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Abstract

Background: Viral RNA translation and replication are regulated by sequence and structural elements in the 59 and 39
untranslated regions (UTR) and by host cell and/or viral proteins that bind them. Dengue virus has a single-stranded RNA
genome with positive polarity, a 59 m7GpppG cap, and a conserved 39-terminal stem loop (SL) that is linked to proposed
functions in viral RNA transcription and translation. Mechanisms explaining the contributions of host proteins to viral RNA
translation and replication are poorly defined, yet understanding host protein-viral RNA interactions may identify new
targets for therapeutic intervention. This study was directed at identifying functionally significant host proteins that bind
the conserved dengue virus RNA 39 terminus.

Methodology/Principal Findings: Proteins eluted from a dengue 39 SL RNA affinity column at increasing ionic strength
included two with double-strand RNA binding motifs (NF90/DRBP76 and DEAH box polypeptide 9/RNA helicase A (RHA)), in
addition to NF45, which forms a heterodimer with NF90. Although detectable NF90 and RHA proteins localized to the
nucleus of uninfected cells, immunofluorescence revealed cytoplasmic NF90 in dengue virus-infected cells, leading us to
hypothesize that NF90 has a functional role(s) in dengue infections. Cells depleted of NF90 were used to quantify viral RNA
transcript levels and production of infectious dengue virus. NF90 depletion was accompanied by a 50%-70% decrease in
dengue RNA levels and in production of infectious viral progeny.

Conclusions/Significance: The results indicate that NF90 interacts with the 39 SL structure of the dengue RNA and is a
positive regulator of dengue virus replication. NF90 depletion diminished the production of infectious dengue virus by
more than 50%, which may have important significance for identifying therapeutic targets to limit a virus that threatens
more than a billion people worldwide.
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Introduction

Dengue virus is a member of the family Flaviviridae, which

comprises single stranded positive sense RNA viruses such as West

Nile Virus (WNV), Japanese encephalitis virus (JEV), yellow fever

(YF) virus, as well as the pestivirus bovine viral diarrhea virus

(BVDV) and the hepacivirus, hepatitis C virus (HCV). Dengue

virus infections are a significant global health concern. Approx-

imately 100 million cases of dengue fever infections (DF) are

reported annually, of which 250,000–500,000 cases comprise the

more severe and life-threatening dengue hemorrhagic fever (DHF)

[1]. It is estimated that 2.5 billion people live in areas that are at

risk for dengue outbreaks [2], mainly tropical and subtropical

areas that are coupled to the distribution of the virus’ biological

vectors: Aedes aegypti and A. albopictus mosquitoes. There are four

dengue serotypes, and DHF is linked to sequential infection by

mosquitoes carrying different serotypes [1]. This effect, termed

antibody dependent enhancement (ADE), is thought to occur by

the presence of non-neutralizing antibodies that facilitate the

infection and increase virus titer [3].

Flavivirus genomic RNAs do not have a 39-terminal poly(A)

tract; rather, the viral RNAs have a 39 UTR (400–700 nucleotides

in length) that is predicted to form significant secondary structure,

with a stable terminal 39 stem loop structure (39 SL). This structure

was first proposed by Grange et al. [4] by analyzing the cDNA

sequence of the YF virus 17D vaccine strain. Brinton et al. [5]

proposed that, although there was primary sequence divergence,

the overall 39SL structure was highly conserved among WNV, St.

Louis encephalitis virus (SLE) and YF viruses. The structural

conservation of this element suggests that it could have a common

function in the life cycle of flaviviruses. Indeed, during replication

of positive strand RNA viruses, sequences and structures within
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the 39UTR serve as the promoter for minus strand synthesis. The

39SL was identified as a key regulatory element for the in vitro

synthesis of minus strand dengue virus RNA [6]. The putative

flavivirus replicase complex (NS3/NS5) was shown to bind the

39UTR only when the 39SL was present [7]. Mutational analysis

conducted by Zeng et al. revealed that the dengue virus 39SL

contains structural and sequence elements that are required for

replication of the virus [8]. Results from an in vitro polymerase

assay by You et al. supported the conclusion that the structure, not

the sequence of the top half of the 39SL, is important for

replication [6]. The authors also found that disrupting the

pseudoknot structure affected the in vitro transcription activity of

the RNA-dependent RNA polymerase (RdRp). Similarly, Bre-

denbeek et al. did not detect viral RNA replication after deleting

the 39SL of a yellow fever construct [9]. Moreover, recent studies

show that nucleotide substitutions [10,11], as well as the location

of bulged nucleotides [12] along the long stem loop structure affect

WNV replication. Together, these data underscore the importance

of the flavivirus 39SL in the life cycle of the flaviviruses.

The conserved flavivirus 39 SL may also regulate viral RNA

translation. Holden and Harris showed that deleting the 39SL

reduced the translation of reporter constructs that included the

dengue virus RNA 59 and 39UTR regions [13]. The positive

effects of the 39SL required the 59 m7GpppG cap structure. In a

separate study, Holden et al. showed that specific targeting of the

top loop in the 39SL structure of dengue virus RNA using peptide-

conjugated phosphorodiamidate morpholino oligomers (P-PMOs)

inhibited translation and replication [14]. However, other studies

suggest that the 39SL is not involved in enhancing translation or

may actually inhibit it. Tilgner et al. reported that deleting the

39SL, and of most of the 39UTR, of a WNV replicon containing a

luciferase reporter, had no effect on reporter activity during the

early time points post electroporation [10], when translation is

being measured. Li and Brinton proposed that the WNV RNA

39SL inhibits reporter construct translation [15], possibly by

sequestering essential host translation factors.

To identify host proteins with potential to regulate viral RNA

replication and translation, we applied a combination of

biochemical methods and functional assays. RNA affinity

chromatography identified several proteins that eluted with

increased ionic strength, including NF90 and RHA, members of

the double stranded RNA binding protein family (dsRBP), along

with NF45, the binding partner of NF90. Although NF90 and

RHA localized to the nucleus in uninfected cells, cytoplasmic

NF90 was also detected by immunofluorescence imaging in the

cytoplasm of dengue virus-infected cells, thereby directing us to

focus on the potential functional significance of NF90 in the

dengue life cycle. Human melanoma cells that were depleted of

NF90 by constitutive expression of an NF90 shRNA were used to

further examine the functional significance of NF90 in dengue

virus-infected cells. NF90 depletion was accompanied by a 30%–

50% decrease in dengue virus RNA accumulation, and up to a

70% decrease in infectious virus production. Coupled with

experimental analyses of related viruses by other investigators

[16,17] these results are evidence that NF90, RHA, and NF45 are

isolated in complex with the dengue virus 39 SL RNA, and that

NF90 is a positive regulator of dengue virus production.

Results

Purification of dengue 39SL RNA binding proteins
We used RNA affinity column chromatography [18,19] to

identify proteins in complex with the dengue 39SL RNA (Figure 1).

After passing pre-cleared cell extracts over the RNA-coupled affinity

column, a stepwise elution was performed using buffers containing

increasing NaCl concentrations to distinguish low affinity from

higher affinity interactors. RNA binding activity in the fractions was

assessed by electrophoretic mobility shift assay (EMSA). For the

control column (matrix only), RNA-protein complexes were detected

only in the flow-through or initial wash fractions (Figure 1A, lanes 2

and 3). The absence of any significant shifted bands in further washes

or NaCl elution fractions (Figure 1A, lanes 3–11) indicates that the

matrix has minimal non-specific binding activity.

The corresponding results with the dengue 39 SL RNA-coupled

affinity column (Figure 1B) showed similar gel shift patterns in the

Figure 1. RNA binding activities eluted from the dengue 39SL
RNA columns. S10 extract from K562 cells was prepared and
chromatographed as described in the Materials and Methods section.
In both panels, lane 1 represents the dengue 39SL RNA only. The second
lane shows the binding properties of proteins that washed through the
column in the flow through (FT) fraction. The five column washes are
analyzed in lanes 3–7. Bound proteins were step-eluted with 250 mM,
500 mM, 1 M and 2 M NaCl (lanes 8–11 respectively). (A) The S10
extract was pre-cleared by passing it over the control (lacking bound
RNA) column. (B) The pre-cleared extract was chromatographed on the
dengue 39SL affinity column. The EMSA using the fractions eluted from
the RNA affinity column shows three binding activities eluted from the
column, RNP1, RNP2, and RNP3 (lanes 9–11).
doi:10.1371/journal.pone.0016687.g001
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column flow-through and initial washes (Figure 1, panels A and B,

lanes 2 and 3). However, in contrast to the matrix only, three

distinct RNA binding activities were eluted under conditions of

increasing ionic strength from the dengue 39SL RNA column. The

500 mM NaCl fraction (Figure 1B, lane 9) contained three

ribonucleoprotein (RNP) bands (RNP1, 2 and 3), wherein the

RNP2 complex was most predominant. The 1 M NaCl fraction

contained mostly RNP1 (Figure 1B, lane 10). The RNP2 band in

the 500 mM NaCl fraction and the RNP1 band in the 1 M NaCl

fraction were highly reproducible.

To extend the analysis, competitive binding assays were

conducted to assess binding specificity. The dengue 39 SL has

significant secondary structure [4,5], therefore the structured

alfalfa mosaic virus (AMV) 39 untranslated region (UTR) RNA

[20] was used for comparative competition experiments.

Radiolabeled dengue 39SL RNA was added to the 500 mM

affinity column eluates along with competitor RNA, represented

by either unlabeled cognate dengue 39SL RNA, or AMV 39UTR

RNA. The RNP2 band was detected in the absence of competitor

RNA (Figure 2A, lanes 1 and 5). In the presence of a thirty-fold

molar excess of dengue 39SL competitor RNA, the amount of

labeled RNA in the RNP2 complex was reduced by more than

80% (Figure 2A, lane 4; Figure 2B, lower trace), demonstrating

effective competition. By comparison, a thirty-fold molar excess

of the AMV 39UTR was much less effective, reducing the

amount of shifted RNP2 by only about 30% (Figure 2A, lane 8;

Figure 2B, upper trace). The four-fold binding differential is

evidence that proteins in the 500 mM eluate form specific

complexes with the dengue 39 SL RNA. Taken together, the data

presented in Figures 1 and 2 demonstrate that dengue 39 SL

RNA interacting proteins were enriched by RNA affinity

chromatography.

Characterization of dengue 39SL binding activities
SDS-PAGE and silver staining, coupled with northwestern

blotting, were used to characterize proteins eluted in the 500 mM

RNA affinity chromatography eluate. By comparing the stain

patterns from the control (no RNA) and dengue 39 SL RNA

columns, we observed that two distinct protein bands with

approximate molecular weights of 140 kDa and 90 kDa were

enriched in the dengue 39SL RNA affinity column eluate

(Figure 3A, compare lanes 3 and 4; asterisks). To determine if

the stained 140 kDa and 90 kDa bands correlated with direct

dengue 39 SL RNA binding potential, a northwestern blot assay,

using a radiolabeled dengue 39 SL RNA probe, was performed.

The data (Figure 3B) demonstrate a prominent signal in the

90 kDa region of the gel, along with lower intensity signals at

140 kDa and 50 kDa. Relatively weak signal was observed in the

50 KDa region of the 1M eluate separation (Figure 3B, right lane).

As a specificity control, we compared 500 mM NaCl eluates from

the control column (lacking bound RNA) and the dengue 39 SL

affinity column in the northwestern blot assay. The results

demonstrate that the probe bound to the 140 kDa and 90 kDa

bands in the RNA affinity column eluate (Figure 3C, right lane 2);

however, no signal was present in the control column eluate

(Figure 3C, left lane). The 140 kDa and 90 kDa bands seen in lane

1 of the northwestern analysis (Figure 3B) correlate with two bands

of similar molecular weight observed in the silver stained gel

(Figure 3A, lane 4), suggesting that proteins of these molecular

weights bind the dengue 39 SL RNA directly. These data are

evidence that the 140 kDa and 90 kDa proteins bind directly to

the dengue virus 39 SL RNA.

Identification of the dengue 39 SL RNA binding proteins
The 140 kDa and 90 kDa protein bands were reproducibly

enriched in the 500 mM fractions from RNA affinity column

analyses (Figure 3A, compare lanes 3 and 4). In other

experiments, SDS-PAGE electrophoretic resolution was im-

proved by running a longer gel, revealing an additional 42 kDa

band (data not shown). We analyzed the 140 kDa, 90 kDA and

42 kDa bands from two independent purifications by matrix-

assisted laser desorption instrument time of flight (MALDI-TOF).

The data are summarized in Table 1. MS-Fit [21] and Mascot

software [22] identified the predicted peptides for the 90 kDa

protein from Figure 3A as the interleukin enhancer binding factor

3 (ILF3), also known as nuclear factor 90 (NF90), DSRBP76, and

nuclear factor associated with double stranded RNA (NFAR-1),

among other names. The 140 kDa band was identified as the

DEAH box polypeptide 9 (DHX9), more commonly known as

RNA helicase A (RHA). MALDI-TOF MS analysis of the

42 kDa protein identified it as the interleukin enhancer binding

factor 2 (ILF2), also known as nuclear factor 45 (NF45). Taken

together, the results presented here demonstrate that NF90,

NF45, and RHA were captured by the dengue 39 SL RNA

affinity column; moreover, the northwestern blot data are

consistent with the hypothesis that NF90 and RHA bind directly

to the dengue 39SL RNA.

Figure 2. Binding specificity assessed by competition. (A)
Electrophoretic mobility shift assay of a competitive RNA binding
analysis. All reactions contained the same amount of radiolabeled
dengue 39 SL RNA and included the same volume of 500 mM affinity
column chromatography eluate. Lanes 1 and 5 represent dengue 39SL
RNA plus protein extract, showing RNP2 without added competitor
RNA. Lanes 2–4 represent competitor dengue 39SL RNA added at 5, 15,
and 30-fold molar excesses. Lanes 6–8 represent addition of competitor
AMV 39UTR RNA at a molar excesses of 5, 15 and 30 fold. (B)
Quantification of labeled RNA in the bound fraction (RNP 2) from panel
A normalized relative to the total amount of RNP2 in the absence of
competitor (lanes 1 and 5, respectively). Upper trace: AMV 39UTR RNA
competitor; lower trace: dengue 39 SL RNA competitor.
doi:10.1371/journal.pone.0016687.g002
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Cytoplasmic NF90 localization in the cytoplasm of
dengue infected cells

To begin to assess the potential functional significance of the

identified proteins in the dengue virus life cycle, we examined

NF90 and RHA cellular distribution in uninfected and dengue

virus-infected HeLa cells using immunofluorescence imaging

(Figure 4). DAPI nuclear staining identified all cells in the images

(Figure 4, top panels) wherein the filled white arrows mark

representative dengue-infected cells, and the open white arrows

mark representative uninfected cells in all panels. The NF90 panel

of Figure 4A depicts cells stained for NF90 (green color), and the

dengue panel shows dengue NS3 protein (red color). We observed

that detectable NF90 was exclusively nuclear in uninfected cells

(open arrows), but both nuclear and punctate cytoplasmic staining

was observed in dengue-infected cells (Figure 4A, NF90 panel,

filled arrow). The merge panel suggests that in dengue infected

cells, NF90 may colocalize to replication centers where NS3 is

present. In the RHA panel of Figure 4B, we stained cells for RHA

(green), and in the dengue panel for viral prM protein (red). In

contrast to NF90, RHA staining was exclusively nuclear; with no

differences observed when comparing infected (closed arrows) and

uninfected (open arrows) cells (Figure 4B, RHA panel and prM

panel). The merge panel confirmed the lack of detectable RHA

relocalization of RHA to the cytoplasm of dengue-infected cells.

These data strongly indicate that accumulation and/or relocaliza-

tion of NF90 from the nucleus to the cytoplasm correlates with

dengue virus replication. NF90’s cytoplasmic localization in

dengue virus-infected cells suggested a possible functional

correlation with the viral life cycle; therefore, we focused further

experiments on NF90.

Supershift assays confirm the presence of NF90 in RNP2
A supershift EMSA identifies a protein in an RNP complex by

specific antibody binding, decreasing the electrophoretic mobility

of the resulting antibody-RNP complex as compared to the

identical RNP complex lacking bound antibody. We performed

supershift experiments to assess the presence of NF90 and eEF1A

proteins in the RNP complexes. eEF1A was analyzed because of a

previous report that it binds the West Nile virus and dengue virus

39 SL RNAs, with possible roles in West Nile virus negative strand

RNA synthesis [23,24]. Control immunoblot experiments con-

firmed that anti-NF90 and anti-eEF1A antibodies recognized their

target proteins (data not shown); moreover, neither of the

antibodies affected the migration of the dengue 39 SL RNA alone

Figure 3. Protein composition and RNA binding activity of eluted fractions. Proteins in the column fractions were analyzed by SDS-PAGE
followed by silver stain. (A) Lanes 1, 3 and 5 represent eluted fractions from the matrix-only column (-), while lanes 2, 4 and 6 represent fractions
eluted from the RNA affinity column (+). Two stained bands were differentially present in the 500 mM sample eluted from the RNA column (lane 4,
asterisks), and excised for MALDI-TOF MS analysis. (B) The 500 mM and 1 M column eluates were analyzed by northwestern blotting, using the
dengue 39 SL RNA as a probe. Left lane: 500 mM eluate; right lane: 1 M eluate. (C) Northwestern blot comparison of the 500 mM eluates from the
control (-) and RNA-coupled (+) affinity columns. Left lane: 500 mM fraction from the control Sepharose column. Right lane: 500 mM fraction from the
dengue 39SL RNA column.
doi:10.1371/journal.pone.0016687.g003

Table 1. Summary of MALDI-TOF MS results from the excised
protein bands.

Band
MOWSE
Scorea

Masses
Matchedb Coveragec MW (Da) Protein

90 kDa 115 100% 22% 74560 NF90

140 kDa 84 84% 13% 140869 RHA

42 kDa 182 89% 38% 44669 NF45

aThe MOWSE score reflects the probability that the submitted masses are not a
random match; scores greater than 76 (P,0.05) are considered significant.

bNumber of masses that were matched with predicted peptides with high
probability.

cCoverage refers to the percentage of the protein that was spanned by the
predicted peptides.

doi:10.1371/journal.pone.0016687.t001
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(Figure 5, lanes 2 and 3). The data shown in Figure 5, lanes 7 and

10, reproduce the shift pattern observed in Figure 1B, lanes 9 and

10. The asterisk in Figure 5, lane 7 is placed above RNP2. When

the NF90 polyclonal antibody was added, we observed an RNP2

supershift in the 500 mM fraction sample (Figure 5, lane 8), but

not in the more rapidly migrating RNP1 band (Figure 5, compare

lanes 10 and 11). Supershifts were not observed when the eEF1A

polyclonal antibody was used with either the 500 mM fraction

(Figure 5, lane 9) or the 1 M fraction (Figure 5, lane 12). eEF1A

protein was readily detected by western blotting using unfraction-

ated cell extracts; however, it was not detected in the 1 M eluted

proteins (data not shown) or by supershift (Figure 5, lanes 9 and

12), suggesting that the 50 kDa band observed in Figure 3A does

not include detectable eEF1A. The shift patterns observed using

unfractionated K562 cell S10 extracts were not altered by the

addition of either antibody (Figure 3; compare lane 4 with lanes 5

and 6), suggesting that the shifted bands (lanes 4–6) represent non-

specific RNA-protein complexes that obscured specific supershifts

(lane 8), or that specific shifts/supershifts could not be detected

without the concentration effect provided by affinity chromatog-

raphy. Together, the data presented in Figures 1, 2, 3, 5 and

Table 1 suggest that NF90 is a dengue RNA binding protein found

in the EMSA RNP2 complex (Figure 1B). The accompanying

NF90 relocalization observed in dengue virus-infected cells

(Figure 4) further led us to hypothesize that NF90 may have a

functional role(s) in the dengue life cycle.

NF90 depletion decreases intracellular dengue virus RNA
and protein levels

Vumbaca et al. (2008) described the preparation of NF90-

depleted cells by stable shRNA expression to generate knockdown

cells (shDRBP76-GFP) from the parent MDA-MB-435-GFP cells

(48). Western blot analysis showed that NF90 levels in the

knockdown cells were reduced to approximately 10% of those

observed in control cells (Figure 6A, compare NF90 bands in lanes

1 and 2, relative to the actin protein loading controls). We

Figure 4. RHA and NF90 intracellular localization in uninfected and dengue virus-infected cells. Open arrows point to representative
uninfected cells; filled arrows point to representative cells infected by dengue virus. (A) Cells were stained with the nuclear stain DAPI, with anti-NF90
mouse monoclonal antibody, and anti-dengue virus NS3 rabbit polyclonal antibodies. The merge panel shows an overlay of the DAPI, NF90 and NS3
signals. (B) Cells were stained with the nuclear stain DAPI, with anti-RHA rabbit polyclonal antibodies, and anti-dengue prM mouse monoclonal
antibody. The merge panel shows an overlay of the DAPI, RHA and prM signals. Different dengue antibodies were used in panels A and B because of
the requirement for secondary antibody specificities.
doi:10.1371/journal.pone.0016687.g004
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performed luciferase reporter translation assays to confirm that the

translational capacity of the NF90 knockdown cells was not

diminished. Messenger RNAs containing the luciferase coding

region flanked by the cognate UTRs or the dengue UTRs were

transcribed in vitro and transfected into the wild type and NF90

knockdown cells, followed by assay for luciferase activity. The

results suggest that accumulation of reporter luciferase proteins

was statistically indistinguishable when comparing the wild type

and NF90 knockdown cells (Figure 6B). These results confirm the

observation by Vumbaca et al. that NF90 depletion does not affect

overall translational capacity in these cells as revealed by polysome

analysis [25]. The data (Figure 6A and 6B) justify the use of the

NF90-depleted cells to evaluate NF90’s role in regulating dengue

RNA accumulation and production of infectious virus.

MDA-MB-435-GFP and shDRBP76-GFP NF90 knockdown

cells were infected with type 2 dengue virus at a multiplicity of

infection (MOI) of 0.5. Total protein isolated at 48 hours post-

infection was analyzed by Western blot to examine the presence of

dengue virus NS3 protein (Figure 6C). Visual inspection of the

data suggested that viral NS3 levels were diminished in the NF90-

depleted cells; however, accurate quantification was hindered by

the small amounts of NF90 protein detected in the extracts from

shRNA knockdown cells (Figure 6C, right panel). To generate

quantitative data, we used real-time RT-PCR to assess the

accumulation of dengue virus RNA in dengue virus-infected wild

type MDA-MB-435-GFP and shDRBP76-GFP NF90 knockdown

cells. Table 2 shows the raw average and standard deviation of CT

values of triplicate wells from three independent experiments,

assayed in triplicate. Processing these data using the DDCT method

yields the normalized dengue expression ratios presented in

Table 2. At each successive 12 hour time point post-infection, the

relative dengue RNA levels in the shDRBP76-GFP NF90

knockdown cells were 0.42, 0.52, 0.28 and 0.40 as compared to

those in the MDA-MB-435-GFP cells. Statistical significance was

determined using the randomization method described by Pfaffl

et al. [26], and the resulting P-values are shown in Table 2. These

data are consistent with the visual inspection of the NS3 protein

accumulation results (Figure 6) and suggest that virus replication

and/or viral RNA translation are reduced by 50–70% when NF90

protein is depleted.

NF90 depletion decreases production of functional
dengue virus

To extend the analysis, we used a flow cytometry-based assay to

quantify infectious dengue particles released by MDA-MB-435-

GFP and shDRBP76-GFP cells at 24, 36, and 48 hours after

infection with dengue virus. Supernatants from infected cells were

used to infect K562 cells that express the lectin DC-SIGN, which

is important for dengue virus adherence and entry [27]. After a 14-

hour incubation period, flow cytometry was used to score the

number of infected K562 cells, identified by positive staining for

dengue prM protein [28] (Figure 7). Figure 7A serves as a

representative negative control and demonstrates the sensitivity

limit. The amounts of virus in the supernatants were not

significantly different in MDA-MB-435-GFP vs. shDRBP76-GFP

cells at 24 hours post infection in three independent experiments,

when only about 5–7% of cells were infected (Figures 7B and 7E).

The quantified differences between infectious particles produced

by dengue-infected control and NF90 knockdown cells was

statistically significant at the 36 and 48-hour time points post-

infection, with the NF90-depleted cells lagging the control cells by

approximately 39% and 70%, respectively. Taken together, the

data presented in Figures 6 and 7 suggest that NF90 has a positive

functional role in the life cycle of dengue virus.

Discussion

Flavivirus 39 untranslated RNA regions are known to have

important regulatory significance for viral RNA replication and

translation [29]; moreover, the predicted secondary structures of

their 39 terminal stem loops (39 SL) are conserved [5]. We

hypothesized that these conserved regions may interact with host

proteins that regulate viral RNA translation and/or replication,

and here we describe the biochemical identification of several host

proteins that co-isolate with the dengue virus 39 SL RNA: RHA

(DHX9, NF90 (NFAR-1/DRBP76), and NF45 (ILF2). The RNA

column fractions containing NF90 and RHA yielded positive RNA

binding signals by northwestern blot with the dengue 39SL RNA

probe (Figure 3B), consistent with their identification as RNA

binding proteins containing double strand RNA binding motifs

[30]. NF90 also has an RGG single strand RNA binding domain;

however, its functional significance has not been demonstrated

[30]. NF45 does not have an RNA binding domain; rather, it

forms a heterodimer with NF90 [31].

In related work, NF90 and RHA have been found in complex

with the adenovirus associated RNA II (VA II) [32] and with the 59

and 39UTR regions of both the pestivirus BVDV RNA [16] and

Figure 5. Supershift assay confirms the presence of NF90
bound to dengue 39 SL RNA. A bandshift assay, as described for
Figure 1, was performed after incubating radiolabeled RNA and proteins
extracts in the absence of added antibody (lanes 1, 4, 7, 10), in the
presence of anti-NF90 antibody (lanes 2, 5, 8, 11), or in the presence of
anti-eEF1A antibody (lanes 3, 6, 9, 12). All reactions included the same
amount of radiolabeled dengue 39 SL RNA. Lanes 1–3: RNA only
incubated in the absence (lane 1) or presence (lanes 2, 3) of indicated
antibody. Lanes 4–6 represent bandshift assays using S10 extract from
K562 cells in the absence/presence of the indicated antibody. Lanes 7–9
represent bandshift assays using the 500 mM fraction as protein source,
in the absence/presence of the indicated antibody. An asterisk (lane 7)
has been placed immediately above the RNP2 band previously
identified in Figure 1B. Lanes 10–12 represent bandshifts assay using
the 1 M fraction as a protein source, in the absence/presence of the
indicated antibody.
doi:10.1371/journal.pone.0016687.g005
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the hepacivirus HCV [17] RNAs, suggesting that these proteins

could have conserved functions for the Flaviviridae. A novel feature

of our work is that NF90, RHA and NF45 proteins are shown to

be highly enriched by affinity chromatography using a flavivirus 39

stem-loop RNA. Although dengue, BVDV, and HCV are all

members of the viral family Flaviviridae, viral RNAs from the

Figure 6. NF90 depletion decreases intracellular levels of dengue virus proteins. (A) Representative western blot showing NF90 levels in
control MDA-MB-435 cells and in NF90-depleted shDRBP76-GFP cells. Extracts were prepared from the cells, analyzed by SDS-PAGE, transferred to
nitrocellulose membranes, and then probed concurrently with anti-NF90, and anti-b-actin antibodies. (B) Translational capacity of NF90 depleted
cells. Wild type (MDA-MB-435-GFP) and NF90 shRNA knockdown cells (shDRBP76-GFP) cells were transfected with reporter mRNAs. The figure shows
reporter luciferase units (LU) expressed from the reporter mRNAs in the two cell types. Fluc + pA: firefly luciferase reporter mRNA with cognate 59 and
39 UTR sequences and a 39 polyA tail; D2-fluc-D2: firefly luciferase coding region flanked by dengue virus serotype 2 59 and 39 UTR sequences (C) Viral
NS3 protein levels detected by western blotting 48 hrs after dengue virus infection of wild type and NF90 knockdown cells. NS3 and actin proteins
were detected by western blotting using 10 mg and 5 mg loading amounts of total cell lysate.
doi:10.1371/journal.pone.0016687.g006

Table 2. Quantification of dengue virus RNA levels and normalized RNA expression ratios in dengue virus-infected cells.

MDA-MB-435-GFP control shDRBP76-GFP knockdown Normalized dengue

h.p.i. Dengue CT b-actin CT Dengue CT b-actin CT RNA expression ratioa P-value

12 29.961.0 21.760.5 30.360.8 20.960.7 0.42 ,0.001

24 26.561.2 21.360.8 28.461.0 22.160.6 0.52 ,0.02

36 25.060.6 22.460.6 26.760.9 22.260.6 0.28 ,0.001

48 26.460.3 22.861.0 27.260.6 22.360.8 0.40 ,0.001

CT values represent the mean 6 standard deviation (SD) of three independent experiments, performed in triplicate. CT values were analyzed using the Relative
Expression Software Tool (REST), wherein expression ratios are generated and tested for significance by a randomization test [26].
aNormalized dengue RNA expression represents the ratio of dengue RNA levels in NF90 knockdown cells relative to dengue RNA levels in control cells, each normalized
to actin RNA levels.

doi:10.1371/journal.pone.0016687.t002
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flavivirus genus (dengue, West Nile) are distinct from BVDV and

HCV because they have a 59 m7GpppG cap, and also require

complementary 59 and 39 nucleotides sequences (cyclization

sequences) for their replication [6,33,34]. While all members of

the Flaviviridae have highly structured RNAs, the predicted

secondary structures of their 39 terminal regions are distinct

[5,35,36]. Published data describe other proteins found to bind the

dengue virus 39 SL region. Paranjape and Harris reported that Y

box-binding protein 1 binds the dengue virus 39SL and mediates

antiviral effects [37]. In addition, UV-crosslinking experiments

suggested that purified La protein and polypyrimidine tract

binding protein (PTB) interact with the dengue virus 39SL [38].

Our analysis focused on highly represented proteins that eluted

from the dengue 39 SL affinity column and were identified by

SDS-PAGE staining (Figure 3A, lane 4), followed by northwestern

blot experiments (Figures 3B and 3C). Additional dengue 39 SL

binding proteins may have been present in the affinity column

eluates that were not readily distinguishable in the stain patterns or

northwestern blots. The RNA affinity column and EMSA data

revealed the RNP2 complex observed in Figure 1B. Competitive

binding experiments (Figure 2) demonstrated four-fold differential

relative binding specificity for dengue 39-SL binding proteins in

the RNP2 complex, and 90 kDa/140 kDa proteins were apparent

as RNA binding proteins in the northwestern analysis (Figure 3B

and 3C), correlating with the highly represented NF90 and RHA

peptides identified by mass spectrometry (Table 1). We confirmed

the presence of NF90 in the RNP2 complex by supershift analysis

(Figure 5); however, we did not observe comparable supershifts

with the anti-RHA antibody, providing the initial justification for

focusing functional analyses on NF90. A further justification for

narrowing our functional analyses to NF90 is that NF90 alone

showed a partial relocalization to the cytoplasm of dengue virus-

infected cells (Figure 4), and we hypothesized that the relocaliza-

tion may have regulatory significance for dengue virus RNA

translation or replication.

NF90 relocalization has also been observed in BVDV-infected

cells, in HCV replicon-transfected cells (24), and in cells

undergoing a stress response [25]. NF90 shuttles between the

cytoplasm and nucleus of activated T-cells [39]. As insight into the

localization mechanism, Parrott and Mathews reported that

Figure 7. NF90 depletion reduces production of infectious dengue virus. Supernatants from WT and NF90-depleted cells infected with
dengue virus (multiplicity of infection: 0.5) were used to infect DC-SIGN-expressing K562 cells (12, 46). At 14 hours post-infection, cells were harvested
and analyzed for viral infection by flow cytometry using antibodies against dengue virus prM. Panels A-D are representative dot plots from the assay
of a single set of supernatants from WT (MDA-MB-435-GFP) and KD (shDRBP76-GFP cells), FSC: forward scattering. (E) Bar graph summarizing the
results of three independent experiments. Asterisks represent statistical significance at P,0.02.
doi:10.1371/journal.pone.0016687.g007
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cytoplasmic NF90 is phosphorylated, and that the phosphorylation

disrupts NF90’s interactions with nuclear proteins, thereby

releasing it into the cytoplasm [40]. Although we did not observe

cytoplasmic RHA by immunofluorescence (Figure 4), RHA has

been shown to shuttle between the nucleus and the cytoplasm in

HIV infections [41] and in foot and mouth disease virus infections

[42]. In addition, Isken et al. reported that cytoplasmic RHA was

detected after HCV replicon transfection [17]. Although not

detected by immunofluorescence, cytoplasmic RHA was detected

by mass spectrometry after enrichment by affinity chromatogra-

phy methods that concentrate bound ligands. The cytoplasmic

localization of NF90 in dengue-infected cells was clear by

immunofluorescence, while undetectable for RHA (Figure 4).

However, we cannot completely rule out the possibility that low

levels of relocalized cytoplasmic RHA, below detection levels by

immunofluorescence, may have affected the dengue life cycle.

Alternatively, the differential localization of RHA in dengue and

HCV infections might suggest distinctive roles for RHA in the

respective viral life cycles.

To test the hypothesis that NF90 has regulatory roles in dengue

virus RNA translation and/or replication, we used shRNA-

mediated protein depletion to examine viral RNA and protein

(NS3) expression, as well as release of infectious dengue virus

particles. Planning for the NF90 knockdown experiments was

tempered by prior reports of technical challenges, including cell

death caused by NF90 RNA interference [17], and embryonic

lethal [43] or perinatal lethal [44] mice from NF90 gene

disruption experiments. Alternatively, other laboratories reported

success in siRNA depletion of 50%–95% of detectable NF90

without significant cell death [43]. The range of responses to NF90

depletion may, therefore, reflect the behaviors of different cell

types.

Here, we have successfully used human melanoma cells (MDA-

MB-435) that express NF90 shRNA constitutively to significantly

reduce NF90 levels [25]. Under these conditions, viral RNA, viral

NS3 protein, and released infectious virus, were correspondingly

diminished in the dengue-infected and NF90-depleted cells, as

compared to melanoma cells lacking the shRNA. Taken together,

the biochemical binding data and the functional data strongly

suggest that NF90 is a specific dengue 39 SL binding protein that is

a positive regulator of the dengue virus life cycle. Isken et al.

concluded similarly that NF90 is a positive regulator of BVDV and

HCV replication [16,17]. Conversely, Barber et al. reported that

cells depleted of NF90 show enhanced susceptibility to vesicular

stomatitis virus (VSV) and influenza virus infection [43],

suggesting that NF90 negatively regulates VSV and influenza

infections. The mechanisms underlying these seemingly opposite

roles for NF90 have not been defined; however, VSV and

influenza viruses are negative strand polarity viruses and replicate

in the cell nucleus, while viruses in the Flaviviridae are positive-

stranded and replicate in the cytoplasm. NF90 could have distinct

functions in individual cellular compartments, leading to differen-

tial effects on virus replication.

Accumulated evidence from the literature provides guidance for

future work to define the mechanism of NF909s positive regulatory

role in dengue virus replication. NF909s functions have been

coupled to those of NF45, suggested by experiments demonstrat-

ing that their expression is regulated coordinately [31]. NF90 has

been linked to nucleo-cytoplasmic RNA export [43] and also to

selective RNA localization, as reported for Tau mRNA localiza-

tion in neurons [45]. By analogy, NF90 might have a role in

localizing dengue virus RNA to replication centers. The NF90/

NF45 complex has been linked to negative regulation of micro

RNA (miRNA) processing [46]. The corollary with our data would

predict the identification of a miRNA that is itself a negative

regulator of dengue RNA translation or replication. In the absence

of knockdown, NF90/NF45 would repress the expression of this

negative regulator, permitting virus production. However, when

NF90/NF45 is coordinately depleted, then the negative regulator

miRNA would be processed and available to down-regulate

dengue RNA translation. The NF90/45 complex has also been

reported to inhibit translation initiation at the internal ribosome

entry site (IRES) of rhinovirus [47].

NF90’s role in RNA stabilization has been described in several

recent publications, suggesting that NF90 could have a role in

increasing the dengue RNA half-life. NF90 binding has been

reported to enhance the stability of IL-2 mRNA [46], p21WAF1/

CIP1, MyoD mRNAs [44], and VEGF mRNA [25]. Although our

data demonstrate that NF90 binds the dengue 39 SL RNA, dengue

RNAs do not have obvious AU-rich instability elements (AREs)

that have been described for the IL-2 mRNA [46], and the VEGF

mRNA [48]. The absence of available NF90 to bind the dengue

39SL during an shRNA-mediated NF90 depletion experiment

could correlate with a faster turnover of the dengue mRNA and

account for decreased viral RNA and NS3 levels observed in the

infected shDRBP76-GFP NF90 knockdown cells. The potential

role of NF90 as a dengue RNA stabilizer remains to be explored.

An alternate or perhaps complementary NF90 function would be

to recruit dengue mRNA into polysomes for efficient translation,

as reported for VEGF [25], or to coordinate viral RNA translation

and replication [16]. Our reporter assay results, however, suggest

that NF90 depletion does not affect the translation of a reporter

containing the dengue UTRs. It is possible that additional motifs

in the genomic viral RNA (not present in the reporter construct)

are involved in NF90’s potential function in translation.

A limitation of RNA interference approaches for studying

proteins with multiple functions, such as NF90, is that conclusions

about specific regulatory mechanism(s) controlling virus replica-

tion can only be inferred. Ablating the NF90 protein binding site

by mutating the dengue 39 SL RNA could yield greater precision

in linking replication with formation of a viral RNA-protein

complex [16]; however, 59 and 39 viral RNA domains have roles in

both replication and translation [13,49], and mutagenesis in these

regions requires a very cautious approach to avoid introducing

artifacts. The data reported here strongly suggest that NF90

depletion diminishes the production of infectious dengue virus by

more than half, which is significant for a pathogen that places

more than a billion people at risk worldwide. Direct NF90

depletion is likely not a viable therapeutic approach because of its

multifunctional properties; however, further analysis may identify

a specific site(s) in NF90-mediated regulatory pathways that show

greater specificity for interrupting the dengue virus life cycle.

Materials and Methods

Template cloning and plasmid descriptions
The terminal 39 end stem loop (39SL) of dengue virus was

amplified by DNA thermal cycling from the clone 2A, which

contains the 59 and 39 untranslated regions (UTRs) from dengue

virus type 4 strain 814669 (gift from Dr. C. J. Lai, NIH) [50]. The

in vitro transcription vector used was pHST70, which is similar to

the pHST0 vector described previously [51], except that the

bacteriophage SP6 promoter was replaced by the bacteriophage

T7 promoter sequence. The PCR fragment was ligated into

plasmid pHST70, previously digested with HindIII and XmaI,

creating plasmid pDen39SL. Plasmid pHST442, encoding the full

length alfalfa mosaic virus (AMV) 39UTR, has been described

previously [20].
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RNA transcriptions
For RNA transcriptions, plasmids pDen39SL and pHST442

were linearized with SmaI. The T7 Megashortscript kit (Ambion)

was used to transcribe the RNAs. For transcription of radiolabeled

RNA, reactions were supplemented with 20 mCi [a-32P]-UTP

(Perkin-Elmer). Dengue 39SL RNA was purified by denaturing gel

electrophoresis. The RNA was visualized by ultraviolet light

shadowing, followed by excision of the gel slice and RNA elution

overnight at 4uC in crush and soak buffer (500 mM NH4OAc,

10 mM MgOAc2, 1 mM EDTA, 0.1% SDS) [52]. The superna-

tant was extracted once with phenol:chloroform (1:1), followed by

precipitation of the nucleic acids with ethanol. The concentration

and specific activity of radiolabeled RNAs were determined

by absorbance spectrometry and liquid scintillation counting,

respectively.

Cells and viruses
K562 cells and HeLa cells were purchased from the American

Type Culture Collection (ATCC) (Manassas, VA) and maintained

in culture media (DMEM, 10% FCS and antibiotic/antimycotic

(Invitrogen) at 37uC in 5% CO2. C6/36 (from ATCC) were

maintained in RPMI 1640, 10% FCS and antibiotic/antimycotic

(Invitrogen) at 28uC in 5% CO2. MDA-MB-435-GFP cells,

generated by transfecting parental cells with pcDNA3.1/Neo

(Invitrogen) vector [53], and cells expressing NF90-specific shRNA

(shDRBP76-GFP) [25] were a gift from Dr. Kevin P. Claffey

(University of Connecticut Health Center). The cells were kept in

DMEM, 10% FCS and antibiotic/antimycotic (Invitrogen) at

37uC in 5% CO2. Stable transfectants were selected through

growth in culture medium containing 1 mg/mL Geneticin

(Invitrogen) and confirmed by GFP fluorescence.

Dengue virus type 2, strain New Guinea C, (gift from Dr. Irene

Bosch) was amplified by infecting C6/36 mosquito cells in RPMI

infection media (RPMI 1640, 2% FCS and antibiotic/antimycot-

ic), followed by incubation at 28uC for 4 days or until cellular

cytopathic effects became apparent. The virus-containing super-

natant was harvested, followed by removal of cellular debris by

brief centrifugation, and stored as aliquots at -80uC.

RNA affinity chromatography
To purify dengue 39SL binding proteins from the K562 cell S10

extracts, affinity chromatography using coupled dengue 39SL

RNA was performed. To prepare S10 lysates, K562 cells were

harvested from confluent cultures grown in T150 flasks after gentle

pipetting to resuspend the cells evenly. Cells were washed once in

PBS and resuspended in 1X packed cell volume of hypotonic lysis

buffer (20 mM Tris pH 7.5, 10 mM KCl, 1.5 mM MgOAc2,

7 mM b-mercaptoethanol, and a cocktail of protease inhibitors

(Invitrogen)). After incubation on ice for 10 min, cells were

homogenized using a Dounce homogenizer. The lysate was

cleared by centrifugation at 10,0006g for 10 min at 4uC. The KCl

concentration in the supernatant was adjusted to 100 mM. The

S10 extract was then complemented with 200 mg/mL of an RNA

poly-C homopolymer (GE Lifesciences) to adsorb nonspecific

binding proteins and reduce background binding to the RNA

affinity column.

Approximately 300 mg (,1 mL column volume) of CNBr

activated Sepharose 4B (GE Lifesciences) was swelled in 10 mL

of 1 mM HCl for 1 hr at room temperature. The swelled matrix

was then washed with 100 mL of ice-cold 1 mM HCl using a

Buchner filter with a fritted disc. The matrix was resuspended

from the Buchner filter using 10 mL of 10 mM Tris pH 6.8. One

hundred micrograms of in vitro-transcribed dengue 39SL RNA was

immediately added to the slurry and covalently coupled by rocking

at 4uC overnight. As a control for the specificity of the purification,

an equal amount of Sepharose 4B without RNA was prepared

similarly to the Sepharose-RNA matrix. The Sepharose-RNA and

Sepharose-only beads were then equilibrated in buffer A (10 mM

Na2HPO4 pH 7.2, 100 mM NaCl, 0.1 mM EDTA, 5% glycerol

and 7 mM b-ME) by rocking at 4uC overnight. After equilibra-

tion, beads were packed into a Bio-Rad Poly-Prep column

(0.8 cm64 cm, 2 mL bed volume).

Approximately 8 mL of K562 S10 cell extract (prepared as

described above) was passed through the Sepharose-only column

four times, sequentially, to pre-clear the extract. The pre-cleared

extract was then applied to the Sepharose-RNA column four

times. The column was then washed with 10 column volumes of

buffer A to remove weakly bound proteins and proteins retained in

the matrix. Proteins were step-eluted using 250 mM, 500 mM,

1M and 2M NaCl in 15 mM Tris pH 7.5. Fractions were desalted

and concentrated using Nanosep 3K filters (Pall), and the proteins

were diluted in buffer A to 100 mL. Fractions were tested for

dengue 39SL RNA binding in an EMSA assay as described above.

To analyze the composition of the purified fractions, proteins were

separated by SDS-PAGE in 10% pre-cast BioRad gels. Silver

staining was done using the BioRad Silver Stain kit, according to

the manufacturer’s recommendations.

Electrophoretic mobility shift assay (EMSA)
EMSA was performed as previously described [20]. Dengue

39SL RNA, radiolabeled with [a-32P]-UTP, was diluted in

renaturation buffer (10 mM Tris pH 7.5, 50 mM NaCl, 3 mM

MgCl2 and 0.1 mM EDTA) followed by heating at 90uC for

2 min and then quick cooling on ice to disrupt aggregates. Binding

reactions were set at room temperature in binding buffer (10 mM

Na2HPO4 pH 7.2, 60 mM KCL, 1 mM EDTA, 7 mM b-

mercaptoethanol, 5% glycerol, and 50 ng/mL of poly-C) in a

volume of 10 mL for 20 min. Reactions were analyzed by

electrophoresis into a non-denaturing 10% polyacrylamide gel,

which was dried and exposed to film overnight. For supershift

assays, binding reactions were set as described above. After 15 min

of incubation, antibodies to NF90 (gift from Dr. Michael Mathews,

Univ. Med. Dent. New Jersey) or eEF-1A (gift from Dr. William

Merrick, Case Western Reserve University) were added to the

reaction (1 uL each). After a further 15 min of incubation, the

complex was resolved by electrophoresis into a 10% non-

denaturing polyacrylamide gel as described above.

The protocol for competitive RNA binding assays was similar to

that of bandshift assays (EMSA), with the difference that varying

amounts of non-radioactive competitor RNAs were mixed with

the radiolabeled dengue 39SL RNA prior to the addition of

proteins. For quantification, gels were exposed to phosphorimager

screens (GE Lifesciences) overnight. The screens were scanned

using the Storm 8600 instrument (GE Lifesciences). The results

were analyzed using ImageQuant software (GE Lifesciences).

Northwestern analysis
Northwestern analysis was performed as described [54] with

minor modifications. Proteins were separated by SDS-PAGE (10%

pre-cast gels [BioRad]), followed by electrophoretic protein

transfer to nitrocellulose membranes overnight at 4uC and 30 V.

Non-specific interacting sites on the membranes were blocked by

incubating in 5% Blotto (Pierce) in PBST (PBS +0.1% Tween-20)

for 1 hr at room temperature. The membranes were then washed

in HBB buffer (25 mM HEPES-KOH pH 7.5, 25 mM NaCl,

5 mM MgCl2 and 7 mM b-ME) for 10 min. Proteins were

denatured and renatured on the membrane by two successive

washes in HBB buffer containing 6 M guanidine chloride, followed
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by washing once each in 3 M, 1.5 M, 0.75 M, 0.375 M and 0.187

M guanidine chloride in HBB for 10 min. Membranes were then

washed in HBB, followed by 2 washes in HYB100 (20 mM

HEPES-KOH pH 7.5, 200 mM KCl, 2.5 mM MgCl2, 100 mM

EDTA, 0.05% NP40 and 7 mM b-ME). Approximately 1610 6

CPM of renatured in vitro transcribed 39SL dengue RNA in

HYB100 were used to probe the membranes for 4 hr at room

temperature. Following this incubation, membranes were washed

three times using HYB100 buffer for 10 min, wrapped in Saran

wrap, and exposed to film overnight.

Mass Spectrometry Analysis
To identify proteins retained specifically on the dengue 39SL

RNA Sepharose column, SDS-PAGE gel fragments were excised,

digested with trypsin and analyzed by matrix assisted laser

desorption instrument time of flight (MALDI-TOF) mass spec-

trometry (MIT Center for Cancer Research Biopolymers

Laboratory). Peptide fragments were analyzed using the MS-Fit

program [21]. Mascot software was used for refinement and

statistical analysis of the MALDI-TOF data [22].

Immunofluorescence imaging analysis
HeLa cells were used to analyze protein localization because

MDA-MB-435–GFP cells express green fluorescent protein,

complicating immunofluorescence analysis. HeLa cells were

seeded into 12-well tissue culture plates containing sterile glass

cover slips and grown to 70%–80% confluence. Cells were then

infected with type 2 dengue virus, New Guinea C strain, using

infection media (DMEM, 2% FCS and antibiotic/antimycotic) at

a multiplicity of infection (m.o.i) of approximately 0.5. Virus was

then removed and replaced with 1 mL of culture medium, and the

cells grown for 48 hr at 37uC. Cells were washed three times with

cold PBS and fixed with 4% paraformaldehyde in PBS for 10 min

at room temperature. After fixation, cells were washed 3 times

with PBS and permeabilized/blocked with two incubations of

10 min in 1%BSA/0.1% Triton X-100/PBS (PBSAT).

To image NF90 and dengue in the same cells, a mouse

monoclonal anti-DRBP76 antibody (BD Biosciences) was used

with a rabbit anti-dengue NS3 protein polyclonal antibody

(provided by Dr. R Padmanabhan, Georgetown University).

Similarly, to image dengue and RHA, a rabbit anti-DHX9

polyclonal antibody (Abcam) was used with a mouse anti-dengue

monoclonal antibody (U.S. Biologicals). The secondary antibodies

were goat anti-rabbit IgG coupled to Alexa 488 (Molecular

Probes) and goat anti-mouse IgG coupled to Alexa 594 (Molecular

Probes). Cells were incubated with 500 mL of primary antibody

(1:200) in PBSAT for 45 min at room temperature, followed by

three washes with PBS. Secondary antibody was diluted (1:500) in

PBSAT, added to the cover slips, and incubated for 45 min at

room temperature. After three washes with PBS, cover slips were

then removed and mounted on glass microscope slides with

ProLong Gold/DAPI (Invitrogen). Images were captured using

MetaMorph (Molecular Devices) software and data analysis was

carried out with ImageJ (NIH).

Reporter constructs and RNA transcription
The firefly luciferase cDNA was obtained from Promega. Using

PCR, a 50-nucleotide poly(A) tail was cloned downstream of the

luciferase coding region. The complete 59 UTR with the first

fifteen codons of the dengue virus capsid protein and complete 39

UTR of the dengue virus RNA were amplified individually from

the cDNA clone (D2NGC strain, gift of Dr. Barry Falgout, FDA)

and cloned upstream and downstream, respectively of the firefly

luciferase coding region, without the poly(A) tail. Reporter

construct RNAs were transcribed from linearized DNA templates

using the mMessage mMachine transcription kit (ABI). MDA-MB-

435-GFP and shDRBP76-cells were each transfected with 100 ng

of reporter RNA, and after three hours, luciferase activity was

measured using the Luciferase Assay System (Promega). Samples

were read in a TD20/20 luminometer (Turner Biosystems).

Western blot analysis of NS3 expression
MDA-MB-435-GFP and shDRBP76-cells were incubated with

dengue virus in infection media for 1 hr at a MOI of 0.5. After the

infection, the media containing the virus was removed and

replaced by fresh infection media, followed by incubation for the

indicated times at 37uC. Cells were washed three times with PBS

and lysed in triton X-lysis buffer (20 mM Tris-HCl pH 7.5,

150 mM NaCl, 1 mM EDTA, 1% Triton X-100, 7 mM b-ME

and a cocktail of protease inhibitors [Invitrogen]). NF90 was

detected with a mouse monoclonal anti-NF90 antibody (DRBP76,

BD Biosciences; 1:250 dilution), and accumulation of dengue virus

NS3 protein was detected using a rabbit polyclonal antibody (Dr.

R. Padmanabhan, Georgetown University). As a loading control

for all western blots, levels of NF90 and NS3 were normalized to

b-actin levels, using a b-actin mouse monoclonal antibody

(Abcam). Bands were visualized with the Western LightningH
Western Blot Chemiluminescence Reagent (Perkin Elmer), using

the Alpha Innotech Imager 5500 (Alpha Innotech). Quantification

was done using the AlphaEaseFC software (Alpha Innotech)

followed by statistical analysis using Microsoft Excel.

Real-time RT-PCR analysis
To prepare RNA for RT-PCR analysis, dengue infected cells

were washed twice with PBS and then lysed with Trizol (Invitrogen)

according to the manufacturer’s instructions. Glycogen carrier

(Glycoblue, Ambion) was added prior to alcohol precipitation to aid

in visualizing the RNA pellets, which were resuspended in 20 mL of

RNAse-free water. Complementary DNA was synthesized using

SensiScript RT Kit (Qiagen) according to the manufacturer’s

instructions. Oligo-dT and random hexamers were used as primers

at 1 mM and 10 mM final concentrations, respectively.

Real-time PCRs were carried out in triplicate, with each reaction

using two mL of the previously described reverse transcription

reaction as template. PCR was carried out in a final volume of ten

mL, using the QuantiFast Probe PCR + Rox Vial 2x reagent

(Qiagen). As a control, actin cDNA was amplified using the human

b-actin primer/VIC-TAMRA probe mix (furnished at 20x, ABI).

Dengue cDNA was amplified using primers D2F (59-AAGGTGA-

GATGAAGCTGTAGTCTC-39), D2R (59-ATTCCATTTTC-

TGGCGTTCT-39), and FAM-labeled probe D2P (59-6FAM-

CTGTCTCCTCAGCATCATTCCAGGCA-TAMRA-39). Prim-

ers and probe were used at final concentrations of 0.9 mM and

0.25 mM, respectively. Reactions were carried out in an Opticon 2

(Bio-Rad) thermal cycler using 40 cycles of: 95uC, 15 sec; 60uC,

15 sec, 72uC, 30 sec. Thresholds were manually set to determine CT

values for each sample using the Opticon Monitor 3 software

(BioRad), and linear ranges of amplification were determined using

LinRegPCR software [55]. The ratio of dengue RNA levels in

shDRBP76-GFP cells to those in MDA-MB-435-GFP cells was

determined by the DDCT method, using b-actin CT values for

normalization. Statistical significance was tested using the random-

ization method described by Pfaffl et al. [26] performed by REST-

2009 software (Qiagen).

Flow cytometry
MDA-MB-435-GFP cells and shDRBP76-GFP cells were mock-

infected or infected with dengue virus in triplicate wells, as
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described above. Culture medium was collected at 24, 36, and

48 hours post-infection. Media from triplicate wells were pooled

and used to infect 105 K562 cells that express a putative dengue

virus receptor, DC-SIGN [27,56] for one hour at 37uC/5% CO2.

Fourteen hours post-infection, cells were washed with PBS and

fixed for 30 min at 4uC in PBS/4% paraformaldehyde/1% FBS.

Cells were washed once with PBS/1% FBS and permeabilized

with PBS/0.1% saponin/1% FBS for 30 min at 4uC, then washed

twice with PBS and incubated with dengue virus prM monoclonal

antibody (clone D3-2H2-9-21, Millipore) at 1:200 in PBS/0.1%

saponin/1% FBS for 30 min at 4uC. After three washes with PBS/

1% FBS, cells were incubated with AlexaFluor 488-conjugated

goat anti-mouse IgG at 1:200 in PBS/0.1% saponin/1% FBS for

30 min at 4uC. Cells were washed twice with PBS/1% FBS and

resuspended in PBS/4% paraformaldehyde/1% FBS. Flow

cytometry was carried out with a BD LSR II instrument, with

data analysis using FlowJo software (TreeStar).
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