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Abstract
Despite advances in reperfusion therapy, acute coronary syndromes can still result in myocardial
injury and subsequent MI. Molecular, cellular, and interstitial events antecedent to the acute MI
culminate in deleterious changes in the size, shape, and function of the left ventricle (LV),
collectively termed LV remodeling. Three distinct anatomical and physiologic LV regions can be
described post-MI: the infarct, borderzone, and remote regions. Given the complexity of post-MI
remodeling, imaging modalities must be equally diverse to elucidate this process. The focus of this
review will first be upon cardiovascular magnetic resonance imaging (MRI) of the anatomical and
pathophysiological LV regions of greatest interest with regard to the natural history of the post-MI
remodeling process. This review will examine imaging modalities which provide translational and
molecular insight into burgeoning treatment fields for the attenuation of post-MI remodeling, such
as cardiac restraint devices and stem cell therapy.

Introduction
Acute coronary syndrome, which can be defined as a constellation of clinical symptoms
associated with acute myocardial ischemia, strikes nearly a million people in the United
States each year (1) and is responsible for tens of billions of dollars in hospital charges. (2)
Optimal treatment with timely reperfusion therapy and pharmacologic intervention has made
acute coronary syndrome increasingly survivable, even in the face of rising incidence given
the growing elderly population. (1) Despite advances in reperfusion therapy, acute coronary
syndromes can still result in myocardial injury and subsequent myocardial infarction (MI),
evoking cellular and extracellular processes in the reperfusion phase leading to cell death,
inflammation, and scar formation. Molecular, cellular, and interstitial events antecedent to
the acute MI culminate in changes in the size, shape, and function of the left ventricle (LV),
collectively termed LV remodeling. Despite successful reperfusion, lifestyle modification,
and pharmacotherapy, the LV remodeling process continues unabated, resulting in an
accrual rate of almost 1 million new patients per year at risk for developing heart failure. (1)
Accordingly, strategies to selectively and specifically monitor the molecular pathways
which underlie the LV remodeling process hold great import to alleviate the socioeconomic
as well as the healthcare resource burden of post-MI remodeling.

In order to identify appropriate imaging targets in the context of post-MI LV remodeling, the
anatomical and biologic underpinnings of the process must be considered. For the purposes
of the remodeling process, the post-MI LV can be divided into 3 distinct anatomic regions:
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the MI itself, the surrounding borderzone region, and the remaining remote myocardium.
Regardless of reperfusion, degradation of normal extracellular matrix occurs within the MI
region, accompanied by invasion of inflammatory cells and the induction of bioactive
peptides and cytokines, leading to the necessary substructure for scar formation. (3,4) The
fully perfused myocardium surrounding the MI, described as the borderzone region, is a
metabolically active amalgam of inflammatory cells, fibroblasts, and viable myocytes. The
borderzone region is also the site of infarct expansion, a dynamic process defined as the
extension of changes in structure and function between the MI and remote myocardium.
Infarct expansion is a process of great import, as it has been identified as an independent
predictor of mortality for post-MI patients. (5) The remote region is normally perfused and
can be millimeters to centimeters away from the MI and borderzone regions. Despite
conventional belief, the remote region is not immune to the post-MI remodeling process, as
changing wall strain patterns post-MI lead to myocyte hypertrophy and interstitial fibrosis.
(6) Each of these 3 anatomical regions are distinctly different, and therefore the
heterogeneity of the regions and cellular targets within the post-MI LV must be recognized
in order to achieve appropriate imaging modalities.

While post-MI remodeling is a continually evolving process, a milestone can be described at
the 30 day post-MI time point when the infarct itself is roughly healed. Several large animal
studies have been conducted examining this period of the remodeling process and the unique
events happening in each of the 3 anatomical regions. (7–16,18,19) Jugdutt et al. utilized a
canine model to characterize the collagen dynamics, as well as the effects of angiotensin-
converting enzyme inhibition (ACE-I) on collagen deposition, within the infarct zone during
this time frame. (7,8) Subsequently, MI collagen and the myofibroblasts which produce it
have become molecular imaging targets, capable of reflecting ACE-I therapeutic effects. (9)
In the borderzone region vascular endothelial growth factor, a marker of angiogenesis during
the post-MI remodeling process, has been studied in pigs, providing a molecular imaging
target to assess borderzone myocardial perfusion status. (10,11,12) Integrins specific to
angiogenic vessels have also been utilized as a novel target for imaging angiogenesis in
post-MI large animal models. (13) Non-invasive imaging of angiogenesis in the borderzone
region holds important implications for risk stratification of patients post-MI and the
potential to evaluate the response to therapeutic measures aimed at myocardial angiogenesis.
Unique portfolios of matrix metalloproteinases, a family of proteases which have been
shown to be integral to the extracellular matrix remodeling process, have been characterized
in all post-MI regions in sheep models (14,15) and provide non-invasive molecular imaging
targets to interrogate the post-MI remodeling process. Apoptotic markers are clearly
involved with pathways which can contribute to adverse remodeling post-MI. (16) At
present the imaging of apoptotic pathways has been limited to small animal models (17) but
clearly holds relevance for clinically relevant large animal models. A summary of domains
of the biologic remodeling process (i.e. extracellular matrix, vasculature, and signaling
pathways) are presented in Table 1 as well as potential imaging targets. Imaging of the post-
MI remodeling process holds great import for both prognostic information and potential
monitoring of therapeutic interventions.

Given the complexity of post-MI remodeling, imaging modalities must be equally diverse to
elucidate this process. Subsequently, it is not possible to integrate the entire body of imaging
studies which are applicable to LV remodeling in this brief review. Rather, the focus of this
review will first be upon cardiovascular magnetic resonance imaging (MRI) of the
anatomical and pathophysiological LV regions of greatest interest with regard to the natural
history of the post-MI remodeling process. Second, this review will examine imaging
modalities which provide translational and molecular insight into burgeoning treatment
fields for the attenuation of post-MI remodeling, such as cardiac restraint devices and stem
cell therapy.
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Post-MI LV Remodeling: Biophysical Characterization by MRI
Cardiac MRI is able to provide accurate, reproducible, high spatial and temporal resolution
images in any plane, making it especially suited for longitudinal assessment of post-MI LV
remodeling (Figure 1). (20,21) Several studies have utilized MRI techniques to gain
molecular and cellular insight into the post-MI remodeling process. Specifically, Friedrich et
al. have demonstrated the use of MRI to characterize reversibly and irreversibly injured
myocardium in and around the MI region (Figure 2). (22) They hypothesize that mapping
areas of post-MI myocardial edema, using T2-weighted and late enhancement MRI, can
guide therapeutic modalities to the borderzone region in attempts to attenuate infarct
expansion. Other reports have targeted the reduction of post-MI edema, as detected by MRI,
as a novel method to attenuate LV remodeling at the molecular level. (23) Following MI,
contrast-enhanced MRI techniques provide visualization of microvascular obstruction in the
infarct region. (24) Regions of microvascular obstruction, which can persist despite
reperfusion, appear as subendocardial dark areas surrounded by hyperenhanced injured
myocardium, and have been reported as a marker for adverse LV remodeling. (25) In a
landmark report by Wu, et al. contrast enhanced MRI was demonstrated to correlate
microvascular obstruction and infarct size with long-term prognosis, including the
development of heart failure. (26)

The topography of the LV following MI is a heterogeneous landscape, with great prognostic
value held in the infarct characteristics and myocardial perfusion status. (27,28) This
landscape is made traversable to researchers and clinicians with the help of a variety of
imaging modalities. While computed tomography (CT) can provide high resolution static
images to identify the region of MI, the current consensus is that MRI is able to provide
better cardiac images than CT (29,30) with an additional feature of superior tissue
characterization. For example, both clinical and pre-clinical studies (31,32) have utilized
MR diffusion tensor imaging to study myocardial fiber architecture characteristics,
describing distinct unique qualities among the MI, borderzone and remote regions.
Specifically, the percentage of left-handed helical fibers was shown to have increased from
the remote zone (13.3±5.8%) to the borderzone (19.2±9.7%) and infarct zone (25.8±18.4%)
in patients a median of 26 days post-MI. (32) Myocardial fiber architecture correlated with
infarct size and left ventricular function in these studies, linking structural and functional
post-MI remodeling. (32) Furthermore, by identifying these distinct anatomic LV regions,
this imaging technology can enable scientists and clinicians to intervene in the post-MI
remodeling process.

Another technique which has been utilized to characterize the distinct myocardial regions
involved in post-MI remodeling is magnetic resonance spectroscopy (MRS). A multitude of
myocardial metabolites are able to be non-invasively detected using MRS, characterizing the
regional metabolic changes which occur in post-MI remodeling. Hu et al reported a 50%
reduction in the phosphocreatine to adenosine triphosphate ratio in the borderzone as
compared to the remote region of a porcine MI model, indicating that borderzone energy
defects likely contribute to local dysfunction post-MI. (33) Feygin et al utilized MRS to
examine borderzone bioenergetics following mesenchymal stem cell injection, reporting
significant improvement in the phosphocreatine to adenosine triphosphate ratio 4 weeks
post-MI in a porcine model. (34) Hence, MRS allows interrogation of specific myocardial
regions post-MI and provides an assessment of therapeutic response. At the present time,
however, the spatial and temporal resolution limitations of MRS have not yet allowed high-
resolution cardiac metabolic imaging to become a clinical reality.
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Regional Imaging Post-MI: Prognostic and Therapeutic Potential
Molecular imaging of the unique regions involved in post-MI LV remodeling holds great
prognostic importance. Non-invasive, longitudinal assessment of qualities such as the fiber
architecture and metabolism of the borderzone region hold the potential to risk-stratify
patients. By identifying those at risk for continued post-MI adverse remodeling, these
patients could be directed to adjuvant therapies in an effort to reduce the morbidity of the
LV remodeling process. Hence molecular imaging techniques hold promise for further
individualizing the treatments patients receive post-MI.

Given the prevalence and dire consequences of the LV remodeling process, a multitude of
devices and therapies have been developed in an effort to battle this clinical entity. The high
quality images produced by cardiac MRI have become an excellent tool for guiding the use
of such technologies. One specific group of devices aimed at attenuating LV remodeling
post-MI are the ventricular restraint devices, which apply epicardial pressure to combat
dilation of the LV and reduce LV wall stress. (35,36) Magovern et al. utilized cardiac MRI
to evaluate the placement of a nitinol mesh device (Paracor Surgical Inc., Sunnyvale, CA) in
an ovine MI model. MRI at 6 weeks post-MI demonstrated less increase in LV end-diastolic
volume index and end systolic volumes in device treated animals as compared to controls, as
shown in Figure 3. (35) This study set the stage for future work which would utilize MRI
techniques to characterize the regional effects of a cardiac restraint device on post-MI
remodeling. Specifically, Blom et al. utilized cardiac MRI and novel three-dimensional
surface modeling techniques to measure the degree of infarct expansion and global LV
remodeling in an ovine MI model with the CorCap (Acorn Cardiovascular, St.Paul, MN)
ventricular restraint device. (36) The study found animals treated with the device at 3 days
post-MI had decreased infarct area and improved borderzone contractile function as
compared to control animals at 12 weeks post-MI. (36) Device treated animals demonstrated
no expansion in either the infarcted or perfused regions following device placement,
compared to control animals which displayed more than 300% expansion in the surface area
of the infarct region. These results supported the conclusion that early ventricular restraint
post-MI is effective to limit infarct expansion and LV remodeling. Cardiac MRI techniques
have transitioned the examination of these specific devices from pre-clinical studies to
clinical application, providing valuable non-invasive follow-up capabilities (Figure 4).

Another field which has drawn great attention in the treatment of LV remodeling is the use
of cellular therapies. Specifically, the utilization of various types of stem cells in the post-MI
context has been extensively studied. (37–39) MRI techniques utilizing magnetically labeled
stem cells have demonstrated the ability to track these cells following delivery to the
myocardium. In a pre-clinical study, Kim et al. utilized MRI techniques to track
magnetically labeled mesenchymal stem cells for up to 3 months after injection into a prior
MI site and to assess the functional response to the cell injection. (37) The study found the
cells were able to be seen on MRI up to 10 weeks post-injection (Figure 5) and LV ejection
fraction was improved as compared to control animals. Using similar MRI techniques, Hill
et al. demonstrated the ability to track iron fluorophore particle labeled mesenchymal stem
cells in a porcine model up to 3 weeks post-MI (Figure 6). The study also demonstrated that
the iron labeled mesenchymal stem cells retained in vitro viability, proliferation, and
differentiation capability as well as in vivo viability after allogeneic transplantation. (38) A
quantity of 105 cells/injection was identified as the minimum detectable amount of cells on
serial MRI. These findings make MRI detection of iron labeled cells an attractive alternative
for the non-invasive evaluation of cellular therapies. This technique holds the potential to
answer questions regarding cell engraftment, migration, and honing, in order to elucidate
disparate results from early clinical trials involving cellular therapies in the post-MI context.
(38,39)
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Conclusion
The post-MI remodeling process involves a heterogeneous anatomic and physiologic
regional LV landscape. While this complex landscape is rife for therapeutic intervention, its
intricacies must first be elucidated. Each unique anatomical region holds potential targets to
attenuate the progression toward heart failure. With the assistance of advancing cardiac MRI
techniques, these potential targets will progress toward becoming valuable clinical therapies
and current treatment modalities will continue to be refined.
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Figure 1.
Delayed-enhancement MRI examples of two different myocardial infarctions (MI)
demonstrating the relationship between LV remodeling and functional recovery. A. A large
anteroseptal transmural acute MI with areas of microvascular obstruction within the infarct
region (white arrow) is shown in the acute phase. Images 6-months post-MI show
substantial LV remodeling, with wall thinning and absence of regional functional recovery.
B. A small inferolateral subendocardial MI with regional hypokinesis is shown in the acute
phase. Subsequent 6-month post-MI images show a lack of LV remodeling and complete
recovery of regional contractility, in contrast to the MI shown in A. Reproduced with
permission from Reference #21.
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Figure 2.
Irreversible and reversible injury in acute reperfused infarcts in two patients as visually and
semiautomatically defined. A. Cardiac MRI 3 days after an acutely reperfused infarct with a
subtotal (99%) occlusion of the left anterior descending artery in a 71-year-old patient. B.
Cardiac MRI 1 day after reperfusion of an occluded right coronary artery in a 57-year-old
patient. Red areas indicate the result of a semiautomatic delineation of pixels with abnormal
signal as defined by a signal intensity of >2 SD above mean signal intensity of the remote
myocardium. The spatial extent of the myocardial injury in the edema-sensitive T2 imaging
is consistently larger than that of the necrosis-sensitive late enhancement. Reproduced with
permission from Reference #22.
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Figure 3.
Long-axis MRI images of sheep hearts obtained 6 weeks after infarction in device (left) and
control (right) animals. Hearts are shown in diastole on the top panels and systole on the
bottom. Mesh appears as dark area around ventricles. Reproduced with permission from
Reference #35.
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Figure 4.
Epicardial elastic support device in dilated cardiomyopathy. The left panel shows
preoperative cardiac MRI images from a patient with dilated cardiomyopathy. The right
panel shows the same patient 6 months after placement of the HeartNet (Paracor Medical,
Inc., Sunnyvale, CA). Image reproduced with permission from Dr. Robert W.W. Biederman,
Allegheny General Hospital, Pittsburgh, PA).
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Figure 5.
In vivo serial MRI. Serial short-axis views obtained at 1 (A), 2 (B), 4 (C), and 10 (D) weeks
show a persistent signal-void after injection of Feridex-labeled mesenchymal stem cells.
Reproduced with permission from Reference #37.
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Figure 6.
Serial in vivo and ex vivo MRI. Serial short-axis views of diastolic frames show a persistent
signal void after injection of 105 iron fluorophore particle labeled mesenchymal stem cells,
imaged on days 1 (A), 4 (B), and 21 (C). D, Corresponding view of explanted heart on high-
resolution 3D MRI showing signal void. Reproduced with permission from Reference #38.
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Table 1

Molecular imaging targets in the post-MI remodeling process.

Domains Target Ref #

Extracellular Matrix Collagen 7,8

Matrix Metalloproteinases 14,15

Tissue Inhibitors of Matrix Metalloproteinases 14,15

Vasculature Integrins 13

VEGF 10,11,12

Smooth muscle actin 18

Signaling/Growth/Viability TGF beta 19

Apoptotic markers 16

Myofibroblasts 9
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