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Abstract
The midsagittal cross-sectional area of the human corpus callosum (CC) has been used by many
researchers as a marker of development, natural aging, and neurodegenerative and acquired
pathologies. The availability of non-invasive MRI methods for quantifying the macrostructural
and microstructural organization of the CC would help to clarify the CC contribution to behavior
and cognition in both health and disease. In this report, we extended and validated the ability of a
recently described semi-automated diffusion tensor imaging tissue segmentation method to utilize
the high orientation contrast of the CC on diffusion tensor imaging. Using a cohort of healthy
right-handed children and adults aged 7–59 years, we show gender-independent non-linear
(quadratic) and strongly correlated growth trends in the CC area and the corresponding diffusion
tensor fractional anisotropy (r = 0.67; P < 1 × 10−10). Our results provide preliminary evidence
that diffusion tensor anisotropy in the living CC may be related to the number of small myelinated
fibers.
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INTRODUCTION
The corpus callosum (CC) is the largest interhemispheric commissural white matter fiber
network in the human brain (1,2). An estimated 200–300 million fibers of different
myelination and axonal geometry cross the CC midline, yielding a cross-sectional area of
~200–1000 mm2 during the lifespan (1–5). The CC has been used as a sensitive marker of
brain hemispheric lateralization (2,6–7), connectivity and function (8–12), development
(3,13–16), and natural aging (16–25). Different CC-derived measures, such as area
(14,16,18–22), volume (26,27), thickness (11), shape (28), diffusion tensor regional
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anisotropy (12,23,24), principal diffusion eigenvector coherence (24), and fiber connectivity
(10,25), have been used as neuroimaging markers in a host of developmental (26–31),
neurodegenerative (32–34) and acquired pathologies (35–37). Because of a possible direct
relation with the number of axons traversing the midline (2,5,8–10,31,32), the CC
midsagittal area (CCA) has been the most commonly used measure in quantitative MRI and
histological studies of the CC (2–9,16–22).

Both anatomical [conventional MRI (cMRI)] and quantitative methods such as relaxation,
perfusion, magnetization transfer and diffusion tensor imaging (DTI) have provided
important microstructural and macrostructural indices such as areas and anisotropy to assess
the effect of developmental changes, injury, and disease on the CC. The availability of a
single MRI modality to provide both microstructural and macrostructural attributes of the
CC would significantly advance our knowledge about its role in health and disease.

The main goal of this work is to extend the utility of a DTI-based tissue segmentation
methodology described recently (38) to the midsagittal CC. We applied this validated
approach to a cohort of males and females aged 7–59 years to model the age effects of the
CCA and corresponding DTI metrics. We show that the combination of the CCA (a
macrostructural measure) and the corresponding DTI-derived metrics (microstructural
indices) can be used to shed light on the contributors to in vivo MRI signal sources in the
CC.

METHODS
Participants

This study included a total of 77 right-handed healthy children (n = 37; 19 boys/18 girls;
mean ± SD age 11.0 ± 3.1 years) and adults (n = 40; 25 women/15 men; mean ± SD age
36.8 ± 12.2 years). The boys/girls, men/women, and male/female groups were age-matched
(P > 0.2). All participants (age range 7–59 years; Table 1) were primarily English-speaking,
identified as neurologically normal by review of medical history, and were healthy at the
time of the assessments. The MRI scans were read as ‘normal’ by a board-certified
radiologist (L.A.K.). Written informed consent from the adults, guardians, and adolescents,
and assent from the children participating in these studies was obtained in accordance with
our institutional review board regulations for the protection of human subjects.

MRI and DTI data acquisition and processing
These studies used a high signal-to-noise ratio whole-brain DTI protocol at 3.0 T, the
duration of which was kept under 7 min (38,39). The diffusion-weighted data were collected
axially (superior-to-inferior from the foramen magnum to the vertex) using 44 contiguous 3
mm sections that covered the entire brain. The diffusion sensitization or b factor = 1000 s/
mm2, and the encoding scheme used 21 uniformly distributed directions (39). In this work,
the DTI-derived rotationally invariant metrics included the principal eigenvalue (λ|| = λ1),
radial diffusivity [λ⊥ = (λ2 + λ3)/2], fractional anisotropy (FA) and mean diffusivity [Dav =
(λ|| +2 × λ⊥)/3]. Details of the DTI image processing and data quality control measures are
provided elsewhere (40).

DTI-based segmentation of the CC
An experienced neurosurgeon assisted with midsagittal CC identification, which was based
on the appearance of the inter-thalamic mass and the fornix on the isotropically interpolated
DTI maps (33). The CC was then segmented on the midsagittal slice using mean diffusivity
(Dav), FA and the principal eigenvector (38,41). The threshold selection for the CC was
based on a feature space constructed from Dav versus FA of a large population of healthy
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children and adults. The feature space was obtained using region-of-interest measurements
placed on several locations on the midsagittal CC (see Fig. 1 in Ref. (38)).

Validation of the DTI-based midsagittal CCAs using manual delineation
The DTI-based CC segmentation was validated by manually delineating the CC on the
midsagittal section using cMRI data acquired sagittally (Fig. 1a) immediately before the DTI
data acquisition and in the same session. To account for variability in brain size (e.g. males
versus females), we also manually delineated the forebrain cross-sectional area (FBA) on the
midsagittal section to use it for CC normalization purposes as recommended by several
studies (19,22,26,27). The forebrain delineation included the supratentorial–supracallosal
midline area using the same sagittal section that was used to delineate the CC (Fig. 1a; see
also figures in Refs (22) and (26)).

Statistical analysis
A Bland–Altman bias analysis of the difference versus mean was adopted to compare the
manual and DTI-based CCA measurements (42). Analysis of variance was used to compare
CCA mean values between groups (boys/girls, men/women, boys/men, girls/women, and
males/females). All analyses of CCAs and the corresponding DTI metrics variation were
conducted using a generalized linear model with effects of both age and sex. Given previous
reports (16–21,43,44), both linear and quadratic age terms were included. Higher-order
coefficient models (e.g. cubic) were not significantly better, as judged by goodness-of-fit
statistical tests. The CCA, CCA/FBA and corresponding DTI metrics were modeled (fitted)
for both males and females as: yf = β0 + (β1 × age) + (β2 × age2), then least-squares
optimization methods were used to estimate the coefficients, standard deviations and their
statistical significance using analysis of variance. For comparison of two fit parameters
between males (M) and females (F), we used a two-tailed t test of the difference (βiM − βiF)
divided by the root of the pooled variance σ( βiM)2 + σ (βiF)2 at the corresponding degrees of
freedom (42). All statistical analyses were conducted using MATLAB R12.1 Statistical
Toolbox v 3.0 (The Math-works Inc, Natick, MA, USA).

RESULTS
Validation of the semi-automated DTI CCA segmentation

Figure 1a shows a scatter plot and linear regression of the correspondence between the
manual cMRI-based and DTI-based methods for the CCA measurements on the 34 males
(19 boys/15 men) and 43 females (18 girls/25 women). Figure 2b shows the association
between the CCA computed using the cMRI- and DTI-based methods on all children (n =
37) and adults (n = 40). Figure 2c shows the association of the two methods on boys, girls,
men, and women. A strong correlation between the two methods using all possible age or
gender stratifications is noted (Pearson correlation r ~ 0.80; P < 0.00001). A further bias
analysis of the manual cMRI- and DTI-based methods using the Bland–Altman approach
(42), which plots the mean of the two measurements against the difference (Fig. 1d),
indicates that the DTI-based and cMRI measurements on the entire CCA have no significant
bias or trend (P > 0.5).

Group mean comparisons between midsagittal and corresponding DTI metrics
Table 1 summarizes the mean ± SD results of the CCA and FBA and the normalized CCA/
FBA × 100% on all subgroups of the entire sample: boys, girls, men, women, children,
adults, males, females and all 77 participants. Table 2 summarizes the CC corresponding
mean ± SD principal, radial, and mean diffusivities, and fractional anisotropy. The principal

Hasan et al. Page 3

NMR Biomed. Author manuscript; available in PMC 2011 February 28.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



eigenvalues were not significantly different between boys/girls, men/women, children/adults
and males/females (analysis of variance, P > 0.6).

Age dependence of the macrostructure and microstructure attributes of the CC
Significant group differences between normalized callosal areas, Dav, radial diffusivity, and
FA were noted between boys/men, girls/women, and children/adults (Tables 1 and 2). These
exploratory results based on age subgroup mean value differences between boys/men, girls/
women and children/adults underscore the importance of age in our study. The normalized
CCA and its corresponding Dav and FA variation with age and sex are investigated in Fig.
2a, b, and c, respectively. Scatter plots corresponding to λ|| and λ⊥ are not shown. Note that
λ|| of the CCA is age- and gender-independent (Table 2), and, as Dav = (λ|| + 2 × λ⊥)/3, and
FA is a function of (λ||/λ⊥), then (i) Dav (age) ~λ⊥(age), and (ii) FA (age)~ 1/[Dav (age)].
Note that our data as a function of age were best fitted with quadratic curves for both males
and females. Table 3 summarizes the corresponding least-squares fit parameters for males
and females separately, and the entire sample. There were no significant differences between
males and females in the base-line (β0), linear (β1) and (β2) quadratic coefficients of the
best-fit parabolas (P > 0.2; Fig. 2a, b, c and Table 3).

Correlation between the macrostructural and microstructural measures of the CC
Figure 2d reveals a strong linear correlation between the normalized CCA (CCA/FBA) and
the corresponding mean FA in the CC on all boys (r = 0.67; P = 0.002; n = 19), girls (r =
0.51; P = 0.03; n = 18), men (r = 0.75; P = 0.001; n = 15), women (r = 0.50; P = 0.01) and
the entire cohort (r = 0.66; P < 1 × 10−10). The correlation and significance on the entire
cohort between normalized CCA and mean, radial and principal diffusivities were r = −0.58
and P < 2 × 10−8, r = −0.47 and P < 2 × 10−5, and r = −0.2 and P = 0.087, respectively
(scatter data not shown).

DISCUSSION
The CC is an ideal compact structure for studying white matter connectivity in vivo in both
health and disease. The human midsagittal CC has been the focus of several MRI studies
and a few postmortem histological studies on adults (5,31). It is commonly believed that the
area of the CC may be related to the number and microstructure of the axons traversing the
sagittal midline (1–14). To try to avoid controversial issues related to handedness (6,7), we
selected a cohort of only right-handed healthy age-matched boys/girls and men/women. In
this work, we selected the entire midsagittal section to help to standardize (9,19,22,28,30),
validate and relate our work to previous quantitative reports. Future extensions of this work
will examine issues related to callosal regional heterogeneity (26,27,33,37).

We validated the CC areas estimated with a semiautomated DTI-based segmentation method
using manually delineated CCA and FBA on anatomical MRI data acquired in the sagittal
plane. Our results on the gender-independent normalized callosal areas are consistent with
previous MRI (14,18–21,31) and histological reports (5,31). The mean CCA, FBA, and
CCA/FBA values, gender effects and non-linear age trends reported on both males and
females are consistent with previous lifespan studies on the CC midsagittal cross-section
(17–22). The U-shaped or parabolic growth curves of the normalized midsagittal CCA/FBA
and corresponding FA are analogous to lifespan growth curves reported on white matter
volume fraction in the entire brain (43,44). These non-linear brain white matter curves or
‘trajectories’ have been attributed to progressive myelination and axonal microstructural
changes (16–21,38,43,44). Our results on the macrostructural and microstructural parabolic
growth curves consolidate the CC measures in several cMRI and DTI studies on both
healthy children (14–16,26) and adults (16–25,27).
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This work reports in a healthy and right-handed cohort a strong correlation between the
macrostructural (e.g. CCA/FBA) and microstructural (e.g. FA) attributes of the CC. Our
results on both children and adults are consistent with two DTI studies that reported strong
correlations between different CC volume measures and FA in both healthy children (26)
and adults (27).

Contributors to CCA include axons with different myelin, size and shape distributions in
addition to glia support cells. The contributors to DTI anisotropy in living and healthy white
matter have not yet been resolved, even on compact structures such as the CC, internal
capsule, and spinal cord (45,46). Diffusion anisotropy in white matter has been reported in
unmyelinated structures (45,47) and has been attributed to several contributors, including
axonal membranes (48), intravoxel coherence (49), intraxonal microstructure (50),
myelination (51), and other biophysical factors [see Ref. (45) for an extensive review of the
literature].

In this study, the principal eigenvalues were not significantly different between the age and
gender subgroups in the entire cohort. The intravoxel coherence in the CC has been shown
to be spatially uniform and similar between men and women (25), and hence it could not be
the primary contributor to the measured CC anisotropy variation with age. On the basis of
previous postmortem histological studies on adults (5,31), the CCA correlated with the
number of small and lightly myelinated axons (fiber diameter ~0.4–1 μm) that are common
across the CC (5,31). Without additional supporting MRI (10,52) and non-MRI data, we can
only postulate that our results on the correlation between FA and CCA may imply that FA in
the CC is related primarily to the number of these lightly myelinated axons.

The exact interpretation of the strong correspondence between CCA/FBA and DTI metrics
such as FA on the axonal scale may require future CC regional histological studies and
modeling using larger cohorts, which will be the focus of future endeavors. Our study
presents normative baseline curves for the development and aging of both CCA and its
corresponding DTI metrics. The strong relationship between CCA and FA may be useful for
defining additional non-invasive neuroimaging markers for the study of brain white matter
in both health and disease.
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Abbreviations used

CC corpus callosum

CCA corpus callosum midsagittal cross-sectional area

cMRI conventional MRI

Dav mean diffusivity

DTI diffusion tensor imaging

FA fractional anisotropy

FBA midsagittal forebrain supratentorial–supracallosal area
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Figure 1.
Scatter plot of cMRI-measured versus DTI-measured CCA (mm2) of (a) males versus
females, (b) children versus adults and (c) boys/girls, men/women, and (d) a Bland–Altman
analysis of the mean versus the difference of the two methods, indicating strong
correspondence with minimal bias. The inserts in (a) on the horizontal and vertical axes
represent the cMRI and DTI-based callosal delineation (segmentation) methods,
respectively.
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Figure 2.
Representative scatter data and quadratic least-squares fit of the growth curves for males
(boys and men; n = 34), females (girls and women; n = 43) and the entire sample (n = 77)
corresponding to (a) CCA/FBA, (b) Dav and (c) FA as function of age, and (d) a scatter plot
of and linear regression of the correspondence between the CCA/FBA and FA (Tables 1–3).
Scatter plots corresponding to λ|| and λ⊥ are not shown. Note that λ|| of the CCA is age-and
gender-independent (Table 2), and, as Dav = (λ|| + 2 × λ⊥)/3, and FA is a function of (λ||/λ⊥),
then (i) Dav (age) ~λ⊥(age), and (ii) FA(age) ~1/[Dav(age)].
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Table 2

Basic principal, radial and mean diffusivity and fractional anisotropy in the CCA for healthy right-handed
control boys, girls, men, women, children, adults, males, and females in this study (mean ± SD)

Group λ⊥ (×10−6 mm2/s) λ|| (×10−6 mm2/s) Dav (×10−6 mm2/s) FA (×1000)

Boys 728.7 ± 73.2 1675.0 ± 89.4 1044.1 ± 72.5 480.0 ± 35.6

Girls 719.4 ± 37.0 1661.2 ± 79.0 1033.3 ± 44.5 480.6 ± 23.5

Children 724.2 ± 57.9 1668.3 ± 83.7 1038.9 ± 59.9 480.3 ± 29.9

Men 675.8 ± 38.9 1667.1 ± 56.9 1006.3 ± 38.0 513.1 ± 26.1

Women 683.4 ± 47.6 1644.5 ± 77.3 1003.8 ± 54.6 502.4 ± 19.3

Adults 680.6 ± 44.1 1653.0 ± 70.4 1004.7 ± 48.5 506.4 ± 22.4

Males 705.4 ± 65.4 1671.5 ± 75.9 1027.4 ± 62.0 494.6 ± 35.5

Females 698.5 ± 46.6 1651.5 ± 77.5 1016.1 ± 52.2 493.3 ± 23.5

All 701.5 ± 55.4 1660.3 ± 77.0 1021.1 ± 56.6 493.9 ± 29.2
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