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Abstract

Human VRK1 induces a stabilization and accumulation of p53 by specific phosphorylation in Thr18. This p53 accumulation is
reversed by its downregulation mediated by Hdm2, requiring a dephosphorylated p53 and therefore also needs the
removal of VRK1 as stabilizer. This process requires export of VRK1 to the cytosol and is inhibited by leptomycin B. We have
identified that downregulation of VRK1 protein levels requires DRAM expression, a p53-induced gene. DRAM is located in
the endosomal-lysosomal compartment. Induction of DNA damage by UV, IR, etoposide and doxorubicin stabilizes p53 and
induces DRAM expression, followed by VRK1 downregulation and a reduction in p53 Thr18 phosphorylation. DRAM
expression is induced by wild-type p53, but not by common human p53 mutants, R175H, R248W and R273H.
Overexpression of DRAM induces VRK1 downregulation and the opposite effect was observed by its knockdown. LC3 and
p62 were also downregulated, like VRK1, in response to UV-induced DNA damage. The implication of the autophagic
pathway was confirmed by its requirement for Beclin1. We propose a model with a double regulatory loop in response to
DNA damage, the accumulated p53 is removed by induction of Hdm2 and degradation in the proteasome, and the p53-
stabilizer VRK1 is eliminated by the induction of DRAM that leads to its lysosomal degradation in the autophagic pathway,
and thus permitting p53 degradation by Hdm2. This VRK1 downregulation is necessary to modulate the block in cell cycle
progression induced by p53 as part of its DNA damage response.
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Introduction

The cellular response to DNA damage is partly mediated by the

p53 tumor suppressor, which determines the response specificity

among different possibilities, such as cell cycle arrest, DNA repair,

induction of apoptosis [1,2] or autophagy [3,4]. In cells responding

to DNA damage, p53 has to be phosphorylated in its N-terminal

transactivation domain, where several residues [5] are targeted by

several kinases implicated in the response to different types of

cellular damage or stress [6]. The consequence of these

phosphorylations is to generate a transcriptionally active p53

protein, but differences in the pattern of multiphosphorylation can

condition p53 protein interactions with transcriptional cofactors,

and thus affect the specificity of the response [7,8,9]. The

phosphorylation of p53 in Thr18 is the most critical phosphor-

ylation for selective binding to transcriptional coactivators, such as

p300, or preventing binding to negative regulators, such as Hdm2

[7,8,9]. To the specificity of these cofactor interactions also

contribute phosphorylations in Ser15 or Ser20 [7,8,9]. The p53

molecule is stabilized by phosphorylation; and phosphorylated

p53, which accumulates in response to DNA damage [5], cannot

be degraded by the proteasome, because it cannot interact with

mdm2/Hdm2 [7,8,9]. In this context p53 phosphorylation in

Thr18 is the main switch from binding to mdm2 to interaction

with transcriptional cofactors [7,8,9]. Biological responses medi-

ated by p53 are a consequence of a complex network of positive

and negative autoregulatory loops [10].

VRK1 (vaccinia-related kinase-1) is a novel ser-thr kinase that

participates in cell cycle regulation [11,12]. VRK1 is expressed in

the G0 exit-G1 entry, behaving as an immediate-early gene like

MYC and FOS [13], being expressed before cyclin D1 [13], and

forming part of the CCDN1 (cyclin D1) gene transcriptional

complex [14]. VRK1 is also required for assembly of the nuclear

envelope later in mitosis [15,16], and is affected by its interaction

with Ran, a protein regulating nuclear transport [17]. VRK1

knock-down induces a block in cell cycle progression [18] before

the restriction point in G1 [13], resulting in a mitotic delay [13]. In

head and neck carcinomas the VRK1 protein level correlates with

cell proliferation markers, such as Ki67 [19]. One of the best

characterized targets of VRK1 is p53, which is specifically

phosphorylated in Thr18 [18,20] disrupting the interaction with

Hdm2, and leading to its accumulation [18]. But if p53 is

maintained in a Thr18 phosphorylated form it cannot interact

with Hdm2 [21,22], and there would be a permanent cell cycle

arrest and possibly cell death by apoptosis or autophagy. Thus a

mechanism that downregulates the level of VRK1, a stabilizer of

p53, to prevent a long-lasting p53 accumulation has been

identified, which is not mediated by ubiquitylation, and that
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requires the lysosome [23,24]. The mechanism that downregulates

VRK1 is inducible by an accumulation of p53 after a stress

response, and requires de novo transcription of a gene not yet

identified but whose product targets VRK1 to enter the lysosomal

pathway of protein degradation [23,24]. By removing VRK1, p53

can be dephosphorylated and thus become accessible to Hdm2

and subsequent degradation in the proteasome. This mechanism is

altered in lung carcinomas with p53 mutations, which have very

high levels of VRK1 [25].

Among the degradation processes regulated by p53 is

autophagy. By this process cells remove and digest endogenous

proteins, particularly those that are very stable, functioning as an

important mechanism for tissue remodeling [26] and maintaining

cellular homeostasis [27], but it can also result in a form of cell

death, thus having a dual role [28,29]. In normal cells autophagy

contributes to regulate basal levels of cytosolic and particulate

proteins [3], a process that is further activated in response to

several types of stress, including DNA damage. Autophagy is

required for recycling of proteins implicated in negative cell cycle

regulation, and can provide a survival strategy to tumor cells [26].

Recently a protein, DRAM (Damage-Regulated Autophagy

Modulator), whose expression is induced by p53, has been shown

to participate in degradation of stable proteins; DRAM ( is a novel

damage-regulated autophagy modulator) component of the cell

autophagic response [30]. Autophagy is partly regulated by p53-

induced DRAM expression [30], and since p53-induced VRK1

degradation requires entry in the endosomal-lysosomal pathway

and is mediated by an unknown gene [23], DRAM might be a

likely candidate to participate in this process, since VRK1 is also a

very stable protein [24]. In this work it has been tested the

possibility that DRAM might be implicated in the autophagic

degradation of VRK1 protein induced by p53 in the context of

DNA damage response induced by UV light.

Results

DRAM gene expression is induced in response to DNA
damage

Different types of DNA damage can induce p53 phosphoryla-

tion and its accumulation [5]. DRAM gene induction by DNA

damage and p53 accumulation was detected in RKO and Saos-2

cells [30]. Therefore, it was studied if in DNA damage responses,

DRAM activation and mainly VRK1 downregulation were also

detected in normal human WS1 fibroblasts that have a wild-type

p53. For this aim WS1 cells were treated with several types of

DNA damaging agents, such as ionizing radiation (IR) or

ultraviolet-C light (254 nm) and also doxorubicin and etoposide,

as positive controls. The dose of UV used was selected for its

maximum effect on p53 accumulation and its phosphorylation in

Thr18 (Fig. 1A). The time selected for observation was based on

the timing of activation and transcriptional responses known to be

mediated by p53 [5]. All these DNA damaging agents induced an

accumulation of endogenous p53 protein and downregulation of

VRK1 protein (Fig. 1B, top), as well as activation of DRAM gene

expression (Fig. 1B, bottom), which was determined as positive

internal control of the p53 response to DNA damage [30] in order

to detect the relative change of VRK1 with respect to DRAM in

the same cell line.

Next, it was tested if activation of endogenous DRAM gene

expression has the same p53 transcriptional requirements as those

required for VRK1 lysosomal proteolytic downregulation induced

by p53. Downregulation of VRK1 induced by p53 requires de

novo transcription of an unknown p53-induced gene, an effect that

was not induced by the most common p53 mutations in humans,

R175H, R248W and R273H [23]. For this aim, H1299 cells

(p532/2) were transfected with a wild-type p53 construct or the

three most common p53 mutants detected in human cancer. Wild-

type p53 induced DRAM gene expression in a p53 dose dependent

manner (Fig. 1C), but none of the p53 mutants was able to activate

DRAM gene expression (Fig. 1D). Thus the effect of p53 on DRAM

expression is similar to those reported for induction of VRK1

protein downregulation [23,25]. This suggested that DRAM might

be a candidate protein, or a component of the route, required to

mediate p53-dependent degradation of VRK1 in lysosomes.

DRAM downregulates VRK1 protein level
Previously it has been ruled out the implication of the ubiquitin

pathway. VRK1 is not ubiquitylated and its proteolytic p53-

induced downregulation is not mediated by mdm2 [23]. VRK1 is

also insensitive to mdm2 overexpression and it downregulation

also occurs in mdm22/2 cells [23]. VRK1 protein kinase has

been shown to be a new target of proteolytic degradation by the

lysosomal pathway in a p53-dependent manner; VRK1 degrada-

tion is inhibited by lysosomal inhibitors, such as chloroquinne and

leupeptin [23,24]. The VRK1 protein has several target sequences

for the endosomal-lysosomal pathway. There are two types of

targeting motifs for this pathway: Sequences for endosomal

targeting (End) and sequences for lysosomal-endosomal targeting

(LysEnd). VRK1 protein contains both of these motifs [24]. The

target sequences within VRK1 protein are located at 107–110,

126–129, 249–252 and 317–320 aminoacids for End sequences;

and 191–196 and 304–309 aminoacids for LysEnd target

sequences (ELM database).

Therefore, it was studied if downregulation of VRK1 requires

the participation of lysosomal DRAM protein, as a component of

its degradation route, which by its characteristics is a candidate to

mediate this effect [30]. The direct effect of DRAM protein on

VRK1 level was determined. For these experiments the lung

carcinoma H1299 (p532/2) cell line that lacks p53 was used.

This cell line was transfected with increasing levels of DRAM and

studied its effect on VRK1 protein level and on TSG101 protein,

which was used as a negative control for lack of effect on the

promoter of their common expression vector. DRAM induced a

dose dependent degradation of the VRK1 protein (Fig. 2A), but

not of the TSG101control expressed from the same type of vector

(Fig. 2B). TSG101 is an endosomal protein implicated in recycling

of plasma membrane receptors and viral entry, thus since this

protein was not affected it indicated that VRK1 and TSG101

must be in different types of endosomal vesicles [31,32]. Caveolin

a marker for a subtype of vesicles located in trans-Golgi and

plasma membrane [33] was also not affected (Fig. 2B). These data

suggested that there are two different types of endosomal vesicles,

some regulating receptor recycling and others involved in

autophagy that can be discriminated by DRAM. Also the effect

of DRAM on the closely related VRK2A and VRK2B proteins

[19,34] was determined with a similar result (Fig. S1A, B). These

results indicated that DRAM protein participates in an interme-

diate step required for VRK1 and VRK2 protein degradation by

their entry in a subtype of endosomal vesicles destined for

autophagy.

Most of the human VRK1 protein is located in the nucleus [18],

but DRAM is acting in the cytosol. This implies that VRK1, in

order to be degraded by this route, has to be transported to the

cytosol. Degradation of VRK1 might occur by elimination of the

cytosolic pool, which requires the export of nuclear VRK1

protein. VRK1 has a nuclear export signal in its C-terminal region

(residues 298–310) [20]. To test this possibility, cells were treated

with leptomycin B that blocks nuclear export [35]. Leptomycin B

DRAM Is Required for VRK1 Downregulation
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induced the accumulation of nuclear p53 [36] that is phosphor-

ylated in Thr18 (Fig. 2C), and thus transcriptionally active which

can induce two p53-dependent genes, p21 [36] and DRAM gene

expression [37]. The induction of p21, a cell cycle inhibitor, was

confirmed in an immunoblot (Fig. 2C). The DRAM expression is

indeed induced by leptomycin in the WS1 cell line (Fig. 2D), but in

this situation it does no degrade VRK1 (Fig. 2C) due to their

nuclear localization. This result indicates that DRAM is

participating in the removal of the cytosolic pool of VRK1.

The instability of VRK1 is not due to loss of its activity, since

kinase-dead VRK1(K179E) is equally degraded by increased levels

of p53 or DRAM (Fig. S1C).

A subpopulation of DRAM colocalizes in Golgi apparatus
and endosome vesicles with VRK1

VRK1 is mostly nuclear, but there is always a subpopulation

that is cycling in the cytosol [38] and can be detected in cytosolic

vesicles, mainly in the Golgi apparatus [39], and can be detected

with a specific antibody [38]. This VRK1 subpopulation enters a

degradation pathway that ends in the lysosome [23]. Overex-

pressed DRAM was detected in lysosomes colocalizing with

cathepsin D [40]. To ascertain if cytosolic VRK1 could also be

detected in a common intracellular compartment with DRAM

protein, the subcelular location of DRAM was determined in

combination with several components of the Golgi-endosome-

lysosome vesicular traffic that were used as markers. VRK1 is

already known to be present in Golgi, colocalizing with giantin

[38,39]. DRAM protein was partially detected colocalizing with

both VRK1 and giantin in cytosolic vesicles (Fig. 3A, B). DRAM

also colocalized with GM130 (Fig. 3C), a marker of cis-Golgi; with

EEA1, a marker for early endosome vesicles (Fig. 3D) and with

LAMP2, a lysosomal marker (Fig. 3E). DRAM was detected in all

these compartments suggesting that DRAM localization is more

widely expressed than previously reported [30], and is not limited

to lysosomes, but also colocalize with the Golgi as part of the

degradation pathway of endosomal-lysosomal intracellular traffic.

DRAM might be a component of a specific subtype of

endosomal vesicles required for lysosomal fusion, or represent a

ligand for stable proteins that have to be removed. Therefore it

was determined if a direct interaction between VRK1 and DRAM

could be detected in reciprocal immunoprecipitation experiments.

No direct interaction was detected (not shown), thus suggesting

that DRAM is more likely to be a marker of the vesicle subtype

and which is necessary for degradation. TSG101 is a protein

implicated in endosomal traffic related to receptor recycling

[31,32,41], therefore it was tested if TSG101 could intracellularly

colocalize with DRAM (Fig. 3F). TSG101 and DRAM do not

colocalize in intracellular vesicles indicating that they are markers

for different subpopulations of endosomal vesicles. It was also

determined the localization of VRK1 and TSG101 (Fig. 3G); these

two proteins do not colocalize, but in the presence of low level of

endogenous DRAM, TSG101 is more dispersed and some is

located in the plasma membrane, its natural location before it is

internalized.

VRK1 downregulation after p53 stabilization by DNA
damage follows DRAM accumulation

It was previously reported that VRK1 downregulation induced

by p53 required de novo gene expression of an inducible gene that

targets VRK1 for lysosomal degradation [23]. The contribution of

ubiquitin ligases to VRK1 degradation has been rule out [23].

VRK1 is not ubiquitylated and VRK1 degradation is insensitive to

mdm2 and to proteasome inhibitors, and VRK1 is also degraded

in mdm22/2 cells [23]. One likely candidate is DRAM, a p53-

induced gene [30], and the results above suggest that indeed this

might be the case. In order to determine the potential relation

between DRAM, VRK1 downregulation and p53 levels, a

temporal assay of sequential changes in VRK1, p53 and DRAM

protein levels was performed in WS1 cells after irradiation with

UV-C light (254 nm). Normal human WS1 fibroblast cell line was

treated with UV (10 J/m2) and the level of different proteins

determined at different time points. Shortly after irradiation

there is an accumulation of VRK1 and p53, followed by an

accumulation of DRAM and Hdm2. As p53 increases so does the

level of DRAM protein, which is followed by a reduction of VRK1

protein (Fig. 4A). This reduction in VRK1 is accompanied by a

decrease in p53 phosphorylated in Thr18, and thus also the

initiation of a reduction in total p53 protein due to its accessibility

to the accumulated Hdm2 (Fig. 4A). The quantification of the blot

is shown at the bottom (Fig. 4A). In this system the accumulation

of DRAM protein (Fig. 4A) was a consequence of the activation of

DRAM gene transcription as determined by qRT-PCR at different

times after UV treatment (Fig. 4B).

Since p53 is stabilized by phosphorylation, we tested if

downregulation of VRK1 would also prevent accumulation of

p53 in response to UV treatment. Control cells accumulated p53

in response to UV, but the knockdown of VRK1 prevented the

accumulation of p53, and its Thr18 phosphorylation induced by

UV light with respect to the siControl and non-transfected control

cells (Fig. 4C).

Knockdown of DRAM and Beclin-1 prevents VRK1
downregulation induced by UV light

To confirm the implication of DRAM in VRK1 downregula-

tion induced by UV light, the level of endogenous DRAM was

knocked-down by specific siRNA in WS1 fibroblasts. VRK1

protein level was higher in response to UV when DRAM was

knocked-down (Fig. 5A). SiDRAM-01 was very effective in

downregulating DRAM mRNA levels, while DRAM expression

was induced in non-transfected or in siControl cells (Fig. 5B).

These results confirmed the role of DRAM in UV-light induced

downregulation of VRK1.

Beclin-1 is a protein that is required for autophagy [42,43]. To

further confirm that VRK1 degradation induced by UV is indeed

Figure 1. Effect of p53 on the transcription of endogenous DRAM gene. (A) Determination of the optimal dose of UV light that induces p53
stabilization and its phosphorylation in Thr18 in the WS1 cell line. To the right is shown the quantification of p53 and p53 phosphorylated in Thr18 as
a function of the UV dose. (B) Different types of DNA damage induce endogenous p53 accumulation, and VRK1 downregulation in WS1 fibroblasts
(p53+/+) determined by western blot (top). DNA damage also induces DRAM accumulation detected by qRT-PCR in human WS1 fibroblasts. The DNA
damage agents used were doxorubicin, etoposide, ionizing radiation and UV-C light (254 nm). (C) H1299 (p532/2) cells transfected with increasing
amounts of plasmid pCB6+p53 and expression of DRAM was determined by qRT-PCR. Values are the mean of three experiments with standard
deviation. Same amount of DNA was used in all transfections that were completed with empty vector as necessary. (D) H1299 (p532/2) were
transfected with the indicated plasmids pCB6+p53 (wt), pCMV-p53R175H, pCMV-p53R248W and pCMV-p53R273H, and the effect on the expression of
endogenous DRAM gene expression was determined by qRT-PCR. In the immunoblots (IB) at the bottom is shown the correct expression of the
different p53 proteins, wild-type or mutants.
doi:10.1371/journal.pone.0017320.g001

DRAM Is Required for VRK1 Downregulation
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entering the autophagic pathway, the effect of eliminating Beclin-1

was also determined. The knock-down of Beclin1 prevented UV

induced degradation of VRK1, an effect that was also observed by

either addition of leptomycin B or siDRAM, all of which

prevented VRK1 protein degradation (Fig. 5A). These results

confirmed that VRK1 degradation requires nuclear export to

enter the autophagic degradation process. Leptomycin B is known

to induce p21 to block cell cycle progression and DRAM in the

autophagic pathway, both as a result of the nuclear accumulation

of p53 [36,37]. Beclin-1 knockdown by specific siRNA is effective

and was not affected by UV irradiation (Fig. S2). In addition to the

activation of p53 and the autophagic route in response to UV

Figure 2. Dose dependent effect of DRAM on VRK1, and TSG101 protein levels. The variation in levels of VRK1 (A), and the control
endosomal protein TSG101 implicated endocytic recycling of plasma membrane receptors and caveolin (B) were determined in response to
increasing levels of DRAM. H1299 (p532/2) cells were transfected with a fixed amount of VRK1 and TSG101 plasmids, and varying concentrations of
DRAM. Plasmid pCDNA3-DRAM-Myc-His [30], plasmid pCEFL-HA-VRK1 [18,23] and plasmid pHA-TSG101 [65] were used. To the bottom is shown the
quantification of corresponding immunoblots in the linear response range. VRK1 and TSG101 proteins were detected with an anti HA antibody.
DRAM was detected with an anti myc antibody. C. The block of nuclear export by leptomycin B in WS1 cell line prevented degradation of VRK1 even
though there is an accumulation p53, which is also phosphorylated in Thr18 and induces DRAM gene expression. D. Accumulation of p53 by
leptomycin B induces DRAM gene expression in WS1 cells as determined by quantitative qRT-PCR.
doi:10.1371/journal.pone.0017320.g002

DRAM Is Required for VRK1 Downregulation
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Figure 3. Subcellular localization of DRAM. (A–E) Colocalization of DRAM in different Golgi-endosome-lysosome compartments. (F) TSG101 and
DRAM do not colocalize in endoplasmic vesicles. (G) TSG101 and VRK1 colocalize in different locations in the absence of DRAM. In these experiments,
H1299 cells were transfected with plasmid pCDNA3-DRAM-Myc-His and plated on 10-cm2 dishes (56105) containing 1-cm-diameter sterile glass
coverslips. The coverslips were stained twenty-four hours after DRAM transfection with specific antibodies for the endogenous proteins: VRK1 (1F6),
giantin, GM130, EEA1 and LAMP2. DRAM was detected with an anti-myc epitope antibody. TSG101 was detected with a polyclonal antibody.
doi:10.1371/journal.pone.0017320.g003

DRAM Is Required for VRK1 Downregulation
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light, it was tested the effect of UV treatment on the level of p62/

SQSTM1 and LC3B, two proteins known to be degraded by

autophagy [44,45,46], and which were used a positive controls for

autophagy in our system. Both, LC3 and p62/SQSTM1 (Fig. 5C)

behave in a similar way as VRK1 (Fig. 5A) in response to DNA

damage by UV light.

Discussion

The downregulation of cellular proteins induced by p53 is a

phenomenon that is lately acquiring relevance due to the role that

p53 plays in several processes such as cell cycle, apoptosis and

autophagy. However, the particular context that makes p53 to

induce one biological response or another is not completely

understood, although some of the components have already being

identified. The determination of a specific response is likely to be

dependent on protein levels, and the degree of phosphorylation of

the individual components that can regulate interactions with co-

transcriptional activators, which affect the selection of the genes

regulated by p53. Among p53-regulated genes is DRAM [30] that

is implicated in the removal of long-lived proteins [26]. One of

these proteins is VRK1 that has a very large half-life [13].

Kinases that stabilize p53 are likely candidates to be selectively

removed, or inactivated, in order to permit p53 dephosphoryla-

tion; making it accessible to Hdm2 and susceptible to ubiquitin-

mediated downregulation, and thus generating fluctuations of their

Figure 4. Sequential changes in VRK1, p53 and DRAM protein levels induced by UV in WS1 human fibroblasts. (A) Levels of the three
proteins VRK1, p53 and DRAM after treating human fibroblasts WS1 with UV light. The relative level of each protein was quantified and represented in
the graph at the bottom. (B) Quantification of DRAM RNA levels by qRT-PCR at different time points following treatment with UV light. Mean of three
independents experiments with standard deviation. (C). Knockdown of VRK1 (siV), but not controls (siC and NTC), prevented the accumulation of p53
and its phosphorylation in Thr18 in response to UV irradiation. Knock-down siRNA transfections were performed 96 hours before the start of UV
treatment. Cell lysates were prepared 12 hours after irradiation.
doi:10.1371/journal.pone.0017320.g004

DRAM Is Required for VRK1 Downregulation
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relative levels of expression [47,48], which can result in regulatory

loops [10]. In this context, the induction by p53 of DRAM

protein, which contributes to the removal of VRK1 protein, is

consistent with this picture (Fig. 6). Because VRK1 is a stabilizer

and activator of p53 transcriptional activity, the downregulation of

p53 levels requires the removal of its stabilizer, VRK1, otherwise

the p53 phosphorylated in Thr18 cannot interact with Hdm2 [9]

and will not be degraded. Thus, it is likely that the regulation of

p53 is accompanied by an additional mechanism needed to

downregulate its stabilizer kinase, VRK1, by a p53 dependent

gene, as it is the case of DRAM. The double autoregulatory loop of

VRK1 and p53, in which DRAM and Hdm2 participate is

represented in Fig. 6. Briefly, the activation by phosphorylation of

p53 in response to UV light induces an activation of gene

Figure 5. Knock-down of DRAM and Beclin-1 (BECN1), and addition of leptomycin B prevented downregulation of VRK1 induced by
UV light. (A) Human fibroblast WS1 cells were transfected with siControl, siDRAM-01, siBECN1-smart pool, or treated with leptomycin B. After that,
these cells were irradiated with UV-C light and the protein levels determined at different time points. The changes in levels of VRK1 protein were
detected with the 1B5 mAb. The quantification of the blots is shown in the graph at the right. (B). The effectiveness of the DRAM knock-down was
determined by qRT-PCR and the result shown in the bar graph at the bottom, and siBECN1 by western blot (Fig. S2). Knock-down siRNA transfections
were performed 48 hours, and addition of leptomycin B was 12 hours, before the start of UV treatment. (C) P62/SQSTM1 and LC3B are proteins
degraded by autophagy. P62/SQSTM1 and LC3B proteins are also degraded in response to UV light, following a transient accumulation in
autophagosomes after induction of damage [60,61].
doi:10.1371/journal.pone.0017320.g005

DRAM Is Required for VRK1 Downregulation
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transcription. But a permanent activation of p53 dependent

transcription will result in either cell death or permanent cell cycle

arrest. Therefore mechanisms to make transient this arrest are

necessary at later times to prevent potentially deleterious effects. It

is well known the autoregulation mediated by Hdm2 targeting p53

for degradation in the proteasome [49], and it has been detected in

the case of other activating kinases such as ATM [50] and CHK2

[51], but this action requires a p53 induction of phosphatases, such

as PPM1D [52] and Wip1 [51]. To these effects it has to be added

the removal of VRK1 by DRAM. DRAM is also induced by UV

light [37], an effect mediated by p53. These autoregulatory

mechanisms can be partly implicated in the cellular fluctuations of

p53 levels [53,54], and should be integrated in the complex

regulation of p53 [10].

The role of DRAM in downregulation of different proteins is

not yet known, but its structure suggests it is a small hydrophobic

protein with six transmembrane domains [30], and it is very likely

that DRAM is a regulated component in the process of fusion

between lysosomes and some endosome vesicles. But since not all

endosomal markers are degraded it means that the endosome

population is heterogeneous, some are fused to the lysosomes,

those containing VRK1, and others not, like the ones containing

TSG101 which are implicated in vesicle recycling for downreg-

ulation of plasma membrane receptors [32,41,55]. DRAM might

play two potentially different roles. One is to be the ligand for

specific stable proteins that are removed by autophagy, which we

consider unlikely since we could not detect a direct interaction

between VRK1 and DRAM. Alternatively, DRAM might

function as a marker of a subpopulation of vesicles destined for

fusion to lysosomes and thus identified endosomal vesicles; in this

context DRAM might be a receptor for a lysosomal protein

required for vesicle fusion. The small size and the six transmem-

brane domains of DRAM suggests that most of it is not exposed,

that is more logical to think of it as interacting with an unknown

protein with lysosomes or an intermediate vesicle in the

autophagic pathway, rather than a receptor for specific proteins

destined for degradation in this pathway. Downregulation of

DRAM in human cancer, like in melanomas [56], not only

permits the survival of stress damaged cells, but also contributes to

the maintenance of proteins which promote progression of the cell

cycle, as is the case of VRK1, implicated in early G0/G1 [13]

resulting in a mitotic delay [57], and required for Golgi

fragmentation in mitosis [39], but which is likely to have additional

roles along the cell cycle. In cells resistant to carboplatin there is an

increase in VRK1 levels, probably reflecting a defective p53

response, and also favoring cell survival [58].

The accumulation of VRK1 is likely to drive to progression of

cell division and thus expand a cell population that is mutated and

implicated in tumor development. In tumors there are two possible

situations resulting in VRK1 accumulation. Tumors with

mutations in p53 will not induce DRAM and thus result in

VRK1 accumulation. This correlation has already been detected

in lung carcinomas [25] and in breast cancer (unpublished results).

Alternatively, if there were tumors with DRAM inactivating

mutations [40], they should also accumulate VRK1, but this

possibility has not yet been studied. It is important to note that in

tumors with p53 mutations, which are unable to induce DRAM

expression, there would be an alteration in the regulation of

autophagy, and this defective response can contribute to genetic

instability [59]. In addition, it has been reported that apoptosis

and autophagy induced in response to stress and mediated by JNK

activates DRAM expression [60,61]. Interestingly, VRK1 phos-

phorylates c-Jun in the same residues, Ser63 and Ser73, as JNK

and their phosphorylation has an additive effect [62], which

suggests that cells might be responding to stress in two different

ways that perhaps can cooperate in the regulation of the initial

stress response. The removal of VRK1 could be considered as part

of a rescue mechanism [63], and defective induction of autophagy

can contribute to genomic instability, as shown in a breast cancer

model [64]. Therefore, there must be a fine regulatory balance

among different p53 mediated responses, such as the equilibrium

between cell-cycle arrest, apoptosis and autophagy, for which

there has to be an underlying equilibrium between regulation of

protein accumulation and degradation to protect cells from

accumulating DNA damage, once it has been repaired. These

regulatory loops modulate the balance between cell cycle

progression and cell death by apoptosis or autophagy in DNA

damage responses.

Materials and Methods

Cell lines and tissue culture
The human fibroblast WS1 cell line (CRL-1502) was obtained

from the ATCC (Manassas, VA). Cells were grown in DMEM

with 10% fetal calf serum and supplemented with antibiotics and

glutamine. H1299 lung carcinoma cell line was grown in RPMI

with 10% fetal calf serum and supplemented with antibiotics and

glutamine (CRL-5803, ATCC) [13,23,24]. Cells plated on

100 mm dishes were treated with UV-C (254 nm) light in a

Stratalinker. The real value of the UV dose delivered in each the

experiment was confirmed by direct internal measurement with a

radiometer Spectroline XS-254nm-UVC (Spectronics Corpora-

tion, Westbury, NY). Alternatively cells were treated with different

drugs (Doxorubicin 0.5 mM, Etoposide 20 mM, Leptomycin B

0.2 nM [36] or IR (9 Gy) for WS1, or transfected for H1299.

Plasmids and transfections
Plasmid pCB6+p53 were from K. Vousden (The Beatson

Institute for Cancer Research, Glasgow, Scotland, UK) and

pCMV-p53R175H, pCMV-p53R248W and pCMV-p53R273H were

from B. Vogelstein (John Hopkins University). Plasmid pCDNA3-

DRAM-Myc-His was a gift from K.M. Ryan [30]. VRK1,

VRK2A and VRK2B were expressed from plasmids pCEFL-HA-

Figure 6. Model of the autoregulatory VRK1-p53-Hdm2-DRAM
loop. Several types of DNA damage mechanisms can induce VRK1,
stabilizing and activating p53-dependent transcription (black line).
Among the p53-induced genes, Hdm2 promotes p53 degradation via
ubiquitylation (blue line), and DRAM induces VRK1 degradation in the
lysosome (red line). VRK1 and DRAM are in the same late endosomal
vesicle that fuses to lysosomes, but do not interact directly. PP:
unknown phosphatase.
doi:10.1371/journal.pone.0017320.g006
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VRK1, pCEFL-HA-VRK1(K179E) [18,23], pCEFL-HA-VRK2A

and pCEFL-HA-VRK2B [34]. TSG101 was expressed from

plasmid pHA-TSG101 [65]. In all transfection experiments the

total amount of DNA was always kept constant with empty vector.

Knock-down of VRK1, DRAM, and Beclin-1
Synthetic SMART specific siRNA duplexes were purchased

from Dharmacon RNA Technologies (Lafayette, CO). The

targeted sequence for human DRAM (Accession number: NM_

018370) was knock-down using siRNA (siDRAM-01 from

Dharmacon RNAi Technologies); sense sequence: 5- CCACA-

GAAAUCAAUGGUGAUU; antisense sequence: 59-P-UCACC-

AUUGAUUUCUGUGGUU. The targeted sequence for VRK1

(Accession number: NM_003384) was CAAGGAACCTGGTG-

TTGAA (duplex siVRK1-2) from Dharmacon. Beclin-1 was

knocked down with siRNA-BECN1 on-Target plus SMART pool

from Dharmacon. Functional siCONTROL non-targeting siRNA

pool from Dharmacon was used as a negative control and

fluorescently labeled siGLO Lamin A/C siRNA for transfection

efficiency. Transfections of siRNA duplexes at 100–200 nM final

concentration were carried out using Lipofectamine 2000 reagent

(Invitrogen, Carlsbad, CA) following manufacturer instructions.

After transfection, cells were processed for western blot or qRT-

PCR as previously reported [13,23].

qRT-PCR
WS1 cells were washed in ice-cold PBS. Total RNA was

extracted using the ‘‘RNAeasy extraction kit’’ from Quiagen

(Hilden, Germany). RNA was analyzed and quantified using a

Bioanalyzer 2100 nano-lab chip from Agilent Technologies

(Böblingen, Germany). 100 ng of total RNA were used in a one-

step reverse transcription real-time PCR amplification reaction

using the ‘‘Quantitec SYBR Green RT-PCR kit’’ from Qiagen in

an iCycler (BioRad, Hercules, CA). The reaction was analyzed

with iCycler software (BioRad) and PCR products were resolved in

a 1.5% agarose ethidium-bromide gel. The following forward (F)

and reverse (R) primers were used for specific human DRAM

message detection. Human DRAM (DRAM-F: 59- TCAAATAT-

CACCATTGATTTCTGT -39; DRAM-R: 59- GCCACATACG-

GATGGTCATCTCTG -39) [30], human VRK1 (VRK1-F: 59-

CCAACGAGCTGCAAAACC-39; VRK1-R: 59-TGTCATGTA-

GACCAGACCCCC-39) [13], and GAPDH amplification was

used as internal control (GAPDH-F: 59-GGTCTTACTCCTTG-

GAGGCCATGT-39; GAPDH-R: 59-ACCTAACTACATGGT-

TTACATGTT-39) [13].

Antibodies and immunoblots analysis
Cell extracts were prepared by homogenization in lysis buffer

(Tris-HCl 50 mM pH 8, 200 mM NaCl, 5 mM EDTA, 1%Triton

X-100 and protease and phosphatase inhibitors), and 40

micrograms were loaded for each sample in a 10% SDS-PAGE

and transferred to Immobilon-P membrane (Millipore, Billerica,

MA); membranes were processed for western blot, detection with a

chemiluminescence ECL kit (GE Healthcare) that were quantified

in the linear response range using an FX Personal Imager

(BioRad) as previously reported [24].

Human VRK1 protein was detected with the 1F6 or 1B5

monoclonal antibodies [38]. The p53 protein was detected with a

mixture of DO1 antibody from Santa Cruz Biotechnology (Santa

Cruz, CA) and Pab1801 (Santa Cruz, CA) used at 1:500 and 1:1000

respectively. To detect endogenous p53 phosphorylated in Thr18

was detected with a rabbit polyclonal antibody from Cell Signaling

Technology [18]. DRAM was detected with an antibody from

ABCAM (Cambridge, UK) or myc epitope (Anti-Myc Tag

Polyclonal Antibody, Upstate).VRK2A/B and TSG101 were

detected with an anti HA epitope monoclonal antibody (Covance,

Emeryville, CA). Endogenous TSG101 was detected with a rabbit

polyclonal antibody [65]. The following antibodies were used: EEA1

detected with mAb 4/EEA1, and GM130 with mAb 35/GM130

from BD Transduction Laboratories (San José, CA). Giantin

detected with polyclonal PRB-114C from Covance. LAMP2

detected with mAb H4B4, Beclin-1 was detected with a polyclonal

antibody (sc-11427), p21 with mAb F-5 (sc-6246), and p62/

SQSTM1 was detected with a monoclonal antibody (sc-28359), all

from Santa Cruz Biotechnology (Santa Cruz, CA). LC3B was

detected with a polyclonal antibody from Cell Signaling. Caveolin

was detected with a rabbit polyclonal antibody from BD Biosciences.

Hdm2 was detected with a monoclonal mouse Anti-Human MDM2

protein (Clone SMP14) from DAKO. All the antibodies were used at

a 1:1000 dilution for western blots, and at1:100 for immunofluores-

cence. b-actin was detected with monoclonal antibody (Clone AC-

15) from Sigma (St. Louis, MO) at a 1:5000 dilution.

Immunofluorescence and confocal microscopy
H1299 cells (56105) were plated on 10-cm2 dishes containing 1-

cm-diameter sterile glass cover slips. The coverslips were stained

twenty-four hours after DRAM transfection with specific antibod-

ies for the endogenous and transfected proteins. Cells were washed

three times with PBS and then fixed in 4% paraformaldehyde in

PBS for 30 min at room temperature. After fixation the cells were

permeabilized in cold PBS containing 0.2% Triton X-100 for

30 min and then treated with glycine 10 mM for 10 min at room

temperature. Staining with antibodies was as previously reported

[18,39]. Subcelular localization was analyzed with a Zeiss LSM

510 confocal microscope.

Supporting Information

Figure S1 Dose dependent effect DRAM on levels of
VRK2A (A), VRK2B (B). H1299 cells were transfected with a

fixed amount of VRK plasmids, and varying concentrations of

DRAM. Plasmid pCDNA3-DRAM-Myc-His (Crighton et al.,

2006). Plasmids pCEFL-HA-VRK2A o pCEFL-HA-VRK2B has

been previously reported (Blanco, et al. 2006). To the bottom is

shown the quantification of corresponding immunoblots. VRK

proteins were detected with an anti HA antibody. DRAM was

detected with an anti myc antibody. (C). Overexpression of p53

(left) or DRAM (right) induce downregulation of kinase-dead

VRK1(K179E).

(TIF)

Figure S2 DNA damage does not affect the effectiveness
of BECN1 knockdown. The knockdown of beclin-1 using

siBECN1 is not affected by the time after induction of DNA

damage by UV light. The experiment was performed in WS1 cells.

The antibodies used in the immunoblots are described in the

Materials and Methods section.

(TIF)
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