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Abstract
Binding affinity prediction is one of the most critical components to computer-aided structure-
based drug design. Despite advances in first-principle methods for predicting binding affinity,
empirical scoring functions that are fast and only relatively accurate are still widely used in
structure-based drug design. With the increasing availability of X-ray crystallographic structures
in the Protein Data Bank and continuing application of biophysical methods such as isothermal
titration calorimetry to measure thermodynamic parameters contributing to binding free energy,
sufficient experimental data exists that scoring functions can now be derived by separating
enthalpic (ΔH) and entropic (TΔS) contributions to binding free energy (ΔG). PHOENIX, a
scoring function to predict binding affinities of protein-ligand complexes, utilizes the increasing
availability of experimental data to improve binding affinity predictions by the following: model
training and testing using high-resolution crystallographic data to minimize structural noise,
independent models of enthalpic and entropic contributions fitted to thermodynamic parameters
assumed to be thermodynamically biased to calculate binding free energy, use of shape and
volume descriptors to better capture entropic contributions. A set of 42 descriptors and 112
protein-ligand complexes were used to derive functions using partial least squares for change of
enthalpy (ΔH) and change of entropy (TΔS) to calculate change of binding free energy (ΔG),
resulting in a predictive r2 (r2

pred) of 0.55 and a standard error (SE) of 1.34 kcal/mol. External
validation using the 2009 version of the PDBbind “refined set” (n = 1612) resulted in a Pearson
correlation coefficient (Rp) of 0.575 and a mean error (ME) of 1.41 pKd. Enthalpy and entropy
predictions were of limited accuracy individually. However, their difference resulted in a
relatively accurate binding free energy. While the development of an accurate and applicable
scoring function was an objective of this study, the main focus was evaluation of the use of high-
resolution X-ray crystal structures with high-quality thermodynamic parameters from isothermal
titration calorimetry for scoring function development. With the increasing application of
structure-based methods in molecular design, this study suggests that using high-resolution crystal
structures, separating enthalpy and entropy contributions to binding free energy, and including
descriptors to better capture entropic contributions may prove to be effective strategies towards
rapid and accurate calculation of binding affinity.
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INTRODUCTION
Predicting binding affinity is one of the most critical and challenging components to
computer-aided structure-based drug design.1,2 Methods for predicting binding affinity are
instrumental in a variety of applications, including molecular docking to identify a native
binding mode, virtual screening of compound libraries to identify lead compounds, and lead
optimization for enhancing binding affinity and target specificity.3-5 Despite significant
advances in first-principle methods for predicting binding affinity6-10, empirical scoring
functions that are fast and relatively accurate are still widely used in drug discovery.11 For
virtual screening studies where libraries up to millions of compounds are screened against a
target of interest, a scoring function is needed to rapidly assess multiple binding modes of
each multiple conformers generated for each compound. This is also the case for in silico
lead optimization where a large number of analogs are computationally constructed and
assessed. In addition to speed of evaluation for virtual screening, other scoring functions can
be accurate at an atomic level for structure-based drug design in characterizing the dominant
physical forces in molecular recognition during ligand binding. Moreover, empirical scoring
functions should be transferable and not require careful individual validation for each
system under study, making them more suitable for use in new problems with limited
experimental data.

Empirical scoring functions aim to represent the atomic interactions of protein-ligand
complexes by the use of relatively simple quantitative descriptors to capture the
physicochemical forces governing protein-ligand complex formation. The underlying
assumption in scoring functions is that the physical and chemical interactions of protein-
ligand interactions can be quantitatively captured using a set of descriptors, and the sum of
these descriptors will accurately predict binding affinities. In practice, each descriptor is
weighted by a coefficient, derived by a linear regression method through training on
experimental data from binding assays, resulting in an equation for calculating binding
affinities. Over the last 20 years, a number of scoring functions have been developed, with
some notable ones being SCORE112, SCORE213, ChemScore14, X-Score15, Lig-Score16,
DrugScore17, CScore18, GOLD19,20, PLP21, and SFCscore22. These scoring functions differ
by their choice and implementation of descriptors to capture the physicochemical
interactions, the size and diversity of the training set, and the regression method used to
derive the predictive equations. A number of reviews on scoring functions and assessments
of their performance and applicability have been published.23-29

Empirical scoring functions generally predict either the free energy of binding (ΔG) or the
dissociation constant (Kd), each of which can be derived from the other. Recent calorimetric
studies have elucidated the compensating enthalpic and entropic changes associated with
binding free energy.30-33 In a review from Ladbury, Klebe, and Freire, the binding free
energies of first-in-class HIV-1 protease and HMG-CoA reductase inhibitors were shown to
be due largely from optimizing entropy (ΔS), while improving binding affinity of
subsequent analogs was predominantly the result of improving enthalpy (ΔH).34 Marlow et
al. has experimentally demonstrated that changes in protein conformational dynamics can
serve as an indication of the changes in protein conformation entropy, which may also play
an important role in high-affinity protein-ligand complexes.35 Roy and Laughton have
demonstrated using molecular dynamics simulations the importance of phenomena such as
entropy-entropy compensation, dewetting of the protein binding site, and ligand
configuration entropy in the form of rotational freedom in contributing to changes in
entropy.36 Because the binding free energy is composed of these compensating
thermodynamics forces, the ability to accurately predict enthalpy (ΔH) and entropy (TΔS)
independently should provide additional insight during structure-based drug design studies.
Results from these experimental and theoretical studies illustrate the importance of
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considering both enthalpy and entropy contributions separately and in a greater detail for
structure-based drug design studies.

Current empirical scoring functions contain descriptors that mainly take into account the
changes of enthalpy (ΔH) in binding, and have used rudimentary methods such as the
number of rotamers on a ligand, calculated partition coefficient (XlogP), and complementary
hydrophobic surface area estimation to describe changes in entropic forces (TΔS). The lack
of an accurate entropic description of protein-ligand interactions is surely the major reason
why scoring function accuracy has been limited; they can predict enthalpic contributions
accurately, but fail to predict entropic contributions, resulting in limited accuracy in
predicting binding free energy. In the development of PHOENIX, addition terms to describe
the shape and volume of both the ligand and protein binding site were included to implicitly
capture the desolvation and ligand expulsion of solvent from the binding site contributing to
entropic changes. Volume-based descriptors may also heuristically capture the rotational and
translation entropy contributing to the configurational entropy of the system. Developing
entropy models using shape and volume-based descriptors should lead to more accurate
binding affinity predictions.

Development of PHOENIX aimed to take advantage of the increasing application of
isothermal titration calorimetry (ITC) in medicinal chemistry and the recent availability of
databases (PDBcal37 and SCORPIO38) containing both X-ray crystallographic structures of
protein-ligand complexes and ITC experimental determination of both enthalpic and
entropic contributions to binding free energy. PHOENIX, derived from the VALIDATE39
scoring function, includes additional shape and volume-based descriptors to better capture
entropic contributions typically not accounted for in scoring functions. A diverse set of 112
protein-ligand complexes with resolution ≤ 2.0 Å and thermodynamics parameters measured
from ITC was used for training. A set of 42 descriptors, including 7 shape and volume
descriptors calculated using FPOCKET40, were used as a heutistic method to capture the
physicochemical forces underlying protein-ligand interactions. Partial least squares of latent
variables (PLS) was used to assign coefficients for each descriptor, and to independently
derive regression equations to calculate ΔH and TΔS.

METHODS
Training Set

Information on protein-ligand complexes with crystallographic structures and
thermodynamic parameters from isothermal titration calorimetry were obtained from
PDBcal37 and SCORPIO38 databases. Experimental values of ΔG, ΔH, and TΔS were
obtained from the database websites (http://www.pdbcal.org and
http://scorpio.biophysics.ismb.lon.ac.uk/scorpio.html), while X-ray crystallographic
structures were downloaded from the Protein Data Bank (PDB). Only structures of
complexes with a crystallographic resolution ≤2.5 Å were used in the intial compilation of
the training set. Additional metrics such as free R value (Rfree)41 and diffraction-component
precision index (DPI)42 were used to assess structural quality. Rfree is a measure of the
degree to which an atomic model predicts a subset of the observed diffraction data that has
been omitted from the refinement process (see Supporting Information for equation). DPI is
a measure of the quality of the structural model derived from the diffraction data (see
Supporting Information for equation). However, due the to scarcity of complexes with a
resolution of ≤2.5 Å, ITC parameters, and Rfree values, the resolution (≤2.0 Å) was used as
the final criteria to obtain the PHOENIX training set of 112 complexes. Nine different
subsets of the 162 complexes were evaluated for predictive ability: Set 68, includes
structures with resolutions ≤2.0 Å, Rfree ≤0.3, DPI ≤0.3, ligand molecular weight <1000
daltons, ΔH, TΔS; Set 82, includes structures with resolutions ≤2.0 Å, Rfree ≤0.3, DPI ≤0.3,
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ligand molecular weight <1000 daltons; Set 91, includes structures with resolutions ≤2.0 Å,
Rfree ≤0.3, DPI ≤0.3; Set 105, includes structures with resolutions ≤2.0 Å, ligand molecular
weight <1000 daltons; Set 112, includes structures with resolutions ≤2.0 Å; Set 127,
includes structures with resolutions ≤2.0 Å, 15 complexes with resolution between 2.0 and
2.5 Å also present in PDBbind test set; Set 140, includes structures with resolutions ≤2.25
Å; Set 153, includes structures with resolutions ≤2.5 Å, ligand molecular weight <1000
daltons; Set 162, includes structures with resolutions ≤2.5 Å. These subsets were selected to
evaluate whether the quality of the crystal structures and diversity of the training set
impacted the performance of the scoring function. Of the 9 subsets tested, Set 112 (Table 3)
(resolutions ≤2.0 Å) resulted in the best performing binding free energy (ΔG) model.

Structure Preparation
Protein-ligand complexes downloaded from the PDB were prepared as follows. Protein
structure was extracted from the complex using SYBYL 7.3. Water molecules present in the
complex were kept as part of the protein structure for an explicit solvent representation. In
cases where multiple chains or subunits were present, the chain or subunit that was most
complete was selected, which was chain A in most cases. Missing side chains and neutral
terminal groups were added by the Biopolymer Structure Preparation function. Hydrogens
were added to both the protein and water using the Biopolymer dictionary. The ligand was
extracted from the complex and atom types were assessed and reassigned, if necessary.
Hydrogens were added to all atoms. The resulting protein and ligand structures were saved
in mol2 format.

External Test Sets
External validation sets include three versions of the PDBbind “refined set” (2002, 2004,
and 2009)43,44 and the 2007 PDBbind “core set” downloaded from the PDBbind site
(http://www.pdbbind.org.cn/). Previous scoring function development studies by Wang, Lu,
Fang, and Wang.26 and Sotriffer, Sanschagrin, Matter, and Klebe.22 used both the 2002 and
2004 versions as benchmark sets, thus were assessed in this study for comparison purposes.
The 2002 version contains 800 complexes, the 2004 version contains 1091 complexes, and
the 2009 version contains 1741 protein-ligand complexes with resolution ≤2.5 Å. The 2007
“core set”, which consists of 195 complexes with non-redundant protein families and
diversity of ligand structures and binding affinities, was also used to assess the general
applicability of PHOENIX. A number of docking and scoring assessments have used this
“core set” as a diverse set benchmark.29 The protein and ligand structures were downloaded
from the PDBbind database. Structures of the proteins were prepared using the same
procedure as the training set. The ligands did not require any preparation and were used as
is. For the 2004 and 2009 sets, 1071 out of 1091 were used in the 2004 set, while 1612 of
1741 were used in the 2009 set.

Descriptor Set
A set of 42 descriptors were used to derive the PHOENIX scoring function, as listed in
Table 1. Of that set, the first 34 of the descriptors listed were calculated using the
VALIDATE scoring function39. The calculated partition coefficient, XlogP, was computed
based on the Wang, Fu, and Lai45 study using FILTER46. FPOCKET40, a cavity detection
program based on Voronoi tessellation and alpha spheres, was used to obtain 7 volume-
based descriptors to describe the ligand and protein binding site.

VALIDATE parameters were determined by using both molecular mechanics a heuristics
approach in combination with parameters derived from molecular mechanics. Parameters
derived from molecular mechanics include electrostatic interaction energy (EIE), steric
interaction energy (SIE), and ligand strain energy (LSE). EIE accounts for the electrostatic
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interactions that contribute to the specificity of protein-ligand interactions, and was
calculated using the MacroModel program. Charges for the protein and ligand were derived
from the OPLS-AA force field. Nonbonded electrostatic interaction energy was calculated
using the explicit sum of the Coulombic potentials. SIE was computed from the explicit sum
of the Lennard-Jones potentials, where the required parameters were derived from the
OPLS-AA force field. LSE was calculated based on the difference between the energy of the
ligand in the binding site and the energy of the ligand by itself.

Descriptors derived from heuristics for both the ligand and protein include steric fit, number
of rotatable bonds, total number of ligand/protein hydrogen bonds, total donor/acceptor
count, total hydrogen-bond atoms, and number of buried hydrogen-bond atoms. Steric fit
(SF) was used to describe the close packing interactions between the protein and ligand. In
order to quantitate surface complementarity between protein and ligand, descriptors were
used to capture lipophilic complementarity (nonpolar/nonpolar), hydrophilic
complementarity (polar/polar, opposite charge), lipophilic/hydrophilic complementarity
(polar/nonpolar), and hydrophilic noncomplementarity (polar/polar, like charge). Two
separate methods were used. The first method used an absolute surface area between the
protein and ligand similar to the method used by Bohm12. The second method was based on
a pairwise sum estimate, similar to the approach by Kellogg et al47. For a detailed
description of the implementation and underlying theory of the 34 VALIDATE descriptors,
refer to the original study by Head et al.39

As a heuristic method to capture entropic contributions, volume descriptors were used to
represent the amount of water molecules displaced from the protein binding site, as well as
the desolvation process of ligand going from unbound to bound state. FPOCKET40, a cavity
detection program based on Voronoi tessellation and alpha spheres, was used to obtain 7
volume-based descriptors to describe the ligand and protein binding site (ligand volume,
pocket volume, number of alpha spheres, proportion of apolar alpha spheres, mean local
hydrophobic density, polarity score, alpha sphere density).

Feature selection strategies such as excluding descriptors with a correlation coefficient
≥0.95 of another descriptor, or excluding descriptors that displayed minimal correlation to
the thermodynamics parameters (≤0.01, ≤0.05) were assessed to identify a set of descriptors
leading to the best performance. In addition, attempts were made to separate ΔH and TΔS
descriptors by deriving simpler models using subsets (n = 20-30) of the final descriptors set
(n = 42) which contribute qualitatively to each thermodynamic force, to test if more accurate
predictions could be achieved. After excluding the descriptors with high correlation and
descriptors with low correlation to ΔH and TΔS as well as separating descriptors for each
thermodynamic force, the models resulted in less accurate predictions when assessing the
2002 version of PDBbind; therefore all 42 descriptors were used in as the PHOENIX
scoring function.

Function Parameterization
The weight coefficients for each descriptor and equation for predicting ΔH and TΔS were
derived by using PLS in SYBYL 7.3. All 42 descriptors were used as input parameters. To
derive the regression equations, leave-one-out cross validation was initially performed to
identify the optimal number of components to use for the PLS model. The PLS model was
subsequently constructed using the number of components with the highest q2 and least error
to calculate the constant and coefficients for each descriptor. Regression statistics such as r2,
standard error, and F-value were used to assess the predictive ability of the models. The
fraction of relative contribution of each descriptor to change in enthalpy (ΔH), change in
entropy (TΔS), and change in binding free energy (ΔG) is listed in Table 2, and the
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coefficients and intercepts derived from partial least squares regression for the final
PHOENIX scoring function (n = 112) are listed in Table 3.

RESULTS
Regression Analysis

Regression and leave-one-out cross validation statistics of the different training sets used for
PHOENIX are listed in Table 3, along with statistics for change of enthalpy (Table 3A),
change in entropy (Table 3B), and change in binding free energy (Table 3C). Although the
training set of 68 complexes resulted in the best regression statistics and standard errors,
equations derived using the training set of 112 complexes were used since its performance
on the external test sets were better than ones using the other test sets. Selecting the training
set with the best regression or cross-validations statistics to use for external predictions can
lead to using a model that may simply be overfitted to the training set. Regression analysis
on the different training sets demonstrated that good fits were obtained using partial least
squares on the set of 42 descriptors. Figure 2 shows the experimental versus predicted values
of change of enthalpy (ΔH) (Figure 2A), change of entropy (TΔS) (Figure 2B), and change
of binding free energy (ΔG) (Figure 2C).

The training set with 112 complexes resulted in models that did not lead to good regression
statistics compared with results using the training set of 68 complexes. One possible reason
for this is the larger training set contained a wider variety of protein-ligand complexes,
especially ones that were difficult to predict, such as streptavidin and biotin complexes.
Change in enthalpy and change in entropy values did not vary as much in the set of 68
complexes as the larger training sets, resulting in smaller errors and a better linear fit.
However, when validating the model on external test sets such as PDBbind, enthalpy, and
entropy, and binding free energy regression equations derived using the set of 112
complexes resulted in better regression statistics, which indicates that diversity in both
structural data and thermodynamics data may be necessary to achieve robust predictive
ability. When tested using the larger training sets (n = 127, 140, 153, 162) which included
structures between 2 and 2.5 Å resolution, the performance on the external test sets did not
improve. While increasing the size of the training set generally leads to more predictive
models, in this case, results from this study suggest that inclusion of lower-resolution
structures may actually introduce noise, leading to less predictive binding affinity
calculations.

Internal cross-validation
Cross-validation studies were performed on the PHOENIX scoring function trained with 112
complexes. The set of 112 complexes was divided into a set of 82 complexes for training,
and a set of 30 complexes for testing. PLS was used to derive regression equations, which
resulted in the following regression and leave-one-out cross validation statistics: r2 = 0.43, s
= 7.27 kcal/mol (2 components), q2 = 0.34, SPRESS = 7.83 kcal/mol for change of enthalpy
(ΔH); r2 = 0.56, s = 6.37 kcal/mol (2 components), q2 = 0.48, SPRESS = 6.89 kcal/mol for
change of entropy (TΔS). These equations were used to calculate the thermodynamics
contributions in the test set. Figure 3 displays the experimental versus predicted values for
ΔH, TΔS, and ΔG. Predicted statistics for the test set of 30 complexes were as follows: ΔH,
r2 = 0.25, s = 6.32 kcal/mol; TΔS, r2 = 0.31, s = 6.01 kcal/mol; ΔG, r2 = 0.52, s = 1.53 kcal/
mol. While the ΔH and TΔS calculations resulted in sizable errors, calculating their
difference to obtain binding free energy led to a standard error within a reasonable accuracy
range.
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Testing on external data sets
To better assess the performance of PHOENIX on accuracy and applicability of affinity
predictions, the scoring function trained with 112 complexes was tested on 4 different
versions (2002, 2004, and 2009 refined sets; 2007 core set) of the PDBbind. For the sake of
comparison, the assessment was performed in a similar fashion to the scoring function
studies of Wang, Lu, Fang, and Wang,26 Sotriffer, Sanschagrin, Matter, and Klebe,22 and
Cheng, Li, Li, Liu, and Wang29. Note the use of a different set of statistical metrics (e.g.,
Pearson correlation coefficient, Spearman correlation coefficient, etc.) to assess the
performance on the external data set for comparison purposes with previous scoring function
studies. To assess the performance of PHOENIX in a greater detail, correlation evaluation
was performed on protein-ligand complexes categorized based on resolutions, protein
families, and binding affinities in the 2002 version. The 2004 and 2009 refined sets were
used to assess the performance of PHOENIX on larger and more diverse data sets. The 2007
core set, consisting of 195 complexes with 65 protein families with 3 ligands of different
affinities (low-, medium-, and high-affinity), was used to assess performance on a non-
redundant and diverse set of complexes.

Correlation evaluation results for the 2002 version of PDBbind compared to scoring
functions in the Wang, Lu, Fang, and Wang study and SFCscore are summarized in Table 4.
Based on the correlation evaluation of PDBbind 2002, the performance of PHOENIX is
comparable to the top-performing scoring functions (e.g., SFCscore and X-
Score::HMScore).

Resolutions
To assess the performance of PHOENIX on affinity predictions for low- and high-resolution
complexes, the 2002 version of PDBbind was categorized into 2 sets: a high-resolution
(≤2Å) set of 494 complexes, and a low-resolution (2 ≤ 2.5 Å) set of 302 complexes.
Correlation evaluation results are listed in Table 6. PHOENIX affinity predictions on the
high-resolution set were comparable to ones obtained from the X-Score functions (HPScore,
HMScore, HSScore). PHOENIX affinity predictions on the low-resolution set were inferior
to ones obtained from the 3 X-Score functions. PHOENIX, as well as the X-Score functions,
provided better correlation statistics for the high-resolution set than the low-resolution set.
One point to note is that the high-resolution set has 192 more complexes compared to the
low-resolution set, yet still achieved better correlation statistics. These results may suggest
that scoring functions in general can achieve more accurate predictions using higher-
resolution and perhaps higher-quality X-ray crystal structures compared to using low-
resolution and low-quality structures.

Protein Families
Three protein families were selected from the 2002 version of PDBbind set to test the
performance of PHOENIX on these special cases: HIV-1 protease, trypsin, carbonic
anhydrase II. Table 7 lists the correlation evaluation statistics. The correlation statistics from
PHOENIX on the HIV-1 protease set (Rp = 0.563, SD = 1.65, ME = 1.35, Rs = 0.434) is
better than most of the scoring functions in the Wang, Lu, Fang, and Wang study in terms of
Rp, and comparable to the top-performing scoring functions (Cerius2::LigScore, Rp = 0.528;
GOLD::GoldScore_opt, Rp = 0.555). This may be due to the inclusion of explicit waters in
PHOENIX; water molecules play a critical role in the binding of HIV-1 protease inhibitors.
For the trypsin complexes, the correlation statistics from PHOENIX were inferior compared
to the other scoring functions tested. Perhaps, the descriptors used in PHOENIX cannot
adequately capture the electrostatics involved in the binding of trypsin inhibitors due to the
use of monopole electrostatics, which led to larger errors in the affinity calculations.
Another potential reason for the poorer performance is that only 2 trypsin complexes were
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included in the PHOENIX training set, while other scoring functions included a larger set of
trypsin complexes in their training sets. As the availability of crystal structure of complexes
with ITC data increases, more trypsin complexes can be included in the training set to
improve affinity calculations. For the set of carbonic anhydrase II complexes, the correlation
statistics from PHOENIX were comparable to the other scoring functions. SFCscore
performed the best, which may primarily be due to the descriptors used to capture
interactions with metal atoms present in the binding pocket; metals are involved in critical
interactions with the ligand for this class of metalloenzymes. Inferior performance in affinity
predictions for the carbonic anydrase set may be due to the fact that PHOENIX does not
contain any descriptors to capture ligand interactions with metal atoms. Again, the use of
more sophisticated representation of electrostatic interactions should improve predictability.

Affinities
The 2002 version of PDBbind was categorized into 3 groups: low-affinity (pKd < 5),
medium-affinity (5 ≤ pKd ≤ 8), and high-affinity (pKd > 8). PHOENIX was assessed on its
ability to calculate a binding affinity that results in the same group as the experimental
binding affinity. Results from this study are listed in Table 8. PHOENIX correctly
categorized 27% of the low-affinity complexes, 100% of the medium-affinity complexes,
and 61% of the high-affinity complexes. PHOENIX performed the best on the medium- and
high-affinity complexes compared to the scoring functions from previous studies. The
performance on the low-affinity group was the second best (best was SFCscore). This
assessment demonstrated that PHOENIX can estimate affinities within a reasonable
accuracy range to readily distinguish between a tight-binding ligand from a low-affinity
ligand. As minimizing false-positive rates is a significant challenge in computer-aided
molecular design, PHOENIX may prove to be advantageous for affinity estimations and
relative rankings as well as binding pose prediction, especially when applied to high-
resolution structures with high-quality experimental data.

Recent versions of PDBbind
Recent versions of the PDBbind dataset (2004 and 2009) were used as external test sets for
scoring function validation. The correlation statistics for the 2004 version (n = 1073), also
used as a test set in the development of SFCscore, are listed in Table 8, and the ones for the
2009 version (n = 1612) are listed in Table 9. Based on the results from the 2004 and 2009
“refined sets”, PHOENIX demonstrated comparable performance compared with the X-
Score functions and SFCscore (the better performing scoring functions). Also, results from
the larger and more diverse 2004 and 2009 PDBbind refined sets demonstrated the
robustness of PHOENIX in predicting affinities for various types of protein-ligand
interactions.

Diverse and non-redundant test set
To further assess the performance of PHOENIX compared with other scoring functions, the
PDBbind 2007 core set was used to represent a diverse, yet non-redundant, set of protein-
ligand complexes. The 2007 core set includes 65 unique protein family members, each with
a low-, medium-, and high-affinity ligand. Binding affinities ranged from 1.40 to 13.96 pKd,
molecular weight from 103 to 974, and number of ligand rotatable bonds from 0 to 32.
Performance in the “scoring power” test similar to the Cheng et al. study was used to assess
PHOENIX. The statistics from correlation evaluation on affinity predictions are listed in
Table 10. To test whether scoring functions provided value over the use of a simple
descriptor, the number of heavy atoms was assessed as a scoring method. PHOENIX
resulted in the second highest Pearson correlation coefficient, however, the mean error was
more than twice as large as the second largest (1.70 compared to 0.71), suggesting that there
is still significant room for improvement in the accuracy of affinity predictions.
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To assess the “ranking power” of PHOENIX as performed in the Cheng et al. study, each of
the 65 families were assessed to check if the low-, medium-, and high-affinity ligand were
ranked in the correct order. Families that were ranked correctly for all 3 complexes were
given a score of 1, while a score of 0 is given if there is any deviation from the correct
ranking (e.g, low, high, medium; medium, high, low). The success rate in the “ranking
power” study of the 2007 core set is listed in Table 11. PHOENIX achieved a success rate of
46.2%, which ranks amongst the best-performing functions, with only 4 other scoring
functions with a higher success rate (X-Score::HSscore, 58.5%; DS::PLP2, 53.8%;
DrugScoreCSD, 52.3%; SYBYL::ChemScore, 47.7%). The performance of PHOENIX in
this study demonstated its utility in structure-based design to correctly rank relative affinities
for various types of protein-ligand complexes.

PHOENIX scoring function
The final PHOENIX scoring functions (used to predict ΔH, TΔS, and ΔG (ΔH-TΔS)) that
resulted in the best performance across multiple versions (2002, 2004, 2009 refined sets;
2007 core set) and subsets (resolutions, protein families, affinities from v2002) of the
PDBbind database used a training set of 112 structurally and energetically diverse
complexes. A set of 42 descriptors were included in the ΔH, TΔS, and ΔG (ΔH-TΔS)
models: 34 derived from molecular mechanics calculations, various surface area terms,
hydrogen-bond donors and acceptor count from VALIDATE; 1 to estimate the ligand
partition coefficient (XlogP); 7 shape- and volume-based descriptors from FPOCKET to
better capture entropic contributions. Partial least squares was used to assign coefficients to
each of the terms to derive the “master equation” to calculate ΔH, TΔS, and ΔG. While
change in enthalpy (ΔH) and change in entropy (TΔS) predictions were of limited accuracy
(standard errors of ~6 kcal/mol) individually, the difference between their individual
predictions resulted in a relatively accurate change in binding free energy (ΔG) (standard
errors of 1.5 kcal/mol). External validation using the 2009 version of the PDBbind “refined
set” (n = 1612) (most comprehensive high-quality data set for assessing scoring functions)
resulted in a Pearson correlation coefficient (Rp) of 0.575 and a mean error (ME) of 1.41
pKd, which demonstrated its relative accuracy and robustness in predicting binding
affinities.

DISCUSSION
Predicting binding affinity of protein-ligand interactions remains one of the most critical and
challenging problems in computer-aided drug design. The PHOENIX scoring function,
derived using a training set of high-resolution structures (n = 112) and calorimetry
measurements for change of enthalpy (ΔH) and change of entropy (TΔS) from ITC, has
demonstrated an ability to achieve accurate binding affinity predictions across 4 large and
diverse sets of protein-ligand complexes (PDBbind 2002, 2004, 2009 refined sets; 2007 core
set) using a modest number of descriptors (n = 42) to capture key physicochemical
interactions. Nine descriptors contributing the most (>4%) to binding free energy (mean
local hydrophobic density, flexibility index, receptor total buried donor/acceptor count,
pocket volume, electrostatic interaction energy, hydrophobic/hydrophilic contact surface
area 2, proportion of apolar alpha spheres, hydrophobic hydrophilic contact surface area 1,
polarity score) aimed to capture the key physical forces underlying protein-ligand
interactions: enthalpic contributions via van der Waals interactions, hydrogen bonding at the
binding site, electrostatics for specificity; entropic contributions via volume and polarity
features of binding site and ligand conformational entropy. Overall, the relative
contributions from each of the descriptors were fairly distributed (ranging from 0.001 to
0.072), which suggested that each descriptor contains some degree of information for
capturing the physics of protein-ligand interactions. Perhaps the use of a larger and more
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physically-accurate set of descriptors in future studies may help in further capturing the
atomic-level details underlying molecular recognition in protein-ligand interactions.

Despite the promising performance in predicting binding affinities, some limitations of
PHOENIX have been revealed. The enthalpy (ΔH) and entropy (TΔS) regression and
internal cross-validation results suggest that there is significant room for improvement in
deriving these equations. The individual thermodynamics parameters (ΔH and TΔS)
displayed only modest predictive ability with relatively large errors (6-7 kcal/mol). There
are several possible reasons for this. Scoring function would benefit from training on a
larger and more structurally and thermodynamically diverse set of complexes. More
physically-accurate descriptors are needed to more accurately capture and separate enthalpic
and entropic contributions due to entropy/enthalpy compensation. Descriptors that can better
separate enthalpic (ΔH) and entropic (TΔS) contributions are needed to derive more accurate
independent thermodynamic models. However, developing descriptors to capture primarily
enthalpy or entropy is a challenging feat in itself, since any physicochemical interactions
that can be experimentally quantitated are correlated and will contain, to some degree, both
thermodynamic forces (e.g, flexibility index and total ligand surface area). Inclusion of
descriptors to explicitly capture hydrogen bonding interactions may lead to more accurate
ΔH predictions. Descriptors to better capture electrostatics interactions such as pi-cation
interactions may also help with predicting enthalpy changes. To better quantitate entropic
contributions, descriptors to take into account conformational changes of the binding site,
such as quantitating the rotatmers of the side chains involved in the complex, may provide a
measure of entropy changes from the protein upon ligand binding (entropy-entropy
compensation).48 Classifying water molecules in the binding site according to their
energetic preferences as a means to model dewetting will be useful for capturing the entropy
change upon ligand binding and displacement of binding-site water molecules.49-52
Inclusion of multiple binding modes to better represent conformational and configurational
entropy may help to derive more accurate change in entropy (TΔS) models as been
demonstrated in theoretical studies.53-57 Moreover, larger sets of high-quality and
structurally and thermodynamically diverse protein-ligand complexes will certainly be
necessary to achieve more representative statistics for the different protein families and
ligand structures.

As presented earlier, the change in enthalpy (ΔH) and change in entropy (TΔS) calculations
were of limited relative accuracy. However, the change in binding free energy (ΔG)
calculations was within relative accuracy compared with other commonly used scoring
functions. The relative accuracy predicted by the ΔG model (difference of ΔH and TΔS
model predictions) may have resulted from the cancellation of the overestimated values
from independent ΔH and TΔS calculations, since the regression coefficient signs are in the
same direction for both forces. Overestimates of ΔH and TΔS may have been due to the high
correlation between the physicochemical descriptors used (e.g., “flexibility index” to capture
conformational entropy is correlated to terms estimating total ligand surface area to capture
van der Waals interactions to enthalpy), which were originally intended to be used to
estimate ΔG. In other words, a descriptor used to estimate TΔS contributions (e.g.,
flexibility index) may also capture, to some degree, the physical forces underlying ΔH
contributions (e.g., ligand total surface area). As an attempt to separate ΔH and TΔS
descriptors, simpler models using subsets (n = 20-30) of the final descriptors set (n = 42)
that are intuitive to contribute qualitatively to each thermodynamic force were used to test if
more accurate predictions can be achieved. However, resulting predictions by these “feature
selection” models were not as accurate as the predictions calculated using models with the
full descriptors set. As mentioned before, descriptors that can better distinguish between ΔH
and TΔS contributions should be developed and included in future development of accurate
thermodynamically-based scoring functions.
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In developing scoring functions, the inherent inaccuracy of the experimental data, which has
been highlighted by a number of scoring function and structure-based design studies,
remains the culprit to the limited accuracy in binding affinity predictions. In X-ray
crystallography, conditions used to induce crystalization are often in dramatic contrast to
physiological conditions under which protein-ligand interactions occur. Another potential
source of error is from the thermodynamics measurements by ITC. Experiments conducted
with ITC have often been performed under varying temperature and buffer conditions (e.g.,
salt concentration, pH), that may lead to marked variations in the thermodynamics
measurements, as recently pointed out by Myszka et al58. Chodera and Dill have also
observed large discrepancies in ΔH measurements from ITC (unpublished). Inclusion of
such ITC data in the training sets may not necessarily represent the magnitude of
thermodynamics forces under physiological conditions. As the use of ITC increases to
measure thermodynamics forces in protein-ligand interactions, diverse structural and
thermodynamics data performed under homogenous conditions should become available to
help alleviate these limitations.

CONCLUSIONS
Towards development of an empirical scoring function to achieve more accurate binding
affinity predictions, high-resolutions X-ray crystal structures of protein-ligand complexes
and thermodynamic parameters measured by ITC was used to derive models to calculate
enthalpic and entropic contributions to binding free energies. Shape and volume-based
descriptors were used as a heuristic method to implicitly capture changes in desolvation
entropy and ligand configurational entropy. PHOENIX demonstrated accurate binding
affinity predictions comparable to the top-performing scoring functions based on an
extensive series of tests on the 4 versions of the PDBbind database. To our knowledge, this
is the first empirical scoring function developed using thermodynamics parameters from ITC
as a strategy to derive regression equations to calculate binding affinity.

Predicting binding affinities is the most critical and also challenging component of structure-
based drug design. Often times, a docking program may identify a compound in the native
low-energy conformation, but without an accurate scoring function, will be categorized as a
non-binder, rendering the docking program of minimal value. Because of the high false-
positive and false-negative rates associated with computer-aided drug design methodologies,
development of an accurate and reliable scoring function is absolutely necessary for
enhancing the performance of these in silico design tools. Development of the PHOENIX
scoring function demonstrated the use of high-resolution structural complexes and
thermodynamics parameters for model training can be the key advances towards achieving
more accurate binding affinity predictions.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Distribution histograms of the change in binding free energy (ΔG) (mean = −8.73 kcal/mol,
std. dev. = 2.73 kcal/mol) (A), change in enthalpy (ΔH) (mean = −5.40 kcal/mol, std. dev. =
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8.96 kcal/mol) (B), change in entropy (TΔS) (mean = 3.31 kcal/mol, std. dev. = 8.92 kcal/
mol) (C), and molecular weight (mean = 455.25 Da, std. dev. = 273.11 Da.) (D) of
complexes in the final PHOENIX training set (n = 112).
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Figure 2.
Scatter plots from regression analyses of the final PHOENIX training set (n = 112).
Calculated versus experimental values for change in enthalpy (ΔH) (A), change in entropy
(TΔS) (B), and change in binding free energy (ΔG) (C) for complexes in the final
PHOENIX training set. Regression and leave-one-out cross validation statistics are as
follows: change in enthalpy (ΔH), r2 = 0.50, s = 6.44 kcal/mol, q2 = 0.37, SPRESS = 7.24
kcal/mol; change in entropy (TΔS), r2 = 0.61, s = 5.69 kcal/mol, q2 = 0.48, SPRESS = 6.50
kcal/mol; change in binding free energy (ΔG), r2 = 0.55, s = 1.34 kcal/mol.
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Figure 3.
Scatter plots from leave-one-out cross validation analyses of the final PHOENIX training set
(n = 112), separated into a training set of 82 complexes and a test set of 30 complexes.
Calculated versus experimental values for change in enthalpy (ΔH) (A), change in entropy
(TΔS) (B), and change in binding free energy (ΔG) (C) from the internal cross-validation
analyses are presented. Regression statistics are as follows: change in enthalpy (ΔH), r2 =
0.25, s = 6.32 kcal/mol; change in entropy (TΔS), r2 = 0.31, s = 6.01 kcal/mol; change in
binding free energy (TΔS), r2 = 0.52, s = 1.53 kcal/mol.
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Table 1

Coefficients and intercepts derived from partial least squares regression for the descriptor set (n = 42) used in
the final PHOENIX scoring function for change in enthalpy (ΔH) and change in entropy (TΔS) equations.

Descriptor ΔH TΔS ΔG

INTERCEPT −7.064 −1.619 −5.445

Electrostatic Interaction Energy −0.006 −0.005 −0.001

Steric Interaction Energy 0.008 0.004 0.004

Steric Fit −0.064 −0.085 0.021

Rotatable Bonds 0.002 0.001 0.001

Ligand Strain Energy 0.023 0.008 0.015

Hydrophobic/Hydrophobic Contact Surface Area 1 0.004 0.007 −0.003

Hydrophilic/Hydrophilic Contact Surface Area 1 (Opposite Charge) 0.009 0.011 −0.002

Hydrophobic/Hydrophilic Contact Surface Area 1 0.009 0.012 −0.003

Hydrophilic/Hydrophilic Contact Surface Area 1 (Same Charge) 0.006 0.011 −0.005

Hydrophobic/Hydrophobic Contact Surface Area 2 0.001 0.001 0

Hydrophilic/Hydrophilic Contact Surface Area 2 (Opposite Charge) 0.006 0.006 0

Hydrophobic/Hydrophilic Contact Surface Area 2 0.003 0.004 −0.001

Hydrophilic/Hydrophilic Contact Surface Area 2 (Same Charge) −0.002 0 −0.002

Ligand Total Hydrophobic Surface Area 0 0.001 −0.001

Ligand Total Hydrophilic Surface Area −0.003 −0.004 0.001

Flexibility Index(Rot Bonds/ Non Term Bonds) 3.549 3.424 0.125

Ligand Buried Hydrophobic Surface Area 0 0.001 −0.001

Ligand Buried Hydrophilic Surface Area −0.006 −0.006 0

Ligand Exposed Hydrophobic Surface Area −0.001 −0.001 0

Ligand Exposed Hydrophilic Surface Area −0.003 −0.004 0.001

Receptor Buried Hydrophobic Surface Area −0.001 0.001 −0.002

Receptor Buried Hydrophilic Surface Area −0.002 0.002 −0.004

Receptor Exposed Hydrophobic Surface Area 0 0 0

Receptor Exposed Hydrophilic Surface Area 0 0 0

Normalized Ligand Buried Hydrophobic Surface Area 3.487 3.695 −0.208

Normalized Ligand Buried Hydrophilic Surface Area −2.814 −2.906 0.092

Normalized Ligand Exposed Hydrophobic Surface Area −4.324 −3.101 −1.223

Normalized Ligand Exposed Hydrophilic Surface Area −2.993 −5.661 2.668

Total Ligand/Receptor Hydrogen Bonds 0.044 0.032 0.012

Ligand Total Donor/Acceptor Count −0.059 −0.072 0.013

Ligand Total Hydrogen Bond Atoms 0.007 −0.008 0.015

Ligand Total Buried Donor/Acceptor Count −0.114 −0.129 0.015

Receptor Total Donor/Acceptor Count 0.053 0.045 0.008

Receptor Total Buried Donor/Acceptor Count 0.079 0.082 −0.003

Partition Coefficient 0.024 0.115 −0.091

Ligand Volume −0.001 −0.001 0

Pocket Volume −0.001 −0.001 0

Number of Alpha Spheres 0.004 0.009 −0.005
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Descriptor ΔH TΔS ΔG

Proportion of Apolar Alpha Spheres −4.253 −4.039 −0.214

Mean Local Hydrophobic Density −0.159 −0.137 −0.022

Polarity Score 0.124 0.114 0.01

Alpha Sphere Density 0.012 −0.019 0.031
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Table 2

Descriptor set (n = 42) used in the final PHOENIX scoring function and its relative contribution to change in
enthalpy (ΔH), change in entropy (TΔS), and change in binding free energy (ΔG) calculations. Descriptors are
sorted by relative fraction to change in binding free energy (ΔG) in descending order.

Descriptor ΔH TΔS ΔG

Mean Local Hydrophobic Density 0.08 0.063 0.072

Flexibility Index (Rot Bonds/ Non Term Bonds) 0.066 0.059 0.063

Receptor Total Buried Donor/Acceptor Count 0.063 0.061 0.062

Pocket Volume 0.052 0.051 0.052

Electrostatic Interaction Energy 0.054 0.043 0.049

Hydrophobic/Hydrophilic Contact Surface Area 2 0.043 0.049 0.046

Proportion of Apolar Alpha Spheres 0.049 0.043 0.046

Hydrophobic/Hydrophilic Contact Surface Area 1 0.04 0.049 0.045

Polarity Score 0.048 0.04 0.044

Normalized Ligand Buried Hydrophobic Surface Area 0.035 0.034 0.035

Ligand Total Donor/Acceptor Count 0.031 0.035 0.033

Ligand Buried Hydrophilic Surface Area 0.034 0.03 0.032

Ligand Total Buried Donor/Acceptor Count 0.031 0.032 0.032

Ligand Total Hydrophilic Surface Area 0.029 0.028 0.029

Ligand Strain Energy 0.04 0.014 0.027

Steric Interaction Energy 0.035 0.016 0.026

Normalized Ligand Buried Hydrophilic Surface Area 0.026 0.025 0.026

Hydrophilic/Hydrophilic Contact Surface Area 2 (Opposite
Charge) 0.024 0.023 0.024

Hydrophilic/Hydrophilic Contact Surface Area 1 (Opposite
Charge) 0.02 0.024 0.022

Hydrophobic/Hydrophobic Contact Surface Area 1 0.015 0.025 0.02

Hydrophilic/Hydrophilic Contact Surface Area 1 (Same Charge) 0.014 0.024 0.019

Ligand Volume 0.021 0.015 0.018

Receptor Exposed Hydrophobic Surface Area 0.013 0.02 0.017

Normalized Ligand Exposed Hydrophilic Surface Area 0.012 0.021 0.017

Normalized Ligand Exposed Hydrophobic Surface Area 0.019 0.013 0.016

Receptor Exposed Hydrophilic Surface Area 0.009 0.02 0.015

Ligand Exposed Hydrophilic Surface Area 0.011 0.015 0.013

Receptor Total Donor/Acceptor Count 0.015 0.011 0.013

Partition Coefficient 0.005 0.021 0.013

Hydrophobic/Hydrophobic Contact Surface Area 2 0.007 0.016 0.012

Total Ligand/Receptor Hydrogen Bonds 0.013 0.009 0.011

Receptor Buried Hydrophilic Surface Area 0.008 0.011 0.01

Ligand Buried Hydrophobic Surface Area 0.004 0.013 0.009

Number of Alpha Spheres 0.005 0.012 0.009

Receptor Buried Hydrophobic Surface Area 0.006 0.009 0.008

Steric Fit 0.006 0.007 0.007

Ligand Exposed Hydrophobic Surface Area 0.008 0.004 0.006
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Descriptor ΔH TΔS ΔG

Ligand Total Hydrophobic Surface Area 0.001 0.008 0.005

Hydrophilic/Hydrophilic Contact Surface Area 2 (Same Charge) 0.007 0.001 0.004

Ligand Total Hydrogen Bond Atoms 0.002 0.002 0.002

Alpha Sphere Density 0.001 0.002 0.002

Rotatable Bonds 0.001 0.001 0.001
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Table 8

Assessment of the ability of the PHOENIX scoring function to classify complexes into three binding affinity
groups: low-affinity (pKd < 5.0), medium-affinity (5.0 ≤ pKd ≤ 8.0), and high-affinity (pKd > 8.0). The
number of correctly categorized complexes and total number of complexes in each category, as well as the
percentage of the correctly categorized complexes are presented for PHOENIX and the commonly used
scoring functions take from the Wang et al. study26 for comparison purposes.

Scoring Function Low Medium High

PHOENIX 52/205=27% 417/417=100% 112/193=61%

SFSscore::met 88/191=46% 309/417=74% 86/192=45%

X-Score::HPScore 33/205=16% 358/402=89% 48/193=25%

X-Score::HMScore 41/205=20% 348/402=87% 65/193=34%

X-Score::HSScore 29/205=14% 350/402=87% 53/193=27%

DrugScore::Pair 24/205=12% 359/402=89% 45/193=23%

DrugScore::Surf 11/205=5% 362/402=90% 45/193=23%

DrugScore::Pair/Surf 24/205=12% 358/402=89% 47/193=24%

Sybyl::D-Score 0/205=0% 384/402=96% 2/193=1%

Sybyl::PMF-Score 0/196=0% 395/396=99% 0/193=0%

Sybyl::G-Score 12/205=6% 359/402=89% 30/193=16%

Sybyl::ChemScore 38/204=19% 349/400=87% 40/193=21%

Sybyl::F-Score 0/182=0% 362/362=100% 0/188=0%

Cerius2::LigScore 11/186=6% 340/366=93% 16/165=10%

Cerius2::PLP1 24/205=12% 364/401=91% 35/193=18%

Cerius2::PLP2 30/205=15% 363/402=90% 32/193=17%

Cerius2::PMF 0/202=0% 390/400=97% 3/193=2%

Cerius2::LUDI1 1/203=0% 379/394=96% 9/193=5%

Cerius2::LUDI2 6/205=3% 378/401=94% 15/193=8%

Cerius2::LUDI3 1/205=0% 387/402=96% 9/193=5%

GOLD::GoldScore 0/178=0% 331/339=98% 4/177=2%

GOLD::GoldScore_opt 3/200=1% 366/385=95% 11/187=6%

GOLD::ChemScore 8/177=5% 345/376=92% 37/188=20%

GOLD::ChemScore_opt 20/187=11% 346/386=90% 38/189=20%

HINT 2/205=1% 388/402=97% 11/193=6%
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Table 11

Correlation evaluation of the PHOENIX scoring function on the PDBbind 2007 core set. Correlation statistics
include number of complexes tested (N), Pearson correlation coefficient (Rp), standard deviation (SD), and
mean error (ME). The “Number of Heavy Atoms” was used as a benchmark to assess scoring function
enrichment. Results from the commonly used scoring functions taken from the Wang et al. study26 are
presented for comparison purposes.

Scoring Function N Rp SD ME

PHOENIX 194 0.616 2.16 0.644

X-Score::HMScore 195 0.644 1.83 0.705

DrugScoreCSD 195 0.569 1.96 0.627

SYBYL::ChemScore 195 0.555 1.98 0.585

DS::PLP1 195 0.545 2.00 0.588

GOLD::ASP 193 0.534 2.02 0.577

SYBYL::G-Score 195 0.492 2.08 0.536

DS::LUDI3 195 0.487 2.09 0.478

DS::LigScore2 193 0.464 2.12 0.507

GlideScore-XP 178 0.457 2.14 0.435

DS::PMF 193 0.445 2.14 0.448

GOLD::ChemScore 178 0.441 2.15 0.452

Number of Heavy
Atoms 195 0.431 2.15 0.517

SYBYL::D-Score 195 0.392 2.19 0.447

DS::Jain 189 0.316 2.24 0.346

GOLD::GoldScore 169 0.295 2.29 0.322

SYBYL::PMF-Score 190 0.268 2.29 0.273

SYBYL::F-Score 185 0.216 2.35 0.243
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Table 12

Success rates for correctly ranking the low-, medium-, and high-affinity ligands in the PDBbind 2007 core set
for the PHOENIX scoring function and 16 other commonly used scoring functions taken from the Cheng et al.
study29.

Scoring function
Success rate

(%)

PHOENIX 46.2

X-Score::HSScore 58.5

DS::PLP2 53.8

DrugScoreCSD 52.3

SYBYL::ChemScore 47.7

SYBYL::D-Score 46.2

SYBYL::G-Score 46.2

GOLD::ASP 43.1

DS::LUDI3 43.1

DS::Jain 41.5

DS::PMF 41.5

SYBYL::PMF-Score 38.5

GOLD::ChemScore 36.9

DS::LigScore2 35.4

GlideScore-XP 33.8

Number of Heavy
Atoms 32.3

SYBYL::F-Score 29.2

GOLD::GoldScore 23.1
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