Skip to main content
. 2011 Feb 28;6(2):e17060. doi: 10.1371/journal.pone.0017060

Table 5. MLP, RBF neural networks and linear SVM (Inline graphic), SVM with polynomial kernel (Inline graphic) and SVM with RBF kernel (Inline graphic) classifications using classical and non-linear/multi-resolution features of the HRV records from normal (N) and cardiovascular risk (R) subjects.

Features Classifier Se (%) Sp (%) Np (%) Pp (%) Ac (%)
Statistical + Spectral MLP 66.67 60.00 64.29 62.50 63.33
RBFNN 26.67 93.33 56.00 80.00 60.00
SVM (Linear) 72.73 86.36 76.00 84.21 79.55
SVM (Polynomial kernel) 68.18 70.45 68.89 69.77 69.32
SVM (RBF kernel) 68.18 74.24 70.00 72.58 71.21
Non-linear + Multi-resolution MLP 80.00 100.00 83.33 100.00 90.00
RBFNN 73.33 100.00 78.95 100.00 86.67
SVM (Linear) 95.45 77.27 94.44 80.77 86.36
SVM (Polynomial kernel) 88.64 81.82 87.80 82.98 85.23
SVM (RBF kernel) 90.91 83.33 90.16 84.51 87.12