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Abstract
HLA-DR0401, 0403 and 0405 are associated with variable T1D susceptibilities when linked with
a common HLA-DQ8 (DQA1*0301/DQB1*0302). It is unknown how the modest differences
within the peptide binding regions of DR4 subtypes lead to distinct autoimmune risks. Since all
Class II HLA molecules share the same intracellular compartments during biosynthesis, it is
possible that DQ and DR compete with one another to bind and present antigenic peptides. As
such, it is reasonable to hypothesize that a strong DR4 self-peptide binder down-modulates DQ8
epitope presentation more than a weak one. In this study, we first examined the binding of the
peptides derived from two putative beta-cell autoantigens – GAD65 and insulin. Protective
DR0403 bound similar number of self-peptides as susceptible DR0401 while highly susceptible
DR0405 bound substantially less self-peptides than rest two molecules. Kinetic assays were used
to further compare the stability of peptide:DR complexes formed between DR0401, 0403 and
selected GAD65 peptides, which also bound DQ8. Two peptides with naturally processed DQ8
epitopes bound protective DR0403 with longer half-life and lower dissociation rate than
susceptible DR0401, confirming DR0403 as a better peptide competitor than DR0401. The
distinguishing peptide binding features of DR0401, DR0403, and DR0405 highlighted in this
study help to explain the hierarchy of genetic associations between T1D and these DR4 subtypes.
The enhanced peptide competition of DR0403 leads to a down-modulation of DQ8 epitope
presentation, as compared to weak competitors such as DR0401 and DR0405, and therefore
contributes to disease protection.
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1. Introduction
Type 1 Diabetes (T1D) is a metabolic disorder caused by autoimmunity that destroys insulin
producing pancreatic beta-cells [1–3]. Although environmental mediators are involved in
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diabetogenesis, the family clustering of disease onset indicates that strong inherited factors
participate in diabetes etiology [4,5]. Approximately 40% of the familial aggregation of T1D
is attributed to allelic variation of Class II HLA loci on chromosome 6p21 [6,7]. A single
amino acid difference at position 57 of DQ β-chain (non-Asp β57 for susceptibility vs. Asp
β57 for protection) remarkably changes disease susceptibility [8,9]. In Caucasians,
DQB1*0302 is the most prevalent non-Asp β57 susceptible allele in T1D patients. This
allele encodes a β-chain for HLA-DQ8, which is responsible for the generation and
activation of CD4+ T cells that recognize beta-cell derived autoantigens.

However, the disease predisposition conferred by DQB1*0302 is likely modulated by its
closely linked DR loci [10–12]. A previous study reported that DQ8/DR0401 transgenic
mice had 3-fold lower incidence (23%) of spontaneous diabetes than DQ8 single transgenic
setting (75%) [12]. In humans, when DQ8 is linked with one of the DR4 subtypes
(DRA1*0101/DRB1*0401, 0402, 0403, 0404 and 0405), there is a hierarchy of association
with the onset of disease [13,14]. One recent study from the T1D Genetic Consortium
indicated that DQB1*0302-DRB1*0405 (OR = 11.37, P = 4 × 10−5) and DQB1*0302-
DRB1*0401 (OR = 8.39, P = 6 × 10−36) were associated to T1D with the highest risks,
while DQB1*0302-DRB1*0403 was protective (OR= 0.27, P = 0.017) [15]. Since all three
haplotypes share a common DQB1*0302, this variable association suggests that certain
underlying features allow them to “modify” the susceptibility of DQB1*0302 with variable
degrees. However, the mechanisms of this differential modification have not ever been
investigated.

Among many yet confirmed interpretations, a peptide competition model proposed that
protective Class II HLA alleles compete for diabetogenic peptides with susceptible ones so
that the autoreactive T cell responses are diminished or arrested due to insufficient self-
antigen presentation [16]. Using Ag-specific T hybridomas from immunized HLA
transgenic mice as readouts to evaluate Ag presentation [17], it was demonstrated that the
co-expression of DR0401 reduced the epitope presentation by DQ8 [18], suggesting peptide
competition (or epitope stealing) between DR0401 and DQ8. However, it is not known if
other DR4 subtypes would compete with DQ8 for peptides differently from DR0401. This
present study aimed to investigate the interaction between self-peptides and those DR4
subtypes. We used both indirect (equilibrium) and direct (kinetic) peptide binding assays to
reveal how the polymorphisms within the peptide binding regions of HLA-DR0401, 0403
and 0405 lead to different capacities for binding self-peptides. These observations suggested
a mechanism through which DQ8 epitope presentation is modulated by various DR4
subtypes, leading to different degrees of T1D predisposition.

2. Materials and methods
2.1. Peptides and Recombinant HLA-DR proteins

Partially (12 amino acid residues) overlapped peptide 20-mer panels covering human
Glutamic Acid Decarboxylase 65 (GAD65), preproinsulin (PPI) and influenza A/Puerto
Rico/8/34 (H1N1) M1 matrix protein (M1MP) were purchased from Mimotopes (Clayton
Victoria, Australia). Biotinylated peptides were purchased from Genescript (Piscataway,
NJ). Recombinant cDNAs for HLA-DRA1*0101, DRB1*0401, DRB1*0403 and
DRB1*0405 fused with leucine zipper sequences were constructed as previously described
[19]. The chimeric cDNAs were cloned into the Schneider expression vectors pRmHa-3 and
co-transfected with selection plasmid pUChsneo into Schneider cells S-2 by calcium
phosphate. High expression cell clones were selected with 2 mg/mL Geneticin (Invitrogen,
Carlsbad, CA) supplemented selection medium. Cells were expanded and grown to a density
of 6x106 cells/mL. CuSO4 was added at a concentration of 1 mM to induce the production
of soluble class II molecules. The DR0401 molecules were purified by L243 affinity
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chromatography. Eluted HLA-DR recombinant proteins were dialyzed into 200 mM pH6.0
sodium phosphate buffer. For this study, all purified recombinant proteins were not
biotinylated.

2.2. Indirect binding Assay
Biotinylated influenza hemagglutinin derived peptide HA306 (PKYVKQNTLKLAT) was
used as a reference peptide for DR0401 (ED50 for HA306 to bind 0.05 µM DR0401=0.035
µM from a 16-hour direct binding assay) and DR0405 (ED50 for HA306 to bind 0.05 µM
DR0405=0.271 µM) binding assays [20]. Since HA306 was unable to bind DR0403 (ED50
for HA306 to bind 0.05 µM DR0403≫15 µM), as an alternative, biotinylated GAD65-557I
(NFIRMVISNPAAT) was used as a reference peptide for DR0403 binding assays (ED50 for
557I to bind 0.05 µM DR0403=0.01 µM). Non-biotinylated HLA-DR proteins were diluted
into 150 mM pH5.4 citrate-phosphate buffer containing 7.5 mg/ml of n-Octyl-β-D-
Glucopyranoside and 1 mM Pefabloc. The final concentration of DR protein was 0.05 µM.
Serially diluted non-biotinylated target peptides (ranged from 0, 0.01, 0.05, 0.1, 0.5, 1, 5 and
10 µM) were incubated with DR protein respectively for 1 hour at 37 °C before adding 0.01
µM of reference peptide. The incubation was stopped after 16 hours by adding equal volume
50 mM pH8.0 Tris-Cl buffer and transferred to ELISA plate coated with anti-HLA-DR
monoclonal antibody L243 (10 µg/ml). The ELISA was performed in triplicate using
Europium-Streptavidin as detection (Perkin Elmer, Waltham, MA) to determine the binding
of reference peptides. The concentrations of target peptides required to inhibit 50% maximal
reference peptide binding (IC50) were calculated from regression curves fitted by sigmoidal
dose-response equation provided by Prism software (GraphPad, San Diego, CA). Coefficient
of variation for europium readings from each peptide cncentration triplicate group was less
than 10 % prior to curve generation and IC50 calculation. At least 6 data points were used
for curve fitting.

2.3. Kinetic Analysis (direct peptide binding)
Peptide:MHC binding stability was measured as the rate of peptide association and
dissociation from target Class II HLA molecules and half-life of peptide:MHC complex as
described previously [21,22]. For dissociation biotinylated target peptide (0.1 µM) mixed
with equal amounts of purified DR protein were incubated at 37 °C for 72 hours in 150 mM
pH5.4 citrate-phosphate buffer containing 2.5 mg/ml of n-Octyl-B-D-Glucopyranoside and 1
mM Pefabloc. After removal unbound biotinylated peptide by dialysis, the protein
concentration was adjusted to 0.05 µM and incubated an additional 72 hours at 37 °C in the
presence of 100 µM non-biotinylated cognate peptide. At different time points, a small
fraction of sample was removed and stored in −20 °C with the addition of an equal volume
of 50 mM pH8.0 Tris-Cl buffer. For association, biotinylated target peptide was mixed with
0.05 µM purified DR protein and incubated at 37 °C for 72 hours, with small fractions of the
sample collected and frozen at different time points. The biotinylated peptide that remained
bound to the target DR protein in each sample was determined by ELISA. Based on the
binding results from different time points, the dissociation curve was simulated by one-
phase exponential decay equation provided by Prism software. The dissociation rate
constant (Kd), binding half-life (t1/2) and corresponding 95% confidence intervals were also
determined from the simulated curve.

2.4. Statistics
To calculate p-values for kinetic results, an F-test was used to evaluate the difference
between dissociation rate constant (Kd) of peptide:DR4 complexes.
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3. Results
3.1. Binding between candidate peptides and recombinant HLA-DR4 proteins

A panel of GAD65 derived peptides was tested for binding to purified HLA-DR proteins
through indirect binding assay. The observed IC50 < 10 uM (a concentration equivalent to
1000-fold labeled reference peptide input, which was 0.01 uM) was assigned as the criterion
to determine whether a candidate peptide could successfully bind target DR protein. Out of
72 GAD65-derived peptides, 21 peptides were able to bind DR0401. The best fitted IC50
values of these 21 binding reactions and relevant GAD65 peptide sequences are detailed in
Table 1. DR0403 bound 23 GAD65 peptides. Only 8 peptides were able to bind DR0405.
The peptide binding assay results from preproinsulin showed that 2 peptides bound DR0401
and DR0403 (Table 2). No insulin peptide was able to bind DR0405. To assess whether the
weak binding nature of DR0405 was restricted to GAD65 and insulin (auto-antigens), we
also tested the binding of peptides derived from Influenza A M1 Matrix Protein – a foreign
antigen unrelated to T1D. Out of 30 peptides covering the entire sequence of MP1 (252
residues), 12 peptides bound DR0401 and 18 peptides bound DR0403, while only 3 peptides
were able to bind DR0405 (Table 3). Together, the binding results from two T1D-related
self-antigens and one foreign antigen suggested that DR0405 was intrinsically less capable
of binding peptides than DR0401 and DR0403. On the other hand, both DR0401 and
DR0403 bound a broad range of peptides. Since different reference peptides were used to
calculate IC50 values for these two DR4 subtypes, a direct comparison of binding affinity
between the peptides and DR0401 or DR0403 was not possible.

3.2. Differential peptide competition: DRB1*0401 and DRB1*0403 bound GAD65 peptides
with variable affinities and competed for peptides with DQ8 differently

We next chose kinetic assays to examine binding stability between selected GAD65 derived
peptides and DR0401 or DR0403. Unlike the competition assay, kinetic assays did not rely
on a reference peptide to calculate IC50 values as indicators of relative binding affinity.
Instead it measured association rate (Kd, in hour−1), dissociation rate (Kd, in hour−1) and
half-life (t1/2, in hour) of a peptide:MHC complex. The difference in binding affinity was
determined by a single parameter – time. As shown in supplementary figure 1, we found that
Kd was the most meaningful parameter for comparing the relative stability of peptide
binding. Based on these results, we decided to focus on dissociation kinetics in our study.
We were particularly interested in those peptides also bound DQ8 [23]. A previous study
suggested that the presentation of DQ8 epitopes was differentially down-modulated by the
co-expression of different DR4 subtypes [18]. Therefore, interrogating peptide binding
stability would provide biochemical evidence to explain those results. Combining our
DR0401 and DR0403 peptide binding results in Table 1 and a previous DQ8 peptide binding
study [23], we found 14 GAD65 peptides that bound DQ8 could also bind DR0401 and/or
DR0403 (Fig. 1A). Six peptides bound DQ8, DR0401 and DR0403. Two peptides,
GAD65p26 and GAD65p67 actually contained naturally processed DQ8 T epitopes [24].
The dissociation curves showed that GAD65p25, GAD65p26, GAD65p34, GAD65p42 and
GAD65p67 dissociated from DR0403 more slowly than from DR0401 (Fig. 1C–G and
Table 4). This indicated that these peptides formed more stable complexes with DR0403
than with DR0401. On the other hand, GAD65p24 bound DR0401 with higher stability than
DR0403 (Fig. 1B), indicated by a lower dissociation rate and higher half-life. Taken
together, kinetic measurements revealed relatively higher binding affinity between DR0403
and most selected GAD65 derived peptides than DR0401 – differences that could not be
observed using the indirect binding assay. No kinetic assays were performed for the insulin
derived peptides since none of the insulin peptides that bound DR0401 and/or DR0403 were
known to bind to bind to DQ8. For example, 9–23BIns a well studied DQ8-restrcited insulin
epitope was not bound by DR0401 or DR0403 [25, 26].
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4. Discussion
It has long been established that a diabetes susceptible HLA haplotype is best defined by a
combination of HLA-DQ and -DR alleles [10,11]. The effort to dissect the roles of
individual DQ and DR allele to T1D development is extremely difficult. However, a
hierarchy of risks associated with a panel of DQ8-DR4 haplotypes provides opportunities to
investigate the differential contribution of these individual DR4 subtypes such as DR0401,
0403 and 0405. Since these haplotypes share a common DQ8, the variable genetic risks
associated with these haplotypes are unambiguously due to DRB1*04 alleles themselves.
They could either direct distinct autoimmune T cell responses independent to DQ8 or affect
DQ8-restricted autoreactive T cell responses through down-modulating DQ8 epitope
presentation in variable degrees. An essential task to address these questions is to dissect
peptide binding properties – a study that had not been systemically conducted in the context
of variable risks for T1D development.

Naturally, these three DR4 subtypes differ from each other by amino acid residues at
position 57, 71, 74 and 86 of their beta-chains (Fig. 2). These polymorphisms are critical to
shape the DR peptide binding pockets (P1-β86; P4-β71; P9-β57) and they are intrinsic
factors leading to differential peptide binding activities, especially the residues at β86 and
β57 -- two important anchoring positions [27]. Most Class II HLA molecules encode an
Aspartic Acid at β57 , which interacts with an Arginine at α76 (for HLA-DR) or α79 (for
HLA-DQ) through an intramolecular salt-bridge [25] -- a feature that has been considered to
stabilize peptide binding. Class II MHC heterodimers without this feature have been
characterized as poor peptide binders such as T1D susceptible HLA-DQ2 and DQ8 in
humans as well as H2-Ag7 in NOD mice [21,28]. Our results indicated that DR0405, with a
Serine instead of an Aspartic Acid at β57, bound a very limited spectrum of peptides. The
observation significantly contrasted to the results of DR0401 and DR0403 – both bearing an
Asp at β57. Since peptides from more than one protein were studied, the weak binding
nature of DR0405 was not an atypical phenomenon. Our estimation is that this distinction
will also apply for other antigens in general. The limited spectrum of self-peptide binding
for DR0405 reiterates that the ability of the MHC molecule to bind a large set of self-
peptides is not a prerequisite for being a diabetes susceptible allele. It also suggests that
DR0405 may be less capable of competing for autoantigens with DQ8 than DR0403 and
DR0401 simply because it doesn’t have many candidate peptides to compete for. In
addition, previous studies have shown that DRB1*0405 is a prevalent allele in Japanese
T1D populations [29–31], in which DRB1*0405 is in closely linkage disequilibrium with
DQB1*0401 – one of the β57 Asp alleles that are generally regarded as diabetes resistant
DQ alleles. This implies that without the predisposition of a non-Asp β57 DQ allele,
DRB1*0405 may also be predisposing and directly contribute to the progression of diabetes
like other non-Asp β57 alleles such as DQ2, DQ8 and H2-Ag7.

The distinction between DR0401 and DR0403 was subtle in indirect binding assay results.
Despite that fact that DR0403 differs from DR0401 with three residues along the peptide
binding groove, including a Valine (instead of a Glycine) at the position of β86 – a feature
that doesn’t allow DR0403 to accommodate big side-chain residues at P1, the peptide
binding capability of DR0403 is not inferior to DR0401 at all. In fact, the number of
peptides bound by DR0403 is slightly higher than DR0401 for all three antigens studied
(Table 1, 2 and 3). Several epitopes (more than 50%) are overlapped for the two alleles. The
major finding was the differential binding stability of DR0401 vs. DR0403 when they
formed complexes with those peptides which also bound to DQ8. The majority of them (5
out of 6) bound DR0403 with enhanced stability. Two of these peptides encompassed
naturally processed DQ8 epitopes -- GAD65208–217 and GAD65539–548 [24]. As
demonstrated previously, the presentation of these two epitopes by DQ8 was diminished by
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the co-expression of DR0401 and the down-modulation was enhanced if antigen presenting
cells expressed DR0403 and/or DR0406 instead of DR0401 (It should be noted that the
peptide binding ability of DR0403 and DR0406 is likely to be the same because the peptide
binding region sequences of these two alleles are identical) [18]. However, that study lacked
any direct result showing DR0403 could compete for peptide with DQ8 better than DR0401.
In this study, we provide evidence that DQ8 and multiple DR4 subtypes can bind to a shared
set of epitopes and that among these, the protective DR0403 subtype binds better to most of
these epitopes than DR0401. The enhanced binding of DR0403 provides additional support
for the peptide competition hypothesis [16], which emphasizes the relative potentials of DR4
molecules to out-compete DQ8 for epitopes binding and diminish DQ8-restricted
autoreactive CD4+ T cell responses. Due to the limited knowledge of DQ8 epitopes,
especially the T cell response results, our investigation only focused on GAD65 derived
peptides. However, the concept of enhanced peptide competition of DR0403 was validated.
Given the fact that DR0403 can bind a broad range of peptides, it is unlikely that DQ8-DR4
peptide competition is limited only to GAD65 derived peptides as demonstrated here. It
appears reasonable to conclude that the differential T1D predisposition associated with
DQ8-DR0403 and DQ8-DR0401 arises (at least in part) because DR0403 is superior to
DR0401 in its overall peptide competition potential, leading to down-modulation of DQ8-
restricted CD4+ T cell responses. We also attempted to examine whether protective DR0403
was more able to direct negative selection than susceptible DR0401 using peptide loaded
tetramer to detect in vitro primed CD4 T cells from DR0401 and DR0403 subjects. A small
number of samples were examined and GAD65-specific T cells were repeatedly detected in
both DR0403 and DR0401 individuals (data not shown). A negative selection model was
not likely capable of explaining why DR0403 was so protective to T1D while DR0401 was
susceptible. However, we were not able to rule out the possibility that the DR0403-restricted
T cells detected in DR0403 donors were less pathogenic than DR0401-restricted T cells
found in DR0401 donors. This leaves some open questions for future study using more
DR0403+ subjects and incorporating a better understanding of DR0403-restricted epitopes
within other islet auto-antigens once that information becomes available.

Both binding assays we used in this study were restricted to the cell-free circumstance and
therefore lacked the effects of HLA-DM and other chaperones. For technical reasons, our
indirect binding assay utilized a high affinity reference peptide. Using this reference peptide
probably influenced our ability to distinguish peptides with low-affinity binding, which have
been shown to be important for insulin in particular [32]. In spite of these limitations our
findings provide valuable insights about the behavior of peptides with strong to moderately
weak binding.

In summary, this study used two types of assays to differentiate peptide binding features of
highly homologous HLA-DR0401, DR0403 and DR0405 in aiming to elucidate their
distinguishable association to autoimmune type 1 Diabetes. The weak peptide binding
feature of susceptible DR0405 remarkably contrasted to the protective DR0403 and another
disease susceptible subtype DR0401. The susceptible DR0401 and protective DR0403 do
not differ from each other significantly in number of peptide binding. However, these two
DR4 subtypes bind DQ8 epitope with different stability, which can translate into their
differential effects in out-competing DQ8 to bind self-antigen derived peptides. Our findings
provide a mechanism explaining why the risk associated with the T1D-susceptible non-
Asp57b DQ8 allele is modified by different DR4 subtypes, as reported by previous genetic
studies. These results suggest that DR0403 (and perhaps other strong Class II peptide
binders) modify the risk of autoimmune diabetes development based on the capacity to bind
and retain antigenic self-peptides. As a corollary of these findings, DR4 restricted cells are
likely to be less pathogenic than DQ8 restricted cells of the same specificity. In this case,
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therapeutic strategies aimed at T cell deletion should be designed to focus on DQ8 restricted
cells.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Abbreviation

T1D Type 1 Diabetes
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Fig. 1.
Kinetic stability of peptide:MHC complex composed by DR0401 or DR0403 with selected
GAD65 derived peptides. (A) DQ8 bound GAD65 peptides also bind DR0401 (within black
line circle) and/or DR0403 (within blue line circle). The dissociation of GAD65p24 (B), p25
(C), p26 (D), p34 (E), p42 (F) and p67 (G) from HLA-DR0401 (black circles, solid lines)
and HLA-DR0403 (open circles, dotted lines) was measured as the remaining amount of
biotinylated target peptides against experimental time. The dissociation curves were
generated with a single-exponential decay fit [Equation: Y= Span*exp(−Kd*X)+Plateau].
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Fig. 2.
The peptide binding groove sequence alignment of DR4 β-chains. The amino acid sequences
of DRB1*0403 and DRB1*0405 peptide binding region were aligned to DRB1*0401. The
dashes represent amino acid residues identical to DRB1*0401 reference.
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Table 1

HLA-DR4 binding results of 72 GAD65-derived 20-mer peptides.

I.D Sequence IC50 (uM)

0401† 0403§ 0405†

p1 1MASPGSGFWSFGSEDGSGDS20 - - -

p2 9WSFGSEDGSGDSENPGTARA28 - - -

p3 17SGDSENPGTARAWCQVAQKF36 - - -

p4 25TARAWCQVAQKFTGGIGNKL44 - - -

p5 33AQKFTGGIGNKLCALLYGDA52 - - -

p6 41GNKLCALLYGDAEKPAESGG60 - - -

p7 49YGDAEKPAESGGSQPPRAAA68 - - -

p8 57ESGGSQPPRAAARKAACACD76 - - -

p9 65RAAARKAACACDQKPCSCSK84 - - -

p10 73CACDQKPCSCSKVDVNYAFL92 0.35 3.55 -

p11 81SCSKVDVNYAFLHATDLLPA100 0.67 - -

p12 89YAFLHATDLLPACDGERPTL108 0.54 - -

p13 97LLPACDGERPTLAFLQDVMN116 - - -

p14 105RPTLAFLQDVMNILLQYVVK124 - - -

p15 113DVMNILLQYVVKSFDRSTKV132 5.08 0.30 -

p16 121YVVKSFDRSTKVIDFHYPNE140 - - -

p17 129STKVIDFHYPNELLQEYNWE148 - - -

p18 137YPNELLQEYNWELADQPQNL156 - - -

p19 145YNWELADQPQNLEEILMHCQ164 - - -

p20 153PQNLEEILMHCQTTLKYAIK172 - 4.81 -

p21 161MHCQTTLKYAIKTGHPRYFN180 - - -

p22 169YAIKTGHPRYFNQLSTGLDM188 1.04 10.00 0.03

p23 177RYFNQLSTGLDMVGLAADWL196 0.34 1.34 0.13

p24 185GLDMVGLAADWLTSTANTNM204 9.68 2.67 -

p25 193ADWLTSTANTNMFTYEIAPV212 0.69 0.55 -

p26 201NTNMFTYEIAPVFVLLEYVT220 0.82 0.90 0.15

p27 209IAPVFVLLEYVTLKKMREII228 - 4.49 -

p28 217EYVTLKKMREIIGWPGGSGD236 - - -

p29 225REIIGWPGGSGDGIFSPGGA244 - - -

p30 233GSGDGIFSPGGAISNMYAMM252 0.35 - -

p31 241PGGAISNMYAMMIARFKMFP260 - - -

p32 249YAMMIARFKMFPEVKEKGMA268 - 10.00 0.39

p33 257KMFPEVKEKGMAALPRLIAF276 - - -

J Autoimmun. Author manuscript; available in PMC 2012 March 1.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Ge et al. Page 13

I.D Sequence IC50 (uM)

0401† 0403§ 0405†

p34 265KGMAALPRLIAFTSEHSHFS284 0.31 0.44 -

p35 273LIAFTSEHSHFSLKKGAAAL292 0.96 - -

p36 281SHFSLKKGAAALGIGTDSVI300 - - -

p37 289AAALGIGTDSVILIKCDERG308 - - -

p38 297DSVILIKCDERGKMIPSDLE316 - - -

p39 305DERGKMIPSDLERRILEAKQ324 0.51 - -

p40 313SDLERRILEAKQKGFVPFLV332 - - -

p41 321EAKQKGFVPFLVSATAGTTV340 0.05 1.87 -

p42 329PFLVSATAGTTVYGAFDPLL348 2.07 1.27 -

p43 337GTTVYGAFDPLLAVADICKK356 - 1.28 5.82

p44 345DPLLAVADICKKYKIWMHVD364 - - -

p45 353ICKKYKIWMHVDAAWGGGLL372 2.85 - -

p46 361MHVDAAWGGGLLMSRKHKWK380 - - -

p47 369GGLLMSRKHKWKLSGVERAN388 1.09 0.42 -

p48 377HKWKLSGVERANSVTWNPHK396 - 0.19 -

p49 385ERANSVTWNPHKMMGVPLQC404 - - -

p50 393NPHKMMGVPLQCSALLVREE412 - - -

p51 401PLQCSALLVREEGLMQNCNQ420 - - -

p52 409VREEGLMQNCNQMHASYLFQ428 - - -

p53 417NCNQMHASYLFQQDKHYDLS436 - - -

p54 425YLFQQDKHYDLSYDTGDKAL444 - - -

p55 433YDLSYDTGDKALQCGRHVDV452 10.00 - -

p56 441DKALQCGRHVDVFKLWLMWR460 - - -

p57 449HVDVFKLWLMWRAKGTTGFE468 - 8.20 -

p58 457LMWRAKGTTGFEAHVDKCLE476 - - -

p59 465TGFEAHVDKCLELAEYLYNI484 - - -

p60 473KCLELAEYLYNIIKNREGYE492 - - -

p61 481LYNIIKNREGYEMVFDGKPQ500 - - -

p62 489EGYEMVFDGKPQHTNVCFWY508 - - -

p63 497GKPQHTNVCFWYIPPSLRTL516 - - -

p64 505CFWYIPPSLRTLEDNEERMS524 - 1.00 0.57

p65 513LRTLEDNEERMSRLSKVAPV532 - 3.24 -

p66 521ERMSRLSKVAPVIKARMMEY540 - 4.17 -

p67 529VAPVIKARMMEYGTTMVSYQ548 0.64 1.61 -

p68 537MMEYGTTMVSYQPLGDKVNF556 - - -
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I.D Sequence IC50 (uM)

0401† 0403§ 0405†

p69 545VSYQPLGDKVNFFRMVISNP564 0.46 0.86 0.61

p70 553KVNFFRMVISNPAATHQDID572 0.03 0.03 0.07

p71 561ISNPAATHQDIDFLIEEIER580 - - -

p72 569QDIDFLIEEIERLGQDL588 - - -

Number of peptides with detectable binding reaction 21 23 8

†
Using HA307-319 (PKYVKQNTLKLAT) as reference peptide.

§
Using 557I (NFIRMVISNPAAT) as reference peptide.
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Table 2

HLA-DR4 binding results of 13 preproinsulin-derived 20-mer peptides.

I.D Sequence IC50 (uM)

0401† 0403§ 0405†

p1 1MALWMRLLPLLALLALWGPD20 - - -

p2 9PLLALLALWGPDPAAAFVNQ28 - - -

p3 17WGPDPAAAFVNQHLCGSHLV36 - - -

p4 25FVNQHLCGSHLVEALYLVCG44 - - -

p5 33SHLVEALYLVCGERGFFYTP52 - - -

p6 41LVCGERGFFYTPKTRREAED60 - - -

p7 49FYTPKTRREAEDLQVGQVEL68 - - -

p8 57EAEDLQVGQVELGGGPGAGS76 - - -

p9 65QVELGGGPGAGSLQPLALEG84 - - -

p10 73GAGSLQPLALEGSLQKRGIV92 8.75 - -

p11 81ALEGSLQKRGIVEQCCTSIC100 - - -

p12 89RGIVEQCCTSICSLYQLENY108 0.22 1.89 -

p13 97TSICSLYQLENYCN110 - 0.47 -

Number of peptides with detectable binding reaction 2 2 0

†
Using HA307-319 (PKYVKQNTLKLAT) as reference peptide.

§
Using 557I (NFIRMVISNPAAT) as reference peptide.
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Table 3

HLA-DR4 binding results of 30 H1N1 Matrix Protein-derived 20-mer peptides.

I.D Sequence IC50 (uM)

0401† 0403§ 0405†

p1 1MSLLTEVETYVLSIVPSGPL20 0.05 1.49 -

p2 9TYVLSIVPSGPLKAEIAQRL28 1.36 1.16 -

p3 17SGPLKAEIAQRLENVFAGKN36 - 2.63 -

p4 25AQRLENVFAGKNTDLEALME44 - - -

p5 33AGKNTDLEALMEWLKTRPIL52 - - -

p6 41ALMEWLKTRPILSPLTKGIL60 - - -

p7 49RPILSPLTKGILGFVFTLTV68 - - -

p8 57KGILGFVFTLTVPSERGLQR76 0.17 0.18 1.41

p9 65TLTVPSERGLQRRRFVQNAL84 - - -

p10 73GLQRRRFVQNALNGNGDPNN92 2.10 0.12 -

p11 81QNALNGNGDPNNMDRAVKLY100 - - -

p12 89DPNNMDRAVKLYRKLKREIT108 - - -

p13 97VKLYRKLKREITFHGAKEIA116 0.26 0.49 -

p14 105REITFHGAKEIALSYSAGAL124 3.01 0.12 -

p15 113KEIALSYSAGALASCMGLIY132 - 0.55 -

p16 121AGALASCMGLIYNRMGAVTT140 - 0.26 -

p17 129GLIYNRMGAVTTESAFGLIC148 0.76 0.73 10.00

p18 137AVTTESAFGLICATCEQIAD156 - - -

p19 145GLICATCEQIADSQHKSHRQ164 - - -

p20 153QIADSQHKSHRQMVTTTNPL172 - 9.45 -

p21 161SHRQMVTTTNPLIRHENRMV180 2.97 1.79 -

p22 169TNPLIRHENRMVLASTTAKA188 0.46 0.04 -

p23 177NRMVLASTTAKAMEQMAGSS196 0.16 0.04 -

p24 185TAKAMEQMAGSSEQAAEAME204 - 0.81 -

p25 193AGSSEQAAEAMEVASQARQM212 - - -

p26 201EAMEVASQARQMVQAMRAIG220 - 1.69 -

p27 209ARQMVQAMRAIGTHPSSSTG228 2.92 0.40 -

p28 217RAIGTHPSSSTGLKNDLLEN236 - - -

p29 225SSTGLKNDLLENLQAYQKRM244 - 0.80 -

p30 233LLENLQAYQKRMGVQMQRFK252 0.82 - 4.47

Number of peptides with detectable binding reaction 12 18 3

†
Using HA307-319 (PKYVKQNTLKLAT) as reference peptide.

§
Using 557I (NFIRMVISNPAAT) as reference peptide.
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Table 4

Binding kinetics of HLA-DR0401 and DR0403.

Peptide at1/2 (hour) bKd

0401 0403 0401 0403
p

(F-test)

GAD65p24 3.92 (2.87, 6.16) 1.51 (1.40, 1.65) 0.0030 (0.0019, 0.0040) 0.0076 (0.0070, 0.0083) < 0.0001

GAD65p25 0.70 (0.57, 0.91) 5.07 (4.48, 5.83) 0.0165 (0.0127, 0.0203) 0.0023 (0.0020, 0.0026) < 0.0001

GAD65p26 3.30 (2.31, 5.80) ≫ c33.40 0.2098 (0.1195, 0.3001) 0.0208 (0.0001, 0.0640) 0.0047

GAD65p34 13.13 (10.30, 18.11) 22.72 (14.86, 48.22) 0.0528 (0.0382, 0.0672) 0.0305 (0.0144, 0.0466) 0.0728

GAD65p42 0.06 (0.04, 0.09) 0.16 (0.13, 0.20) 0.1952 (0.1267, 0.2636) 0.0727 (0.0574, 0.0879) 0.0001

GAD65p67 1.29 (1.13, 1.50) 2.51 (2.25, 2.83) 0.5377 (0.4621, 0.6133) 0.2762 (0.2446, 0.3079) < 0.0001

a
Half life of peptide:MHC complex, in hour

b
Dissociation constant, the best fit value 95 % CI

c
Unable to estimate the half life from the dissociation curve since the dissociation is not completed by 72 hours when the assay was stopped.
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