS
value equal or greater than the lowest DTS in the layer. This results in the formation of thin
concentric layers that are used to measure the shape of a protrusion and to determine if a
spine has been found. The algorithm also measures the Rayburst diameter at the center of
each layer to build a measurement profile that is used to further characterize the spine shape
into thin, stubby, or mushroom morphologic types. An example of spines characterized by
NeuronStudio’s spine detection algorithms is shown in Fig. 2d.

3D measures of spatial complexity
Traditionally, Sholl analysis (1953) has been used in two dimensions to quantify the spatial
complexity of dendritic branching patterns with increasing distance from the soma. Fractal
analyses have also been used (Smith et al. 1989; Caserta et al. 1995; Jelinek and Elston
2001; Henry et al. 2002) to quantify spatial complexity as a power law scaling exponent,
describing the rate of change of the number of branches over a large portion of the dendrites,
and best visualized as the slope of a log–log plot of these two quantities. We have recently
extended this work (Rothnie et al. 2006; Kabaso et al. 2009) to include three power law
exponents describing global spatial complexity: rates of change of dendritic mass,
branching, and taper.

We analyzed these power law exponents (log–log slopes) in two types of layer 3 pyramidal
neurons of rhesus monkeys: those located in the superior temporal cortex with ‘long’
corticocortical projections to area 46, and those with ‘local’ projections within area 46. We
studied apical and basal dendrites separately, and compared results in young and old rhesus
monkeys (Duan et al. 2003; Kabaso et al. 2009). Consistently in each of these neurons, we
found that the rate of change of dendritic mass was constant in two distinct regions of the
dendrites (Rothnie et al. 2006; Kabaso et al. 2009). These regions (region I: ‘proximal’ and
region II: ‘medial’) and associated scaling exponents are shown in Fig. 2e for the apical
dendrites of a typical long projection neuron from a young monkey. The mean and standard
errors of scaling exponents for all young long projection neurons are shown in Fig. 2f.

Rothnie et al. (2006) revealed a form of global mass homeostasis in these neurons: the rates
of branching and tapering in each of the two regions were inversely related, so that the
spatial gradient of dendritic mass with distance from the soma was constant. Significantly,
we found that the compensation of branching and tapering was maintained across the
different projection types, and even with aging, so that the spatial gradient of dendritic mass
in the proximal and medial regions was constant (Kabaso et al. 2009). This global mass
homeostasis might be due to some kind of control mechanism intrinsic to the neuron
(Samsonovich and Ascoli 2006) that is conserved in aging. It will be instructive to evaluate
whether such global mass homeostasis is maintained during neurodegeneration.

In conclusion, these analytical tools provide rapid, objective analyses of the high-resolution
data that we collect from wild-type and transgenic mouse neurons. With NeuronStudio, we
are able to perform analyses of differences in dendrite diameter and spine shapes that were
not available previously, and these kinds of studies are currently ongoing in our laboratories.
Moving forward, we will evaluate whether the global patterns in spatial complexity
observed in rhesus monkey pyramidal neurons are similarly present in mouse neurons. We
will also compare the spatial complexity of wild-type and transgenic neurons to determine
whether global mass homeostasis is conserved in neurodegeneration as it seems to be in
aging.
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Alterations in the structure of dendrites and spines of cortical pyramidal
neurons in Tg2576 and rTg4510 mutant mice
Dendritic changes in neurodegenerative disease

Numerous studies have demonstrated pervasive and significant changes in neuronal
morphology in AD and other neurodegenerative diseases (Anderton et al. 1998; Falke et al.
2003; Knobloch and Mansuy 2008; Giannakopoulos et al. 2009; Tackenberg et al. 2009).
Proximity to fibrillar Aβ plaques, both in AD and in mouse models which overexpress APP,
has been positively associated with dystrophic dendrites and axons, aberrant sprouting and
curvature of dendritic processes and loss of dendritic spines with accompanying synapse
loss in hippocampal and neocortical pyramidal cells (Knowles et al. 1999; Le et al. 2001;
Urbanc et al. 2002; Tsai et al. 2004; Spires et al. 2005; for review Spires and Hyman 2004).
For example, Tsai et al. (2004) showed prevalent axonal varicosities and reduced diameter
of dendrites directly traversing or closely apposed to fibrillar Aβ plaques in PSAPP
transgenic mice and Spires et al. (2005) reported significantly altered trajectories of
dendrites from neocortical pyramidal neurons near Aβ plaques in Tg2576 mice.

The effects of soluble Aβ on dendritic structure are less well characterized. Using the
dendritic and spine reconstruction and analysis methods provided in NeuronStudio, we
examined the morphological and electrophysiological properties of layer 3 frontal cortical
pyramidal neurons in brain slices from 12-month-old Tg2576 mice (an age at which soluble
Aβ levels are high but there are few Aβ plaques). Whole-cell patch-clamp recording with
simultaneous biocytin filling of neurons was used for a detailed and comprehensive
assessment of the dendritic morphology of entire neurons (Fig. 3a). Dendritic properties of
pyramidal neurons from 12-month-old Tg2576 mice were notably altered from those from
wild-type mice, exhibiting significantly increased spatial extents, lengths, and volumes
across the full expanse of both apical and basal dendritic arbors (Rocher et al. 2008).

In another study, we examined morphological changes in the Tg2576 mouse frontal
pyramidal neurons at 9 and 24 months of age, using cell filling with Lucifer Yellow in
lightly fixed tissue (Dickstein et al. unpublished data). There was no difference in dendritic
structure between the Tg2576 and wild-type neurons at 9 months of age, prior to substantial
deposition of plaques. However at 24 months of age, when amyloid plaques are abundant,
we observed a significant reduction in apical dendritic length when compared with wild type
in layer 3 pyramidal neurons ( ~ 22% decrease). Taken together, data from these studies
indicate that dendritic structure is modified with time in Tg2576 cortical pyramidal neurons,
with an initial elongation at 12 months followed by regression at 24 months.

In contrast to studies on the effects of Aβ on dendritic morphology, very little is known
about the effects of mutated tau on neuronal structure. Under normal conditions, the
microtubule-associated protein tau plays a key role in stabilization and assembly of
microtubules, which are critical for the maintenance of normal cellular morphology and
cellular trafficking (Conde and Caceres 2009). In neurodegenerative diseases, such as AD
and animal models of tauopathy, mutated and/or overexpressed tau becomes
hyperphosphorylated, disengaged from microtubules and relocalized from the axon to the
somata and dendrites where it aggregates in the form of NFTs and neuropil threads,
respectively (Spires-Jones et al. 2009). The overexpression of tau, like that which occurs in
rTg4510 mice, has been shown to result in destabilization of the dendritic cytoskeleton and
compromised intracellular trafficking (Hall et al. 2000, 2001). Although there is a strong
positive relationship between the number of NFTs and the severity of neurodegeneration and
dementia in AD, recent studies question whether NFTs are themselves toxic to neurons.
There is an apparent dissociation between the presence of an NFT and neuron death as
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demonstrated by Andorfer et al. (2005) who found that in htau mice (which overexpress
wild-type human tau), substantial neuronal death precedes NFT formation, and dying
neurons lack evidence of fibrillar tau aggregates. In a recent study, we assessed the effect of
overexpression of mutant tau on neuronal structure and function in rTg4510 mice at 8.5
months of age (Rocher et al. 2009). Forty-two percent of the rTg4510 neurons assessed in
this study contained a thioflavin S-positive NFT in the somata, and the remaining 58% did
not stain with thioflavin S (Fig. 3b). The majority of rTg4510 neurons (65%) exhibited
marked atrophy or complete loss of the apical dendritic tuft. This morphological remodeling
occurred regardless of the presence or the absence of NFTs. Further, both apical and basal
dendrites of rTg4510 neurons demonstrated significantly diminished length and complexity.
Recently, Dickstein et al. (this issue) compared the dendritic structure of cortical pyramidal
neurons from htau mice at 3 months of age, when hyperphosphorylated tau is present, but
NFTs are not, to neurons at 12 months of age when NFTs are evident. There were no
significant differences in apical or basal dendritic length between neurons from the two age
groups; however, neurons from 12-month-old mice had significantly more complex
proximal apical dendrite branching patterns as compared to neurons from younger mice ( ~
15% increase in density in the segments 30–120 lm from the soma). Future studies will
compare neurons from htau mice versus those from wild-type controls and also examine
alterations to dendritic structure in htau mice at older ages when tauopathy is more
established.

Spine changes in neurodegenerative disease
Many studies have shown that dendritic spines are particularly vulnerable in AD and in
mouse models of AD (for review see Knobloch and Mansuy 2008; Giannakopoulos et al.
2009). Loss of approximately half of dendritic spines has been reported for cortical
pyramidal neuron dendrites directly traversing or closely apposed to Ab plaques in aged
PSAPP (46%; Tsai et al. 2004) and Tg2576 mice (50%; Spires et al. 2005). Although the
majority of studies have concentrated principally on morphological alterations of neurons
associated with fibrillar plaques, comparable changes have been observed in areas devoid of
Aβ deposits. In neurons from PSAPP mice, spine loss has been reported in regions with
minimal or no fibrillar Aβ (Tsai et al. 2004), and in Tg2576 mice there is a substantial ~
25% loss of spines on dendrites not in close proximity to Aβ plaques (Spires et al. 2005).

To determine the effect of endogenous soluble Aβ species on neuronal morphology in young
Tg2576 mice prior to substantial plaque deposition, we assessed the number, density, and
distribution of spines across the entire apical and basal dendritic arbors of layer 3 frontal
cortical pyramidal neurons from Tg2576 versus wild-type mice at 12 months of age (Rocher
et al. 2008). Spines were evaluated in 3D using high-resolution confocal imaging followed
by automated spine detection with NeuronStudio. Although the distribution and mean total
number of dendritic spines did not differ between the two groups, neurons from Tg2576
mice exhibited a significantly decreased mean density of spines per unit dendritic volume in
both the apical and basal trees (Fig. 4). Comparable to reductions reported by others for
individual dendritic segments (Tsai et al. 2004; Spires et al. 2005), spine density was
significantly decreased (−26%) across the entire dendritic arbor in Tg2576 neurons. There
was a strong relationship between spine number and total neuron volume in individual
neurons, indicating that the total number of spines is preserved in Tg2576 neurons as a result
of concomitant dendritic lengthening. During the early stage of disease progression prior to
substantial plaque formation, but at which time, soluble Aβ species are abundant, it is
plausible that the total number of dendritic spines ismaintained through compensatory
dendritic elongation. At later stages, the formation of plaques is accompanied by abnormal
neurite curvature and continued spine loss. It is at this time,when the Aβ load is much
higher, that progressive alterations in neuronal morphology will likely lead to significant
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functional consequences such as altered synaptic integration as observed in vivo in mice
with fibrillar Aβ plaques (Stern et al. 2004).

In a recent study on pyramidal neurons from 9-monthold versus 24-month-old Tg2576 mice
(Dickstein et al. unpublished data), there was a shift in the proportion of morphological
subtypes of spines, with a significant reduction in number of mushroom and stubby spines
and an increase in the number of thin spines. This shift in spine type was accompanied by a
change in specific spine volumes with thin spines of neurons from 24-month-old mice
having significantly larger volumes than those from 9-month-old mice. Larger thin spines
may represent a regression of mushroom spines suggesting a loss of stable, mature spines in
neurons from 24-month-old Tg2576 mice.

There is not much information available about the effects of tauopathy on dendritic spines of
cortical pyramidal neurons. Evidence that spine numbers are reduced comes from studies
showing a ~ 40% decrease in the density of synaptophysin labeling in the prefrontal cortex
(PFC) of patients with frontotemporal dementia (Liu et al. 1996) and studies of synaptic
markers in transgenic mouse models of tauopathy. There is a reduction in spinophilin and
synaptophysin labeling and spine–synapse density in the hippocampus of the ΔK280
proaggregation model of tauopathy (Mocanu et al. 2008), and a similar reduction in
synaptotagmin and synaptophysin immunoreactivity in the hippocampus of the THY-Tau22
mouse model (Schindowski et al. 2006). We recently demonstrated that, in addition to
dramatically altering the dendritic shafts of cortical pyramidal neurons, mutated tau
expression leads to a significant ~ 30% reduction in dendritic spine density on pyramidal
neurons from rTg4510 mice (Fig. 4; Rocher et al. 2009). Further, in neurons from htau mice,
there were significant differences in apical spine density in cells from mice at 3 versus 12
months of age with no differences in basal dendrites (Dickstein et al. this issue). The
changes in spine number were accompanied by a significant decrease ( ~ 44%) in overall
spine volume in dendrites of neurons from 6 and 12-month-old htau mice. Interestingly, as
with spines in the aged Tg2576 mice, there was a shift from stable mushroom spines to thin
spines with an increase ( ~ 17%) in the volume of thin spines, indicating that comparable
mechanisms of spine destabilization may occur in these two mouse models.

In summary, significant structural changes are induced in dendrites and spines by aberrant
tau and amyloid, which could be expected to have significant functional consequences.
Importantly, there is growing evidence that these morphological changes are reversible, at
least in mouse models of neurodegenerative disease. For example, recent studies have
demonstrated reversal of dendritic pathology in APP/PS1 mutant mice upon treatment with
both rolipram and TAT-HA-Uch-L1 (Smith et al. 2009) or with Aβ immunotherapy in
Tg2576 and APP/PS1 mice (Lombardo et al. 2003; Biscaro et al. 2009; Rozkalne et al.
2009).

Functional consequences of neurodegenerative morphological changes
Insights from electrophysiological studies

As summarized above, the structural characteristics of individual neurons fundamentally
determine their functionality with respect to both synaptic integration and firing properties.
Therefore, it is likely that the altered morphology of Tg2576 and rTg4510 pyramidal
neurons result in modifications of functional electrophysiological properties of individual
neurons and downstream neuronal network properties. However, there is a dearth of
information on the functional consequences of significant morphological changes in APP
and tau transgenic mice. Some insight has been provided by studies in which soluble Aβ
protofibrils exogenously applied to isolated embryonic rat neocortical neurons elicited a
marked increase in neuronal excitability (Hartley et al. 1999) and inhibition of A and D type
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outward potassium currents (Ye et al. 2003). Several studies have demonstrated that basal
glutamatergic synaptic transmission (assessed with extracellular field potential recordings) is
significantly reduced in populations of cells in the hippocampus and neocortex of APP
transgenic mice as compared to control mice (Larson et al. 1999; Hsia et al. 1999; Giacchino
et al. 2000; Fitzjohn et al. 2001; Roder et al. 2003; Brown et al. 2005). In addition, a
significant reduction in LTP in the hippocampus of Tg2576 mice has been reported
(Chapman et al. 1999; Kamenetz et al. 2003; Wang et al. 2004) and intracerebroventricular
injection of soluble Aβ protein inhibits hippocampal LTP in vivo, providing evidence for a
role for soluble Aβ in this effect (Walsh et al. 2002; Klyubin et al. 2004). Finally, a recent in
vivo study using a genetically encoded calcium indicator to assess neuronal calcium levels
in spines and dendrites showed disrupted calcium homeostasis and dystrophic neurites in
close proximity to amyloid plaques in APP/PS1 mutant mice (Kuchibhotla et al. 2008).

In our electrophysiological studies of layer 3 frontal cortical pyramidal neurons, we found
no significant difference in passive membrane or action potential firing properties between
Tg2576 neurons and wild-type neurons (Rocher et al. 2008; Fig. 5a). Importantly, despite a
significant reduction in dendritic spine density, the frequency, amplitude, and kinetics of
spontaneous excitatory synaptic currents in the same neurons also remained unchanged. This
preservation of glutamatergic signaling was likely due to the maintenance of spine numbers,
despite reductions in spine density due to elongation of dendritic processes. It remains to be
seen whether there are more marked functional consequences of the more dramatic
structural alterations seen in pyramidal neurons from older Tg2576 mice.

In a recent study on layer 3 cortical pyramidal neurons from 8.5-month-old rTg4510 mice
(Rocher et al. 2009), we observed major alterations in dendritic architecture (loss of the
apical tuft), and spine density changes that could lead to substantial modification of
functional electrophysiological properties, particularly with regard to integration of synaptic
inputs. Direct measurement of electrophysiological properties in these cells with whole-cell
patch-clamp recordings revealed that input resistance and membrane time constant were
comparable between rTg4510 and wildtype neurons. These findings are expected as both
properties are related to soma and total neuron surface area, which were similar between
both groups. Importantly, resting membrane potential was significantly depolarized in
rTg4510 neurons. This is possibly due to the significantly increased depolarizing “sag”
potential also observed in rTg4510 neurons, disturbances in ATPase pump function linked to
mitochondrial dysfunction, and/or decreased inhibitory synaptic inputs. In addition, rTg4510
neurons exhibited increased action potential firing frequency, reflecting the reduction in
depolarization required to elicit action potentials (Fig. 5b). The implications of this
excitability increase for the activity of individual neurons and networks of neurons are
significant, and could be viewed as both potentially detrimental and beneficial. Increased
excitability could be detrimental in that the dynamic range for the modulation of the
rTg4510 neurons would necessarily be reduced due to a “ceiling effect” in which they are
closer tomaximal firing rates than are wild-type neurons when depolarized from rest. On the
other hand, increased excitability may favor maintenance of more normal network behavior
in the face of significantly reduced glutamatergic synaptic transmission within a network.

Clearly, there is a need for many more studies on the functional electrophysiological
consequences to individual neurons of the significant structural changes in
neurodegenerative disease. Given the lack of such studies, and also technical considerations
such as space clamp limitations and the impossibility of recording from distal dendrites or
spines, the use of modeling methods to understand potential functional consequences of
structural changes is very important.
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Insights from modeling
For nearly 60 years, mathematical models have been used to investigate neuronal function.
Hodgkin and Huxley’s (1952) mathematical model of action potential generation predicted
the existence of ion channels, decades before ion channels were observed experimentally
(Neher and Sakmann 1976). Other models were groundbreaking in describing how dendrites
filter signals as passive electrical cables (Rall 1959; Goldstein and Rall 1974), but were
limited in their ability to apply directly to realistic morphologic data. Since then,
applications of mathematical techniques (Fitzhugh 1961; Nagumo et al. 1962; Rinzel and
Ermentrout 1989), advances in computational software (Bower and Beeman 1998;
Carnevale and Hines 2006), model reduction (Clements and Redman 1989; Pinsky and
Rinzel 1994), and computing power have resulted in models that have great potential for
yielding insights into neuronal function. In particular, models have shown that morphology
is a critical determinant of neuronal firing properties (Zador et al. 1995; Mainen and
Sejnowski 1996; Vetter et al. 2001; Schaefer et al. 2003; Stiefel and Sejnowski 2007). The
effects of morphology are further amplified by the actions of ion channels distributed
throughout the dendrites (for review see Johnston and Narayanan 2008), both of which
shape patterns of synaptic input. Our ability to understand neuronal function depends largely
on analysis of the nonlinear interactions between morphology, electrical membrane
properties, and synaptic input.

Electrotonic analysis—Electrotonic analysis (Rall 1969; Brown et al. 1992; Tsai et al.
1994; Carnevale et al. 1997) predicts how neuronal morphology interacts with passive
membrane parameters (membrane capacitance Cm, specific membrane resistance Rm and
axial resistivity Ra) to affect the propagation of electrical signals. For each point in the
dendritic tree, the log attenuation Lij is defined as the natural log of voltage attenuation from
point i to point j. By computing Lij everywhere throughout the dendrites, a neuron’s
anatomical structure can be transformed into an intuitive visual representation
(“morphoelectrotonic transform”; Zador et al. 1995) of how that structure affects electrical
signal transfer.

In a recent publication (Kabaso et al. 2009), we analyzed the electrotonic effects of age-
related morphological changes in pyramidal neurons of the rhesus monkey PFC. Figure 6a
shows the log attenuation of voltage flowing outward from the soma to the dendrites, for a
layer 3 PFC pyramidal neuron from a young rhesus monkey (Kabaso et al. 2009). The log
attenuation of voltage flowing inward from the dendrites toward the soma is defined
similarly (Kabaso et al. 2009). Outward voltage attenuation in the apical dendrites was
significantly reduced with age, both in “long” projection neurons from the superior temporal
cortex to the PFC, and in “local” projection neurons within the PFC. In long projection
neurons, inward voltage attenuation of apical dendrites was significantly reduced with age as
well. Thus, if the age-related morphologic changes are not compensated by altered ion
channel densities or kinetics, synaptic potentials would remain larger, and propagate more
quickly, through the apical dendrites of old long projection neurons. Likewise, action
potentials backpropagating through the apical dendrites of both long and local projection
neurons would be larger and faster in old neurons. The reduction in spine densities with
aging contributed strongly to our findings: voltage attenuation in the dendrites is not
significantly different among the age groups when spine surface areas were not included
(Kabaso et al. 2009).

Anomalous diffusion in dendrites and spines—At the fundamental microscopic
level, cortical functioning is dependent on the diffusion of ions and other molecules that
subserve electrical and chemical signaling in the brain. Important recent discoveries have
revealed that the characteristics of this diffusion are altered by the morphology and
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distribution of dendritic spines (Santamaria et al. 2006), and by the size and distribution of
Aβ plaques (Mueggler et al. 2004; Banks and Fradin 2005). Both effects, trapping by
dendritic spines and molecular crowding by amyloid plaques, result in anomalous
subdiffusion in which the spatial variance grows as a sublinear power law in time (Metzler
and Klafter 2000). In recent work, we introduced a new cable model for a cylindrical
dendrite segment (Henry et al. 2008; Langlands et al. 2008, 2009) in which diffusion
constants are replaced by timedependent operators with fractional-order exponents. We
extended our derivation beyond the single dendrite level, demonstrating that anomalous
subdiffusion of ions changes the electrotonic properties and firing rates of neurons
(Langlands et al. 2009). Our studies are part of a larger effort to understand how spine
morphologies and intracellular calcium dynamics affect signaling between dendrites and
spines (Svoboda et al. 1996; Araya et al. 2006; Schmidt et al. 2007; Fedotov and Méndez
2008; Saftenku 2009; Schmidt and Eilers 2009). As reliable data on spine morphologies,
intracellular calcium dynamics and ionic diffusion become increasingly available, equations
describing anomalous subdiffusion will become more commonplace in computational
modeling. These advances will lead to computational analyses of the effects of
neurodegenerative changes to neurons on intracellular electrodiffusion.

Comparing active and morphological parameters—Computational studies often
identify “active” parameters (those that control ionic membrane channels and intracellular
calcium dynamics), which drive neuronal firing patterns, but discount the role of
morphology (Goldman et al. 2001; Prinz et al. 2003, 2004; Olypher and Calabrese 2007;
Taylor et al. 2009). We have used mathematical sensitivity analysis (Saltelli et al. 2000) to
quantify how dendritic morphology affects neuronal firing patterns, and to compare these
effects directly against those of active parameters (Weaver and Wearne 2008). Briefly, we
perturb one parameter while keeping the rest constant, and define the sensitivity of an output
to that parameter as the percentage change in output normalized by the percentage change in
the parameter.

Figure 7a, b shows the sensitivity of spontaneous firing rate to parameter perturbations, for a
model comprising a soma and unbranched cylindrical dendrite. For one combination of
parameters called ‘Model 1’, the model fires action potentials spontaneously as shown by
the solid black line of Fig. 7a. When the maximal conductance of the persistent sodium
current g¯NaP was increased by 20% (Fig. 7a, thin red line), the firing rate increased by
50%; therefore the sensitivity of firing rate to ḡNaP was 50%/20% = +2.5. In contrast,
reducing dendritic diameter by 20% increased firing rate by 67%, so that the sensitivity of
firing rate to dendrite diameter was 67%/−20% = −3.35: a larger effect than that of ḡNaP
which acts in the opposite direction. Importantly, these sensitivities depend greatly on the
combination of active parameters used in the model, even among models with similar output
(compare Fig. 7a, b). Both experimental (Chiba et al. 1992; Bucher et al. 2005; Swensen and
Bean 2005; Schulz et al. 2006) and computational studies (Goldman et al. 2001; Prinz et al.
2003, 2004; Achard and De Schutter 2006; Weaver and Wearne 2008; Taylor et al. 2009)
have shown that neurons can have similar outputs. Therefore, any sensitivity analysis must
be carried out over a wide range of models consistent with experimental data. In doing this,
we found some models for which dendrite diameter affected neuronal firing rate even more
than the active parameters (Weaver and Wearne 2008). Extrapolating these results to the
transgenic studies reviewed here suggests that the morphology of cortical neurons can
contribute significantly to the observed physiology. It will be important to evaluate how the
sensitivity of neuronal function to morphology and active parameters are affected by
neurodegeneration. To do so, it is particularly important to have morphological and
physiological data from the very same neurons. This work is ongoing within our research
group (Yadav et al. 2008a, b, 2009). Application to the transgenic models described in this
review will reveal more insight into the future.
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Predicting compensations for morphological neurodegeneration—Perhaps, the
most important application of sensitivity analysis to predict how parameters should
compensate for one another to maintain a desired output (Olypher and Calabrese 2007;
Weaver and Wearne 2008). Specifically, we have shown that perturbations of active
parameters could counteract the effects of morphological changes (Weaver and Wearne
2008) like those that occur with neurodegeneration. As an example, Fig. 7c shows the effect
of a 15% reduction in dendrite diameter on the firing rate of a morphologically faithful
model of a precerebellar hindbrain neuron from goldfish (shown inset). Using the
sensitivities of firing rate computed as described above, we predicted the precise
perturbations needed of either ḡNaP (−11.3%) or of the A type potassium conductance ḡA
(+25.4%) to compensate for the effect of the reduced diameter (Fig. 7d) (Weaver and
Wearne 2008). We chose these parameters for compensations because neuronal firing rate
was highly sensitive to them. Future compensatory predictions could be based on the
experimental identification of active parameters that are most changed with
neurodegeneration.

Application to transgenic mouse models—Our modeling results make several
predictions that may apply to transgenic mouse models of neurodegeneration. First, changes
in dendrite length, diameter, and spine densities/numbers in transgenic neurons compared to
wildtype neurons may significantly impact the attenuation of signals to and from the soma.
This may happen over an entire neuron, or in limited regions, such as dendrites passing
through or near fibrillar amyloid deposits, or in apical tufts that undergo atrophy. Long
projection neurons are particularly vulnerable in AD (Hof et al. 1990; Bussiére et al. 2003;
Hof and Morrison 2004), giving greater weight to the significant differences in voltage
attenuation observed in long projection neurons (Kabaso et al. 2009). Second, changes in
spine density may affect the diffusion rate of intracellular messengers and ions. Elongated
dendrites may result in less trapping of electrical and chemical signals within spines; this
phenomenon may be functionally significant. We must also consider how spine loss might
impact the amount of excitatory input that a neuron receives. Finally, it is likely that
interactions between morphology and active parameters vary between wild-type and
transgenic neurons. To study this more fully we must measure both detailed morphological
properties and ionic currents in wild-type and transgenic neurons. To evaluate the degree to
which these predictions truly apply to the transgenic mouse models, we will apply the
mathematical methods described here directly to the transgenic data that we have collected.
These computational studies will likely lead to explicit predictions of which parameters to
change, and by how much, to counteract morphological changes that affect physiological
function in neurodegenerative disease.
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Fig. 1.
Structural properties of mouse neocortical pyramidal neurons. a 40 × CLSM image of a
layer 3 pyramidal cell from the frontal cortex of a wild-type mouse. The neuron was filled
with biocytin during patch-clamp recording and subsequently labeled with Alexastreptavidin
488. b 100 × CLSM image of the spiny dendrite shown within the red box in (a). c Electron
micrograph showing the ultrastructure of a pyramidal neuron spine, with a prominent
postsynaptic density and spine apparatus. Courtesy of Dr. Alan Peters. Scale bars a 40, b 5,
c 0.5 μm
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Fig. 2.
Analytical methods to quantify morphological structure. a xy projection of the montage of
CLSM tiled image stacks from a wildtype mouse layer 3 frontal cortical pyramidal neuron.
Scale bar 40 μm. b Tree structure from the data shown in (a), extracted using NeuronStudio.
c Automatic spine detection and visualization in NeuronStudio. Left automatically detected
spines overlaid on a maximum projection of a typical dataset; right the same data and spines
volume-rendered in 3D. d Left 2D Rayburst sample used for diameter estimation. Rays cast
using the sampling core is shown in orange with the one chosen as the diameter shown in
blue. The green line indicates the surface detected by the Rayburst samples. Right spine
diameter estimation using a 2D Rayburst run at the center of mass (small green squares) of a
single layer. The blue line indicates the resulting width of the structure as calculated by
Rayburst, and provides an approximate length of 0.7 μm. e Optimized fits of scaling
exponents (black fitted lines) and optimal scaling regions (gray shaded bands) for the apical
dendrites of a typical layer 3 pyramidal cell projecting from superior temporal cortex to area
46 (see Kabaso et al. (2009) for details). f Contributions of branching and tapering
exponents to global mass scaling (measured by total area exponent dA) in spine-corrected
apical dendrites of long projection neurons of young rhesus monkeys, in the proximal and
medial scaling regions (I, II in e). The total branching and tapering vary across the two
scaling regions, yet the total area in each region is conserved [modified from Wearne et al.
(2005) and Kabaso et al. (2009)]
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Fig. 3.
Pathological features and filled pyramidal neurons from Tg2576 and rTg4510 mice. a
CLSM images of a Tg2576 pyramidal neuron (1) and a dendritic spine traversing an Aβ
plaque (2), 3 and 4 show CLSM images of Aβ plaques. b CLSM images of a typical wild-
type neuron (1) and a rTg4510 neuron pyramidal neuron containing an NFT (2), 3 and 4
show higher magnification views of the neuronal somata seen in 1 and 2; b modified from
Rocher et al. (2009). Scale bars A1 40 μm, A2–4 10 μm, B1, 2 40 μm, B3, 4 5 μm
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Fig. 4.
Dendritic spine loss in pyramidal neurons from Tg2576 and rTg4510 mice. CLSM images
of dendritic segments with spines of neurons from wild-type (top) and transgenic (bottom)
mice. Scale bars 10 μm [modified from Rocher et al. (2008, 2009)]
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Fig. 5.
Action potential firing properties of pyramidal neurons from Tg2576 and rTg4510 mice. a
Top × 40 CLSM images showing representative dendritic morphology for wild-type and
Tg2576 neurons, bottom action potential firing properties of typical neurons. b Top 40 ×
CLSM images showing representative dendritic morphology for wildtype and rTg4510
neurons, bottom action potential firing properties of typical neurons. Grey arrowhead
indicates depolarizing sag. Scale bar 20 mV, 500 ms [modified from Rocher et al. (2008,
2009)]
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Fig. 6.
Morphological degeneration significantly affects dendritic signal propagation. a Anatomical
reconstruction (left) and outward morphoelectrotonic transform (right) of a typical young
rhesus layer 3 pyramidal cell projecting from superior temporal cortex to the PFC.
Transformed apical dendrites are shown in red. b Similar to a, for an analogous neuron from
an old rhesus monkey. c Effects of age-related degeneration on mean outward and outward
attenuation transforms. Histograms shows mean ± SEM for the young (n = 24) and old (n =
19) neuron groups (*P<0.05, **P<0.01) [modified from Kabaso et al. (2009)]
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Fig. 7.
Using sensitivity analysis to predict parameter compensations that counteract the effect of
morphological perturbation. a Comparison of morphological (Diam.) and conductance
parameter ḡNaP perturbations of two model neurons with different combinations of
membrane conductances, but similar output firing patterns. Thick black line shows the
somatic voltage trace of the unperturbed model. Dashed green line shows the response to a
20% decrease in Diam.; thin red line shows the response to a 20% increase in ḡNaP. Inset
bar plot shows the normalized sensitivity coefficients of firing rate to Diam. and ḡNaP:
positive to ḡNaP negative and of greater magnitude to Diam. b Perturbations of the second
model: analogous to those in a, except that the thin red line shows the response to a 10%
increase in ḡNaP Sensitivity to Diam. is small and negative, while sensitivity to ḡNaP is large
and positive. c In a model of goldfish precerebellar neurons (morphology shown inset), a
15% reduction in Diam. increased firing rate by 20.3% relative to the unperturbed value. d
The compensatory perturbations of two different conductance parameters (ḡNaP in red,
shifted vertically up; ḡA in blue, shifted down) were predicted from their firing rate
sensitivities (inset bar plots). The blue and red compensated traces overlie the unperturbed
(black) trace very closely, demonstrating excellent compensation [modified from Weaver
and Wearne (2008)]
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