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Abstract

The developmental mechanisms regulating cell differentiation and patterning during the secondary growth of woody
tissues are poorly understood. Class III HD ZIP transcription factors are evolutionarily ancient and play fundamental roles in
various aspects of plant development. Here we investigate the role of a Class III HD ZIP transcription factor, POPCORONA,
during secondary growth of woody stems. Transgenic Populus (poplar) trees expressing either a miRNA-resistant
POPCORONA or a synthetic miRNA targeting POPCORONA were used to infer function of POPCORONA during secondary
growth. Whole plant, histological, and gene expression changes were compared for transgenic and wild-type control plants.
Synthetic miRNA knock down of POPCORONA results in abnormal lignification in cells of the pith, while overexpression of a
miRNA-resistant POPCORONA results in delayed lignification of xylem and phloem fibers during secondary growth.
POPCORONA misexpression also results in coordinated changes in expression of genes within a previously described
transcriptional network regulating cell differentiation and cell wall biosynthesis, and hormone-related genes associated with
fiber differentiation. POPCORONA illustrates another function of Class III HD ZIPs: regulating cell differentiation during
secondary growth.
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Introduction

Secondary vascular development involves the coordination of

several developmental processes, including the patterning of

secondary vascular tissues and differentiation of complex cell

types [1]. In the model forest tree genus Populus, the cambium is

typically believed to contain a single layer of initials, from which

xylem mother cells are derived towards the inside (towards the

pith) of the stem and phloem mother cells towards the outside

(towards the epidermis) [2]. Xylem and phloem mother cells divide

one or more times before differentiating into cell types within the

secondary xylem (wood) or secondary phloem (inner bark),

respectively. Conspicuous, lignified phloem fibers differentiate in

the periphery of the phloem. In addition to these vertically

oriented tissue systems, the cambium contains ray initials, which

ultimately produce rays that transverse secondary xylem and

phloem and transport water and solutes radially in the stem. The

resulting woody stem is thus the result of coordination between

radial patterning processes that produce tissues in appropriate

positions, and differentiation of secondary vascular cell types

within those tissues.

Although still poorly defined, insights into mechanisms

regulating cell differentiation during secondary growth are

emerging, and have been assisted by the observation that at

least some of the key regulatory genes that regulate shoot apical

meristems and primary vascular development are also expressed

during secondary growth [3,4,5]. For example, Class I KNOX

genes are well characterized for their roles in regulating stems

cells and cell differentiation in shoot apical meristems, but they

also play important roles in negatively regulating the differenti-

ation of cambial and cambial daughter cells [6,7]. In contrast,

NAC-domain containing transcription factors have been identi-

fied that promote differentiation of vessel elements including

VASCULAR-RELATED NAC-DOMAIN (VND), NAC SEC-

ONDARY CELL WALL THICKENING (NST), and SEC-

ONDARY WALL-ASSOCIATED NAC DOMAIN PROTEIN

(SND) proteins, likely through direct regulation of MYB-class

transcription factors that in turn regulate expression of cell

differentiation and cell wall-related genes {reviewed in [8]}. For

example, overexpression of VND6 or VND7 results in ectopic

differentiation of vessel elements in Arabidopsis thaliana, which is

accompanied by overexpression of MYB genes (including

MYB46, MYB63, MYB83, MYB85, and MYB103) and down-

stream genes encoding enzymes involved in cell wall biosynthesis

and vessel differentiation (including CESA4/IRX5, CESA7/IRX3,

CESA8/IRX1, IRX8, IRX10, CCoAOMT7, IRX12/LAC4, and
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XCP1) [9]. However, this putative transcriptional network has not

been evaluated during secondary growth.

While putative genes and mechanisms regulating cell differen-

tiation are becoming better described, less is known about

regulation of tissue patterning during secondary growth. In

Arabidopsis thaliana, the Class III HD ZIPs comprise a small family

of five genes, PHABULOSA (PHB), PHAVOLUTA (PHV), REVO-

LUTA (REV), ATHB8, and CORONA/ATHB15 (CNA). Combina-

tions of loss of function mutants, gain of function mutants, and

cross-complementation studies indicate overlapping yet distinct

roles for A. thaliana Class III HD ZIPs [10,11,12,13]. Functional

differences among Class III HD ZIPs are likely attributable both to

differences in expression patterns, as well as differences in protein

function [10]. PHB, PHV, and REV form a subclade, and have

been implicated in acting antagonistically with KANADI tran-

scription factors to regulate polarity and patterning of lateral

organs and vascular bundles [12,13,14,15,16,17]. CORONA/

ATHB15/INCURVATA4 (CNA) and ATHB8 form the second

subclade of A. thaliana Class III HD ZIPs. ATHB8 is expressed in

procambial cells in embryos and developing organs, and ATHB8

expression is induced by exogenous auxin [18]. Overexpression of

ATHB8 is associated with precocious differentiation of xylem and

lignification of cell types that are normally not lignified [19]. All

known land plant Class III HD ZIPs contain a binding site for

negative regulation posttranscriptionally by miRNA165/166 [20].

Mutations that abolish the miRNA binding sequence without

changing amino acid sequence result in dominant phenotypes for

Class III HD ZIPs [12,13,21,22,23,24].

CNA is expressed in provascular cells of leaves and roots [25], in

the shoot meristem, in floral meristems, and in ovules [11]. A

Zinnia elegans ortholog of CNA, ZeHB-13, is expressed in leaf

provascular cells and developing xylem parenchyma of leaf

vascular bundles, but is not expressed in mature leaves [25]. In

A. thaliana, overexpression of a miRNA-resistant ATHB15 results in

moderate dwarfing, upcurling of leaves, and drastic reduction in

xylem and lignified interfascicular tissues [21]. Similar phenotypes

are seen in mutants carrying semidominant alleles of CNA with a

single point mutation abolishing normal miRNA regulation

[26,27,28]. Antisense ATHB15 transgenics are severely dwarfed,

and display expansion of xylem and interfascicular tissues, and

lignification into the pith of stems [21]. In contrast, EMS-induced

cna mutants show slightly increased shoot apical meristem size [11]

but no other dramatic phenotypes [11,27], and RNAi suppression

of CNA transcripts was reported not to result in obvious

phenotypic changes [27]. Interestingly, cna is a dramatic enhancer

of meristem size in clavata1/2/3 mutants, indicating that CNA may

function with CLV genes to promote organ formation [11].

However, neither the genes directly regulated by CNA nor the

biological functions influenced by CNA have been identified, and

CNA function during secondary growth in plants has not been

examined.

Class III HD ZIP transcription factors are evolutionarily ancient

and found in all major lineages of land plants [17,20,29].

Importantly, Class III HD ZIPs predate evolution of vascular

tissues and adaxial polarity of lateral organs [29], suggesting that

many of the functions assigned to Class III HD ZIPs in

angiosperms are derived. Ancestral functions of Class III HD

ZIPs could include regulation of apical or meristematic growth

[20,29], and auxin transport [30]. While Class III HD ZIPs roles

during secondary growth have not been characterized, they are

known to be expressed during secondary growth from microarray

analysis of wood forming tissues in Populus [5,31,32]. Class III HD

ZIPs are thus candidates for regulating fundamental developmen-

tal processes acquired during the evolution of secondary growth.

We report here the cloning and characterization of a Populus

CNA ortholog, POPCORONA (PCN). We defined roles for PCN

during secondary growth by examining PCN expression and

mutant phenotypes in transgenic Populus expressing either an

artificial miRNA targeting PCN transcripts or overexpressing a

miRNA-resistant form of PCN. Together, our results suggest that

PCN regulates development of secondary vascular tissues,

potentially through regulation of transcriptional modules associ-

ated with cell differentiation and/or hormone-mediated processes.

Results

POPCORONA encodes a Class III HD ZIP transcription
factor

The POPCORONA (PCN) gene (also called Pt-ATHB.12; Joint

Genome Institute Populus v.1.1 gene model fgenesh4_pm.C_

LG_I000560; Phytozome Populus v2.0 gene model POPTR_

0001s18930: GenBank XM_002299699) was amplified from

cDNA of the sequenced Populus trichocarpa individual [33] based

on similarity to the Arabidopsis thaliana ATHB15/CORONA

(Materials and Methods). To determine the relationship of PCN

to other Class III HD ZIPs, a phylogenetic analysis of Class III

HD ZIP sequences from whole-genome sequencing projects was

undertaken (Materials and Methods). Maximum parsimony

analysis from the nucleotide sequence alignment of the coding

sequences of Class III HD ZIPs found in 17 plant species and

deduced from amino acid sequence alignments yielded a single

tree, with clade support from Bayesian and bootstrap analysis

(Fig. 1). Sequences from Physcomitrella patens, a moss, were used as

outgroups to root the tree. Sequences from the lycophyte

representative, Selanginella moellendorffii, formed a clade (53%

bootstrap, 1.00 Bayesian) sister to sequences from the angiosperm

taxa, which formed a strongly supported (100% bootstrap, 1.00

Bayesian) clade. These results all reflect previously reported Class

III HD ZIP gene family relationships [17,20]. Among the

angiosperm sequences, three strongly supported clades were

formed, REV, PHB/PHV, and C8, which is in agreement with

previous reports [17]. REV and PHB/PHV clades are sister to

each other forming a larger clade that is sister to C8. Relationships

within each of the three clades are generally consistent with

currently accepted ideas about angiosperm phylogeny [34]. Our

analysis includes four representative species from the grass lineage;

O. sativus, Z. mays, B. distachyon, and S. bicolor, allowing further

details in the divergence of homologues within this monocot

lineage. Sequences from these four species form monophyletic

clades separate from the eudicot species. Within these clades two

duplication events appear to have occurred after the monocot-

eudicot split. This duplication likely represents the grass whole

genome duplication event [35,36].

The major duplication events previously reported are mostly in

agreement with our phylogenetic tree, with a few exceptions. Our

phylogeny does not include representatives of species within the

ferns, basal angiosperms, or gymnosperms, and therefore our

analysis cannot dispute or support duplication events that were

suggested previously to have occurred in these lineages. In our

parsimony tree (Fig. 1), bootstrap supports AtHB8 and AlHB8

(100% bootstrap), and MgHB7 (80% bootstrap) as sister to the rest

of the CNA/HB8 eudicot clade, while Bayesian analysis supports

them within the HB8 clade (1.00 Bayesian). Supporting AtHB8,

AlHB8, and MgHB7 within the HB8 clade is evidence for a

duplication event resulting in the HB8 and CNA clades, as

previously reported (Prigge and Clark, 2006). Therefore, our

parsimony and Bayesian analysis are not in agreement with their

placement, and only partially support previous suggestions of a
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duplication event in C8 clade. This inconsistency may be an

artifact of limited and uneven sampling, as discussed above.

Within Populus, each Class III HD ZIP is represented by two

paralogs (Fig. 1), reflecting the genome duplication event whose

signature was found in analysis of the P. trichocarpa genome [33].

Independent duplication events are present in the PHV/PHB

clade in the A. thaliana and Populus lineages (Fig. 1). Two paralogs

of A. thaliana ATHB15/CNA are present, including PCN and Pt-

ATHB.11 (Phytozome Populus v2.0 gene model POPTR_

0003s04860; Joint Genome Institute Populus v1.1 gene model

estExt_fgenesh4_pg.C_LG_III0436).

PCN is expressed during secondary growth
PCN is expressed in shoot apices, leaves, stems, and roots of

young Populus plants. Transcript levels were determined for organs

of tissue culture-grown Populus alba x tremula using quantitative real

time PCR (Materials and Methods). Primers amplifying PCN

transcripts revealed highest expression in stems and apices, with

lower but significant expression in leaves and roots (Fig. 2a).

Primers amplifying a PCN paralog, Pt-ATHB.11, showed similar

expression patterns for this gene, although expression was slightly

higher in apices relative to stem tissues (Fig. 2b).

PCN is expressed broadly in the cambial zone and xylem of

Populus shoots. Whole mount in situ hybridization was used to

visualize PCN expression in tangential sections from different

developmental stages of Populus stems (Materials and Methods).

During primary growth and the transition to secondary growth,

PCN is expressed broadly in the cambial zone and in developing

xylem (Fig. 3a,b). Later in development, phloem fiber differenti-

ation becomes evident (Fig. 3e,f) and weak signal is seen outside of

the cambial zone at this stage in the developing phloem, including

the phloem fibers (Fig. 3e,f). Moving further down the stem into

developmentally older tissues, PCN expression is maintained

within developing xylem, and is most pronounced in rays (Fig. 3

i,j). At the base of the stem, strongest expression is found in the

cambial zone, with reduced expression in the secondary xylem

(Fig. 3m,n). However, expression is still pronounced within the

rays traversing the secondary xylem (Fig. 3n). In comparison to

sense-probe negative controls (Fig. 3c,g,k,o), the in situ staining of

experimental sections with the PCN antisense probe is specific and

has relatively low background. However, based on comparison of

PCN antisense and sense negative control sections we cannot

exclude the possibility of low PCN expression, cross hybridization

to related genes, or diffusion of the stain in epidermis, pith cells, or

other tissues/cell types. Differential staining caused by differences

in cytoplasmic density of cell types is revealed by an antisense

probe for a presumably ubiquitously expressed gene encoding a

50S ribosomal protein (Fig. 3d,h,l,p).

Misregulation of PCN results in whole plant phenotypes
To examine the function of PCN during plant development, the

Populus clone INRA 717-IB4 (Populus alba x P. tremula) was

transformed with recombinant DNA constructs to either up or

down-regulate PCN transcript levels. To upregulate PCN transcript

Figure 1. Phylogenetic relationships among Class III HD ZIP gene family in land plants determined using maximum parsimony
analysis. Bootstrap support values above 50% are presented above branches and Bayesian support values above 0.50 are presented below
branches, where * indicates maximum 1.00 support. Black squares indicate major duplication events, while the empty square represents evidence of
a duplication event without bootstrap support. Major clades are presented by longitudinal lines to the right of the tree, where solid lines represent
fully supported monophyletic clades (PHB, C8, and CNA) and dashed lines indicate clade supported by Bayesian, but not bootstrap support. Black
triangles represent where the AtHB8, AlHB8, MgHB7 clade is supported according to Bayesian analysis. Species abbreviations: At, Arabidopsis thaliana;
Bd, Brachypodium distachyon; Al, Arabidopsis lyrata; Cp, Carica papaya; Cs, Cucumis sativus; Gm, Glycine max; Me, Manihot esculenta; Mt, Medicago
truncatula; Mg, Mimulus guttatus; Os, Oryzas sativa; Pt, Populus trichocarpa; Pp, Physcomitrella patens; Rc, Ricinus communis; Sm, Selanginella
moellendorffii, Sb, Sorghum bicolor; Vv, Vitis vinifera; Zm, Zea mays.
doi:10.1371/journal.pone.0017458.g001

Figure 2. Expression of PCN (Fig. 2a) and PCN paralog Pt-
ATHB.11 (Fig. 2b) in organs, as assayed by Quantitative Real
Time PCR. Relative expression of PCN and paralog Pt-ATHB.11 in apices,
leaves, roots, and stem was determined using Quantitative Real Time
PCR (QRT-PCR) of two month old tissue culture grown Populus tremula x
alba. PCN and paralog Pt-ATHB.11 are expressed in all tissues assayed,
and are highly expressed in shoot apexes and stem tissue with active
cambium. Stem tissue samples were confirmed to have a vascular
cambium by phloroglucinol staining of secondary xylem. Relative
expression (Mean 6 SE) was calculated from triplicate QRT-PCR reactions
of independent RNA samples prepared from different trees.
doi:10.1371/journal.pone.0017458.g002
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levels, a PCN cDNA was modified to change the miRNA165/166

recognition sequence without changing the amino acid sequence

when translated into protein, thus making the transcript

transparent to negative regulation by miRNA165/166 (Materials

and Methods). This cDNA was cloned behind a 35S cauliflower

mosaic virus promoter in a T-DNA vector to create construct

35S::PCN-miRNAd, and transformed into Populus using an

Agrobacterium-based method (Materials and Methods). To down-

regulate PCN transcripts levels, an artificial miRNA [37,38] was

designed to target both PCN and its paralog, Pt-ATHB.11, and

cloned behind the 35S promoter in a T-DNA vector to create

construct 35S::miRNA-PCN, which was then transformed into

Populus (Materials and Methods). Two plants independently

transformed with 35S::PCN-miRNAd, and two plants indepen-

dently transformed with 35S::miRNA-PCN were recovered and

used in the analyses here. Quantitative Reverse Transcriptase

Polymerase Chain Reaction (Q-RT-PCR) analysis of the trans-

formants and wild-type controls showed that for plants trans-

formed with 35S::PCN-miRNAd, one line (35S::PCN-miRNAd-4-

1) had approximately two-fold increase of PCN transcript

abundance relative to controls, while line 35S::PCN-miRNAd-4-

3 had over twelve-fold increase in PCN transcript abundance

Figure 3. Expression of PCN during Populus stem development revealed by whole mount in situ hybridization. Antisense PCN (first and
second columns), sense negative control (third column), and positive control (fourth column) probes were hybridized to stem sections from two
month old tissue culture grown trees. (a) Section from first elongating internode hybridized with antisense PCN probe. PCN is expressed broadly
during primary growth, with strongest expression associated with procambium. (b) Higher magnification of first elongating internode hybridized
with antisense PCN probe. (c) Section from first elongating internode hybridized with sense PCN probe (negative control), showing minimal
background hybridization. (d) Section from first elongating internode hybridized with antisense pop50S probe (positive control). (e) Section from the
fourth internode, hybridized with antisense PCN probe. PCN is expressed broadly in the cambial zone, and strongly in differentiating xylem. (f) Higher
magnification of (e). (g) Section from the fourth internode hybridized with negative control sense PCN probe. (h) Section from fourth internode
hybridized with positive control antisense pop50S probe. (i) Section from seventh internode hybridized with antisense PCN probe. PCN expression is
mostly associated with differentiating xylem cells and lightly in cambial zone. (j) Higher magnification of (i). (k) Section from seventh internode
hybridized with sense PCN probe (negative control). (l) Section from seventh internode hybridized with positive control antisense pop50S probe. (m)
Section from the base internode hybridized with antisense PCN probe. PCN expression is largely limited to the differentiating xylem cells and cambial
zone. (n) Higher magnification of (m). (o) Section from the base internode hybridized with sense PCN probe (negative control). (p) Section from the
base internode hybridized with positive control antisense pop50S probe. Cambial zone (Ca), Phloem fiber (Pf), Procambium (Pc), Ray (r), Xylem (Xy),
Bar = 100 mm.
doi:10.1371/journal.pone.0017458.g003
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(Fig. 4a). Only modest downregulation of PCN transcript

abundance was found for artificial miRNA lines (up to

approximately two-fold reduction in line 35S::miRNA-PCN-3-4),

indicating the artificial miRNA was only partially effective in

reducing PCN transcripts (Fig. 4b).

Compared with matched wild-type controls (Fig. 5a),

35S::PCN-miRNAd-4-3 plants have shorter internodes, darker

green leaves, and large stipules (Fig. 5b). The mutants did not

present any obvious polarity defects, barren axils, or root

phenotypes. Plants transformed with 35S::miRNA-PCN did not

show any consistent whole plant phenotypes in culture, perhaps

reflecting that the modest decrease in transcript abundance for

PCN and its paralog in these plants, or that loss of PCN function

may not result in a strong phenotype.

Misregulation of PCN alters secondary growth
Wild-type Populus make a gradual transition from primary to

secondary growth. Under our culture conditions, wild-type Populus

clone INRA 717-IB4 (Populus alba x P. tremula) is already

transitioning to secondary growth by the fourth elongating

internode from the apex, as seen in stem cross sections stained

with toluidine blue (Fig. 6). By the seventh internode, secondary

xylem characterized by cell files derived from the cambial initials is

apparent (Fig. 6a). Nascent phloem fibers are apparent by the

seventh node but are not yet highly lignified. At the base of the

stem, cell files of lignified secondary xylem can be seen emanating

from the cambial zone, and fully differentiated and lignified

phloem fibers are seen at the periphery of the phloem (Fig. 6c). At

lower magnification (Fig. 6d), the radial organization of the stem is

seen, with successive layers of pith, secondary xylem, cambial

zone, secondary phloem and phloem fibers, cortex, and epidermis.

In 35S::PCN-miRNAd-4-3 plants, cell files within the cambial

zone are more readily apparent than in wild-type control plants at

the fourth internode (Fig. 6e). The premature appearance of

differentiating phloem fibers also distinguishes these stems from

the wild-type, although the fibers are not lignified (Fig. 6e).

Internode seven of 35S::PCN-miRNAd-4-3 plants is characterized

by a distinct cambial zone, modest secondary xylem, and

unlignified cells presumed to be differentiating phloem fibers

(Fig. 6f). A section from the base of the stem shows relatively well-

developed secondary xylem, but is largely lacking the lignified

phloem fibers that conspicuously occur in the periphery of the

phloem of wild-type plants. Thus, although phloem fiber

differentiation appears to initiate prematurely in 35S::PCN-

miRNAd plants, they do not complete normal differentiation

and lignification.

As mentioned, 35S::miRNA-PCN plants had only a modest

reduction in PCN transcript abundance (Fig. 4), and no whole

plant phenotype was apparent (Fig. 5). However, cross sections

revealed subtle defects in stem development. At the fourth

internode from the apex, lignified phloem fibers are already

apparent in 35S::miRNA-PCN plants, while they are lacking at

this stage of development in the wild-type (Fig. 6I). Also at this

position, cambium activity is evident as cell files within the cambial

zone, and modest amounts of secondary xylem have formed. By

internode seven, 35S::miRNA-PCN plants have more abundant

secondary and noticeably more highly lignified phloem fibers than

the wild-type (Fig. 6j). Sections through the bottom of the stem are

similar to the wild-type, except that there is abnormal lignification

of some cells within the pith (Fig. 6 k,l). These abnormally lignified

cells are primarily found adjacent to the position of primary

vascular bundles (Fig. 6k,l). In summary, misexpression or down-

regulation of PCN results in differences in the number of phloem

fibers, number of xylem cell layers, and number of lignified pith

cells, as quantified in Fig. 7.

Misregulation of PCN changes expression of genes
associated with gene regulation, hormones and cell
differentiation

To begin to understand the biological processes and genes

regulated directly or indirectly by PCN during secondary growth,

global transcript abundance was assayed using microarrays for

Figure 4. PCN expression levels in PCN 35S::PCN-miRNAd gain of
function and 35S::miRNA-PCN knockdown transgenic plants
relative to wild-type controls. PCN expression levels were detected
by Quantitative Real Time PCR (Materials and Methods). Relative
expression levels (mean 6 SE) were calculated from triplicate qRT-PCR
reactions of independent RNA samples for each transgenic and the
wild-type prepared from different batches of two month-old plants. T
test (P,0.05) comparison showed significant differences of expression
in all transgenics compared to the wild-types. (a) Comparison PCN
transcripts in wild-type and 35S::PCN-miRNAd gain of function plants. (b)
Comparison PCN transcripts in wild-type and 35S::miRNA-PCN plants.
doi:10.1371/journal.pone.0017458.g004

Transcriptional Regulation of Secondary Growth

PLoS ONE | www.plosone.org 6 February 2011 | Volume 6 | Issue 2 | e17458



stems from wild-type control and 35S::PCN-miRNAd-4-3 plants

(Materials and Methods). RNA was isolated from stems of four

plants each of 35S::PCN-miRNAd-4-3 and matched wild-type

controls (Materials and Methods). The RNA quality and quantity

was assayed with Agilent Bioanalyzer before being labeled and

hybridized to Affymetrix Populus whole transcriptomes gene chips

(Materials and Methods). The resulting data were normalized and

analyzed using dChip software (http://biosun1.harvard.edu/

complab/dchip/) to identify genes with statistically differential

expression between the wild-type and 35S::PCN-miRNAd stems

(Materials and Methods). Data are available as accession

GSE19467 through NCBI GEO (http://www.ncbi.nlm.nih.gov/

geo/).

Of the approximately 45,000 genes in the Populus genome [33],

237 genes showed statistically significant two-fold or greater

differential transcript abundance between the wild-type and

35S::PCN-miRNAd stems (see Supplemental Table S3 for analysis

of all probes with statistically different transcript levels). Of these

genes, those belonging to three biological categories (transcription,

hormone-related, and cell wall-related) are discussed here in more

detail with the idea that they are potentially associated with the

function of PCN and the phenotype of PCN transgenics. It should

be noted that presumably only a subset of these genes may be

direct targets of PCN.

Sixteen genes encoding transcription factors from ten different

families are misregulated in 35S::PCN-miRNAd stems (Table 1).

Interestingly, this group includes Populus orthologs of A. thaliana

transcription factors that have been implicated in a transcriptional

network controlling vascular cell differentiation and lignification.

SECONDARY CELL WALL-ASSOCIATED NAC DOMAIN

(SND) and VASCULAR RELATED NAC DOMAIN (VND)

proteins have been shown to positively regulate expression of

specific MYB transcription factors [9,39,40,41]. In 35S::PCN-

miRNAd stems, transcript levels of Populus orthologs of NAC7/

VND4 (gw1.III.864.1) and SND2 (eugene3.01240095) are upre-

gulated, as are orthologs of previously proposed VND/SND

targets MYB83 (gw1.IX.3293.1), MYB85 (gw1.IX.3293.1),

MYB52 (eugene3.00120054) [9,39]. Additionally, a Populus

ortholog (fgenesh4_pm.C_scaffold_66000095) of XYLEM ENDO-

PEPDIDASE 1 (XCP1) as well as categories (cellulose synthesis-

related, lignin-related) and specific orthologs of cell wall-related

genes (including IRREGULAR XYLEM3 and IRX8 orthologs) that

are targets of these MYB transcription factors [39] are

misregulated in 35S::PCN-miRNAd stems (Table 2).

Nineteen cell wall-related genes have altered transcript levels in

35S::PCN-miRNAd (Table 2). Four of the eight cell wall-related

genes with increased transcript levels are involved in cellulose

biosynthesis, including the previously mentioned orthologs of IRX3

and IRX8 as well as orthologs of CESA1/RSW1 (grail3.0052005901)

and CSLA9/RAT4 (estExt_fgenesh4_pm.C_LG_VIII0087). The

remaining eleven wall-related genes have lower transcript levels in

35S::PCN-miRNAd and participate in functions including lignifica-

tion (putative laccase, cinnamoyl CoA reductase, chalcone synthase),

and pectin biosynthesis and modification (putative pectin methyles-

terases and pectinesterase).

Six hormone-related genes are misregulated in 35S::PCN-

miRNAd (Table 3). Two putative auxin-responsive genes

(grail3.0050017401, grail3.0061005101) show elevated transcript

levels in 35S::PCN-miRNAd. While two gibberellin-related genes

have higher transcript levels in 35S::PCN-miRNAd, one (GA 20-

Figure 5. Phenotypes of PCN 35S::PCN-miRNAd gain of function and 35S::miRNA-PCN knockdown plants compared to wild-type
controls. (a) Wild-type plants (2 months old). (b) PCN 35S::PCN-miRNAd gain of function (2 months old) plants have changes to plant architecture,
shorter plants length, darker green color in leaf. (c) 35S::miRNA-PCN knockdown plants (2 month old) have no strong differences from the wild-type.
Bar = 2.5cm.
doi:10.1371/journal.pone.0017458.g005
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oxidase, fgenesh4_pm.C_LG_II000702) is putatively involved in

GA biosynthesis [42] while the other (GA 2-oxidase, estExt_

fgenesh4_pg.C_LG_XI0670) is putatively involved in GA catab-

olism [43]. Transcript abundance for a gene encoding a putative

cytokinin oxidase (gw1.VI.2253.1) involved in inactivation of

cytokinin [44] and a gene encoding a cytokinin response factor

(Table 1, gw1.I.8677.1) are lower in 35S::PCN-miRNAd. Auxin,

cytokinin, ethylene, and gibberellins have been implicated in

various studies as regulators of vascular development and

secondary growth, although their precise roles remain uncertain

[1].

Discussion

Class III HD ZIP transcription factors have been implicated in

regulating diverse developmental processes, but their function

during secondary vascular development has not been addressed.

In addition, the genes and cellular processes regulated by Class III

HD ZIPs are poorly understood. We examined here the

expression and function of a Populus Class III HD ZIP,

POPCORONA (PCN), during secondary growth and correlated

PCN expression with changes in anatomy and gene expression that

are consistent with a role in influencing cell differentiation.

Class III HD ZIPs are best characterized in Arabidopsis thaliana,

where they have been shown to be involved in meristem initiation

and function, polarity of lateral organs, and vascular development.

Interestingly, among the Class III HD ZIPs in A. thaliana, only

REVOLUTA and CORONA (CNA) present loss of function

phenotypes [10,11,45,46,47,48]. The cna loss of function pheno-

type is subtle, and largely limited to a slightly increased meristem

size [11]. In A. thaliana, CNA is among the earliest expressed

markers of vascular development [11,25], and is expressed in

procambial cells in leaves, shoot apical meristems, floral

meristems, stamens, and carpels [11,25]. A zinnia ortholog of

CNA, ZeHB-13, is also expressed in procambial cells of developing

leaves, but is not expressed at detectable levels in mature leaves

[25]. In addition, ZeHB-13 is expressed in tracheary elements

differentiating in vitro, but is not directly induced by cytokinin or

auxin in that system [25]. We found that PCN is not restricted to

provascular cells or primary xylem in Populus stems during primary

growth. In Populus, PCN is also expressed during secondary growth,

with strongest expression in phloem fibers, the cambial zone,

Figure 6. Transverse sections of stems from two month old wild-type and 35S::PCN-miRNAd gain of function and 35S::miRNA-PCN
knockdown Populus. (a) Section from fourth internode of wild-type Populus stem during primary growth. (b) Section from seventh internode of
wild-type Populus stem during transition to secondary growth, showing secondary xylem tissue formation. (c) Section from bottom internode of wild-
type Populus stem showing secondary phloem fibers and secondary xylem tissue. (d) Lower magnification view of bottom internode of wild-type
stem. (e) Section from fourth internode of 35S::PCN-miRNAd gain of function Populus stem during primary growth, showing increased cambium cell
layers. (f) Section from seventh internode of 35S::PCN-miRNAd gain of function Populus stem during transition to secondary growth, showing delayed
secondary xylem formation. (g) Section from bottom internode of 35S::PCN-miRNAd gain of function Populus stem showing no lignified phloem fibers
formation and decreased xylem tissue. (h) Lower magnification of section from bottom internode of 35S::PCN-miRNAd gain of function Populus stem
showing no lignified phloem fibers formation and decreased xylem tissue. (i) Section from fourth internode of 35S::miRNA-PCN knockdown Populus
stem showing early formed lignified phloem fibers and xylem cells by comparing with the wild-type. (j) Section from seventh internode of
35S::miRNA-PCN knockdown Populus stem showing increased secondary phloem fibers and xylem tissue formation by comparing with the wild-type.
(k) Section from bottom internode of 35S::miRNA-PCN knockdown Populus stem showing ectopic lignifications in pith cells. (l) Lower magnification of
section from bottom internode of 35S::miRNA-PCN knockdown Populus stem showing ectopic lignifications in pith cells. Cambial zone (Ca), Phloem
(Ph), Phloem fiber (Pf), Xylem (Xy), Bar = 100 mm.
doi:10.1371/journal.pone.0017458.g006
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developing xylem, and potentially pith (Figure 3). Interestingly,

PCN expression is maintained in older secondary xylem, and

appears to be associated with rays (Figure 3). The observation that

PCN expression is maintained in secondary vascular tissues but not

primary vasculature of leaves could reflect differences among

species, but more likely reflects differences among these tissue

types. Specifically, cambial and ray tissues are not present in

primary vasculature of leaves.

To examine the function of PCN, we created transgenics

expressing either an artificial miRNA targeting PCN transcripts

(35S::miRNA-PCN) or a PCN cDNA with the endogenous miRNA

recognition site mutated (35S::PCN-miRNAd). 35S::miRNA-PCN

plants showed a subtle phenotype, which includes precocious

differentiation of phloem fibers, and abnormal lignification of pith

cells in proximity to primary vascular bundles (Figure 6). This subtle

phenotype likely reflects the observation that the artificial miRNA

was only partially effective in reducing PCN transcript levels, but

could also reflect functional redundancy with other family members

as has been described for A. thaliana Class III HD ZIPs [10]. While

the A. thaliana cna loss of function phenotype is subtle [11], A. thaliana

plants expressing an antisense CNA transgene present a strong

phenotype that includes dwarfing, expansion of xylem and

interfascicular tissues, and lignification into the pith (Kim et al.,

2005). Possible explanations for the discrepancy between these

phenotypes include that cna alleles characterized may not be

complete loss of CNA function, or that the sense transgene affected

expression of multiple Class III HD ZIP family members.

Populus overexpressing a miRNA-resistant (non-cleavable) PCN

(35S::PCN-miRNAd) had stronger stem phenotypic changes, with

delayed differentiation of secondary xylem and severe reduction of

phloem fiber differentiation (Figure 6). Cells consistent with

nascent phloem fibers form in appropriate positions in 35S::PCN-

miRNAd plants, but fail to complete differentiation or fully lignify.

Phloem fibers could be considered abaxial in their position within

the stem, as their position is analogous to and continuous with the

abaxial phloem of primary vascular tissues in leaves. Although one

possible interpretation of this phenotype is that overexpression of

PCN promoted adaxialization of the stem affecting phloem fiber

development, we do not favor this interpretation, in part because

phloem fibers initiate in an appropriate position, and simply fail to

properly complete differentiation. Additional evidence supporting

primary affects of PCN on cell differentiation vs. patterning was

provided by gene expression profiling of PCN mutant stems. Genes

associated with the biosynthesis, response, or catabolism of auxin,

gibberellin, and cytokinin were misregulated in 35S::PCN-

miRNAd stems (Table 3). In addition, an AP2-like transcription

factor orthologous to Cytokinin Response Factor 2 (CRF2) is

downregulated in 35S::PCN-miRNAd stems. CRF2 is upregulated

by cytokinin, and acts with other CRFs to regulate a large fraction

of genes involved in cytokinin response [49]. Interestingly, these

same hormones have all been implicated in fiber differentiation,

with auxin and gibberellin flowing basipitally through the stem

from leaves [50,51], and cytokinin from roots [52]. Indeed,

mutations in the related A. thaliana Class III HD ZIP REVOLUTA/

INTERFASCICULAR FIBERLESS 1 can result in defects in

interfascicular fiber differentiation [47], which are associated with

polar auxin transport defects in stems [48]. These results are also

consistent with the implication of Class III HD ZIP genes in

affecting expression of PIN1, an auxin efflux transporter, during

embryogenesis in A. thaliana [30]. Thus, we favor the interpretation

that PCN phenotypes do not reflect patterning or polarity defects,

but more likely hormone-related defects and changes in genes

involved in cell differentiation and cell wall biosynthesis, as

discussed below.

In addition to hormone-related genes discussed above, other

transcription factors as well as cell wall biosynthetic genes are

misexpressed in 35S::PCN-miRNAd stems (Table 1, 2). Interest-

ingly, these genes include homologs of SECONDARY CELL WALL-

ASSOCIATED NAC DOMAIN (SND), VASCULAR RELATED NAC

DOMAIN (VND), and MYBs that have been implicated in a

hierarchical pathway regulating genes involved with tracheary

element development and cell wall synthesis and lignification

[9,39,40,41]. Cell differentiation and cell wall-related genes

associated with these transcriptional regulators also show mis-

regulation in 35S::PCN-miRNAd (see Results). The changes in cell

Figure 7. Quantification of phenotypes in bottom internode of
35S::PCN-miRNAd gain of function and 35S::miRNA-PCN knock-
down transgenics. (a) Comparison of number of phloem fibers in the
bottom internodes of wild-type, 35S::PCN-miRNAd gain of function and
35S::miRNA-PCN. (b) Comparison of number of lignified xylem cell layers
in the bottom internodes of wild-type, 35S::PCN-miRNAd gain of
function and 35S::miRNA-PCN. (c) Comparison of number of lignified
pith cells in the bottom internodes of wild-type, 35S::PCN-miRNAd gain
of function and 35S::miRNA-PCN. Relative expression levels (mean 6 SE)
were calculated from three cross-sections of the bottom internodes of
three independent wild type plants, three miRNAd gain of function
transgenics, three 35S::PCN-miRNAd transgenics prepared from differ-
ent batches of two month-old plants.
doi:10.1371/journal.pone.0017458.g007
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wall–related genes, including downregulation of lignin-related

genes in 35S::PCN-miRNAd stems are consistent with anatomical

phenotypes, which include inhibition of phloem fiber lignification

in 35S::PCN-miRNAd and abnormal lignification of cells in the

pith of 35S::miRNA-PCN. Importantly, it should be noted that the

two SND/VND genes misexpressed in 35S::PCN-miRNAd are

orthologous to SND2 and NAC7/VND4, not the better

characterized SND1 and VND6&7 [8], and the expression

relationships of MYBs to putative targets is altered. Thus, in

addition to differences expected between species and tissue types,

the relationships among the transcriptional networks underlying

secondary growth in Populus and primary growth in A. thaliana will

require further study to comprehensively compare.

Given that Class III HD ZIPs are evolutionarily ancient and

predate evolution of vascular tissues [29], the function of PCN

during secondary growth must be derived. PCN and its orthologs

in A. thaliana and Zinnia [11,17,25] are not uniquely expressed

during secondary vascular development, and the proteins’

biochemical functions are presumably the same in the different

tissues where it is expressed. However, it is possible that target

genes of PCN vary between tissues, because of differences in

available partners for dimerization, dominant negative LITTLE-

ZIPPERs [53,54], different co-factors, or differences in regulation

by miRNA165/166 in different tissues. Although beyond the

scope of the work presented here, it will ultimately be very

informative to examine changes in gene expression for PCN or

related mutants in the various tissues in which these genes are

normally expressed. Unfortunately there are no published reports

of gene expression profiling for A. thaliana CNA mutants to date. An

example of a potentially important difference for PCN/CNA

Table 1. Transcription factors mis-regulated in PCN transgenics.

JGI Gene Accessiona Fold Changeb Arabidopsisc Definition Lined

grail3.0041013401 4.25 AT1G71692 AGAMOUS-like 12 (AGL12)

gw1.IX.3293.1 4.16 AT3G08500 MYB domain protein 83 (MYB83)

gw1.III.861.1 4.01 AT4G22680 MYB domain protein 85 (MYB85)

eugene3.00700057 3.62 AT2G30580 putative C3HC4 zinc finger protein

gw1.III.864.1 3.47 AT1G12260 NAM protein, NAC7/VND4

eugene3.00120054 3.36 AT1G17950 MYB domain protein 52 (MYB52)

*grail3.0001068602 3.24 AT1G10200 transcription factor LIM

estExt_fgenesh4_pg.C_570199 2.99 AT4G36740 A. thaliana homeobox protein 40 (ATHB40)

gw1.V.991.1 2.96 AT3G22830 heat shock transcription factor A6B (HSFA6B)

eugene3.01310019 2.7 AT1G09540 MYB domain protein 61 (MYB61)

eugene3.01240095 2.65 AT4G28500 NAM protein, SND2

gw1.II.2517.1 22.83 AT3G60530 GATA transcription factor 4 (GATA4)

gw1.XI.848.1 23.26 AT1G01030 DNA-binding protein

fgenesh4_pg.C_LG_XIV000644 24.28 AT1G67030 zinc finger protein (ZFP6)

*gw1.I.8677.1 24.96 AT4G23750 AP2 domain transcription factor, CRF2/TMO3

estExt_Genewise1_v1.C_LG_XIV3374 27.1 AT4G22070 WRKY DNA-binding protein 31 (WRKY31)

a.Accession number assigned by the Joint Genome Institute (http://genome.jgi-psf.org).
b.Fold Change is expressed as the ratio of gene expression in PCN gain of function transgenenics to wild type control.
c.Accession number of the best Arabidopsis BLAST return using the JGI gene model as query.
d.Definition line is from the Arabidopsis accession at TAIR (http://www.arabidopsis.org).
* Transcript level differences confirmed by qRT-PCR.
doi:10.1371/journal.pone.0017458.t001

Table 2. Genes up or down-regulated in PCN transgenics involved in hormone related processes.

JGI Gene Accessiona Fold Changeb Arabidopsisc Definition Lined

*fgenesh4_pm.C_LG_II000702 4.67 AT4G25420 gibberellin 20-oxidase

*grail3.0050017401 3.78 AT3G62100 auxin-responsive protein

*estExt_fgenesh4_pg.C_LG_XI0670 3.16 AT1G78440 gibberellin 2-oxidase

*grail3.0061005101 3.08 AT3G62100 auxin-responsive protein

gw1.VI.2253.1 22.41 AT5G21482 putative cytokinin oxidase

estExt_Genewise1_v1.C_LG_X3745 23.12 AT3G16770 ethylene-response element binding protein

a.JGI gene accession refers to the accession number assigned by the Joint Genome Institute (http://genome.jgi-psf.org).
b.Fold Change is expressed as the ratio of gene expression in PCN gain of function transgenenics to wild type control.
c.Arabidopsis refers to the accession number of the best Arabidopsis BLAST return using the JGI gene model as query.
d.Definition line is from the Arabidopsis accession at TAIR (http://www.arabidopsis.org).
* Transcript level differences confirmed by qRT-PCR.
doi:10.1371/journal.pone.0017458.t002
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function among tissues is illustrated by the observation that cna

mutations dramatically enhance CLAVATA (CLV) mutant pheno-

types in A. thaliana, and result in misexpression of CLV3 and

WUSCHEL [11]. Interestingly, microarray profiling of gene

expression in Populus stems undergoing secondary growth revealed

that Populus orthologs of CLV3 and WUS are not expressed during

secondary growth [5]. Although PCN may interact with other

family members related to WUS and CLV3 in the cambium, this

nonetheless indicates significant differences for PCN function

during primary and secondary growth.

Materials and Methods

Phylogenetic Analysis of Class III HD Zips
Gene sequences from the Class III HD Zips gene family were

recovered from species that have complete genome sequence using

the BLAST function in phytozome.net (Table S1). Genome

databases searched included Arabidopsis lyrata, Brachypodium distachyon,

Cucumis sativus, Glycine max, Manihot esculenta, Mimulus guttatus, Ricinus

communis, Selanginella moellendorffii, Zea mays Arabidopsis thaliana, Carica

papaya, Clamydomonas reinhardtii, Medicago truncatula, Oryzas sativa, Populus

trichocarpa, Physcomitrella patens, Sorghum bicolor, and Vitis vinifera. 94

unique sequences were found from the 18 complete species genomes.

The sequences were aligned with known Class III HD Zips from

previous work for identification (Prigge & Clark, 2006; Floyd et al.,

2006). For Z. mays three additional sequences were found and in M.

truncatula one additional sequence was identified. POPCORONA (PCN)

is variously known as Pt-ATHB.12; Joint Genome Institute Populus

v.1.1 gene model fgenesh4_pm.C_LG_I000560: Phytozome Populus

v2.0 gene model POPTR_0001s18930.

Nucleotide sequences were translated into amino acid sequences

using DAMBE [55]. Amino acid alignment was achieved using

ClustalX (version 1.8) [56] with all default settings. The alignment

was modified manually using MacClade 3.08 [57] and exported in

NEXUS format for further analysis with the final alignment

containing 3261 sites. A nucleotide alignment was created based

on the amino acid alignment using DAMBE [55].

Maximum parsimony analysis of the nucleotide alignment was

performed using PAUP* version 4.0b10 for Macintosh [58], with

heuristic searches using the TBR branch-swapping algorithm and

1000 random taxon addition replicates; the maxtrees setting was

allowed to increase automatically as necessary. Gaps within the

alignment were treated as missing data. Relative support for clades

was assessed using 1000 bootstrap replicates with 10 random taxon

addition replicates per bootstrap replicate and maxtrees capped at

100. Bayesian analyses, using the GTRIG model of sequence

evolution as selected by MrAIC [59], were implemented in

MrBayes 3.1.1 [60]. Double analyses were run with four chains for

1,000,000 generations, sampling every 100 generations. Trees

from the first 250,000 generations (2,500 trees) from each run were

discarded as burn-in, following the authors’ recommendations and

consistent with the observation that the likelihood scores from both

runs had stabilized. The sampled trees from both analyses were

pooled and majority-rule consensus trees were constructed from

the resulting 15,000 trees in order to estimate Bayesian clade

credibility values.

Plant Cultivation and Transformation
Hybrid aspen clone INRA 717-IB4 (Populus alba 6 P. tremula)

was used for all experiments. Plants were propagated and

Table 3. Genes up or down-regulated in PCN transgenics involved in cell wall synthesis related processes.

JGI Gene Accessiona Fold Changeb Arabidopsisc Definition Lined

*estExt_Genewise1_v1.C_LG_VI2188 3.76 AT5G17420 cellulose synthase, CESA7/IRREGULAR XYLEM 3 (IRX3)

estExt_fgenesh4_pm.C_LG_VIII0087 3.43 AT5G03760 cellulose synthase like, CSLA9/RAT4

grail3.0052005901 3.35 AT4G32410 cellulose synthase, CESA1/RADIALLY SWOLLEN1 (RSW1)

eugene3.00111083 3.10 AT5G54690 galacturonosyltransferase, IRX8

gw1.XV.2531.1 2.89 AT5G61750 germin-like protein-like

fgenesh4_pg.C_LG_I003312 2.82 AT1G23460 polygalacturonase

gw1.VII.534.1 2.72 AT4G28380 extensin-like protein

gw1.VI.781.1 2.44 AT4G30420 nodulin-like protein; MtN21 gene product

gw1.XIII.2619.1 22.52 AT2G23910 cinnamoyl CoA reductase-like

gw1.131.165.1 22.55 AT1G56710 polygalacturonase

grail3.0048017501 22.61 AT1G03870 fasciclin-like arabinogalactan 9 (FLA9)

gw1.856.4.1 22.83 AT3G22142 proline-rich cell wall protein

estExt_Genewise1_v1.C_LG_VII1401 22.97 AT5G09760 pectin methylesterase-like protein

gw1.VIII.2100.1 23.37 AT5G05390 LACCASE 12 (LAC12)

eugene3.00140920 23.55 AT5G13930 chalcone synthase, TRANSPARENT TESTA 4

estExt_fgenesh4_pm.C_1480004 23.78 AT2G44480 glycosyl hydrolase family 1

fgenesh4_pg.C_LG_V000014 23.95 AT5G09760 pectin methylesterase-like protein

gw1.X.3259.1 24.32 AT3G10720 pectinesterase

gw1.III.2711.1 26.6 AT1G62500 putative proline-rich cell wall protein

a.Accession number assigned to the assayed gene model by the Joint Genome Institute (http://genome.jgi-psf.org).
b.Fold Change is expressed as the ratio of gene expression in PCN gain of function transgenenics to wild type control.
c.Accession number of the best Arabidopsis BLAST return using the JGI gene model as query.
d.Definition line is from the Arabidopsis accession at TAIR (http://www.arabidopsis.org).
* Transcript level differences confirmed by qRT-PCR.
doi:10.1371/journal.pone.0017458.t003
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transformed using previously published methods [61]. Two

independently transformed lines were used for PCN gain of

function analysis (35S::PCN-miRNAd 2-1 and 35S::PCN-miR-

NAd 2-3). Two independently transformed lines were used for

PCN knock down analysis (35S::miRNA-PCN 6-1 and

35S::miRNA-PCN 6-4). All experiments were repeated at least

twice using each of the above transformed lines and matched wild-

type controls with similar results, unless otherwise stated.

Whole Mount in situ Hybridization
Whole mount in situ hybridization was performed as previously

described [7]. A 220-bp fragment from the 59 end of the PCN

coding region and a 292-bp fragment from the 59 end of the

Pop50S coding region were selected to design primers to generate

the template of probes using the gene-specific primers:. PtCN-

F:59CTTCTGGTTGTTGCGTTATAC-39; PtCN-R:59 CTCG-

GGCCATTTTGAGTATTT-39. Pop50S-F:59CCTAGTGTTC-

CTGTAACTCGCATTGG-39; Pop50S-R:59CTCCCACCACC-

ATGTTGTCCGTAAGTG-39. T7 promoter sequence 59-TAA-

TACGACTCACTATAGGG was added to the 59 end of the

PCN-R primer and Pop50S-R primer sequence to generate

templates of antisense probes for PCN and pop50S. T7 promoter

sequence was added to the 59 end of PCN-F primer sequence and

Pop50S-F primer sequence to generate templates of sense probes

for PCN and pop50S.

Recombinant DNA Constructs
The overexpression of Class III HD Zip genes is not expected to

yield strong phenotypes, as these genes contain a microRNA

binding site which negatively regulates transcript levels. To

prevent this mechanism masking the effects of overexpression of

the gene of interest, the microRNA binding site of PCN was

changed to abolish miRNA recognition while leaving the protein

sequence unchanged, as previously described [13]. The coding

sequence of PCN was amplified with PCR primers which replaced

base pairs in the microRNA binding site PCN_F 59-CTGGAAT-

GAAGCCTGGaCCaGATTCCAG-39 and PCN_R 59-GCAAC-

GATTCCACTGGAATCtGGtCCA-39 and sub-cloned into vec-

tor ART7 to make the entry clone ART7-PCN. The insert was

recombined into ART27 to generate 35S::PCN-miRNAd.

The 35S::miRNA-PCN construct was assembled to drive

expression of a synthetic miRNA by the 35S promoter. A 21

nucleotide sequence (59 TTGCGTTATACTTCTGTTTTA 39)

specific to PCN and its paralog, Pt-ATHB.11 (Phytozome Populus

v2.0 gene model POPTR_0003s04860; Joint Genome Institute

Populus v1.1 gene model estExt_fgenesh4_pg.C_LG_III0436) was

targeted based on published targeting parameters [62,63,64] and

uniqueness to PCN and its paralog, Pt-ATHB.11. The exact

complementary sequence (miRNA) is 59 TAAAACAGAAGTA-

TAACGCAA. Mismatches were introduced at positions four,

nine, and ten, and in positions 20 and 21 in the complementary

strand, to produce the following miRNA and miRNA* sequences.

miRNA: 59 TAAAACAGAAGTATAACGCAA 39

miRNA*: 59 ACGCGTTATACAACTGTATTA 39

A DNA was synthesized with these sequences replacing the

normal miRNA and miRNA* sequences within MIR164b [62] to

produce the following sequence containing Xho and Xba

restriction sites at the 5’ and 3’ ends, respectively. The sequence

CACC was added at 5’ end for directional cloning:

Xho-Xba MIR-PCN

5’CACCCTCGAGGAGAATGATGAAGGTGTGTGATGA-

GCAAGATAAAACAGA

AGTATAACGCAATTACTAGCTCATATATACACTCTC-

ACCACAAATGCGTGTAT

ATATGCGGAATTTTGTGATATAGATGTGTGTGTGT-

GTTGAGTGTGATGATATG

GATGAGTTAGTTCACGCGTTATACAACTGTATTATC-

ATGACCACTCCACCTTG

GTGACGATGACGACGAGGGTTCAAGTGTTACGCAC-

GTGGGAATATACTTATA

TCGATAAACACACACGTGCGTCTAGA3’

Microarray Analysis and Q-RT-PCR
For each genotype, three bulks of three plants each were

combined for RNA isolation from shoot apices, leaves, stem, and

root tissue of two-month-old tissue culture trees for microarray

analysis and Q-RT-PCR. Affymetrix GeneChipH Poplar Genome

Array oligonucleotide microarrays were used for all microarray

hybridizations. For microarray hybridizations, total RNA was

isolated from entire, defoliated stems of two months old tissue

culture grown plants. Three independent biological replicate

RNAs were isolated for each of three overexpression and miRNA

lines, and four independent biological replicates of matched wild-

type controls. Total RNA quantity and quality was determined

using an Agilent Bioanalyzer (Agilent Technologies, USA). Biotin

labeling of target RNAs was performed with one-cycle target kit

(One-Cycle Target Labeling and Control Reagents, Affymetrix,

P/N 900493), and hybridized according to the manufacturer’s

protocol.

Analysis of microarray data was performed with dChip (http://

biosun1.harvard.edu/complab/dchip/). Data were normalized

across arrays using median probe intensity of the baseline array.

Preliminary analysis established filtering and statistical cutoff

thresholds, using as criteria the false discovery rate, the

identification of biologically meaningful genes, and the inclusion

of genes confirmed as being misexpressed by Q-RT-PCR as

primary criteria. In the final analysis, model-based expression data

were filtered by removing genes whose representative probes did

not exceed . = 40% (presence call %) on a given array and . =

50% among arrays. Filtered genes were then compared based on

fold expression difference and t-test (p-value of 0.05). False

discovery rate was determined by 50 permutations to be 2.4% in

the final analysis. MIAME-compliant information about samples,

array platform, microarray data and further details of the samples

are available through NCBI GEO (GSE19467). Output from

microarray analysis is shown at the probe-level in Table S2 (and

includes probes designed against Populus ESTs), and for P.

trichocarpa gene models in Table S3.

Gene expression differences estimated by microarray analysis

were confirmed using qRT-PCR for the indicated genes in

Tables 1, 2 and 3. Gene-specific PCR primers were designed to

target genes showing differential expression in the microarray

comparison of 35S::PCN-miRNAd, 35S::miRNA-PCN and wild-

type trees. Primers with Tm of .59uC were designed to produce a

product 200-300bp. A tubulin-encoding gene (JGI accession

estExt_fgenesh4_pm.C_LG_III0736) was used as reference gene

for Q-RT-PCR. Q-RT-PCR was performed with an MJ Mini

Opticon (BioRad) following the manufacturer’s protocols.

Supporting Information

Table S1 Gene sequences from the Class III HD Zips gene

family recovered from species that have complete genome

sequence using the BLAST function in phytozome.net.

(TXT)

Table S2 Output from microarray analysis at the probe-level,

including probes designed against Populus spp. ESTs.

(XLS)
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Table S3 Output from microarray analysis at the level of P.

trichocarpa gene models, excluding probes designed against Populus

spp. ESTs.

(XLS)
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