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Abstract
The goal of data anonymization is to allow the release of scientifically useful data in a form that
protects the privacy of its subjects. This requires more than simply removing personal identifiers
from the data, because an attacker can still use auxiliary information to infer sensitive individual
information. Additional perturbation is necessary to prevent these inferences, and the challenge is
to perturb the data in a way that preserves its analytic utility.

No existing anonymization algorithm provides both perfect privacy protection and perfect analytic
utility. We make the new observation that anonymization algorithms are not required to operate in
the original vector-space basis of the data, and many algorithms can be improved by operating in a
judiciously chosen alternate basis. A spectral basis derived from the data’s eigenvectors is one that
can provide substantial improvement. We introduce the term spectral anonymization to refer to an
algorithm that uses a spectral basis for anonymization, and we give two illustrative examples.

We also propose new measures of privacy protection that are more general and more informative
than existing measures, and a principled reference standard with which to define adequate privacy
protection.
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I. INTRODUCTION

Data anonymization is the process of conditioning a dataset such that no sensitive
information can be learned about any specific individual, yet valid scientific conclusions can
nevertheless be drawn. Deidentification, or removing explicit identifiers like names and
phone numbers, is necessary but insufficient to protect individual privacy. We must also
remove enough additional information so that an attacker cannot infer an identity based on
what remains (a reidentification disclosure) or otherwise infer sensitive information about an
individual (a prediction disclosure). These kinds of disclosures could be made by examining
the data for combinations of variables that might uniquely identify someone, or for patterns
of values that unintentionally reveal sensitive information. This is exactly what happened
when a reporter reidentified an AOL user in released, deidentified search queries - the
combination of several queries was enough to narrow the searcher’s identity to one
particular person [2].

The only known way to prevent these disclosures is to remove additional information from
the dataset. Most existing methods work by perturbing or suppressing variable values,
causing uncertainty in identity inference or sensitive–value estimation. This has been an area

NIH Public Access
Author Manuscript
IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2011 March 1.

Published in final edited form as:
IEEE Trans Knowl Data Eng. 2010 March 1; 22(3): 437–446. doi:10.1109/TKDE.2009.88.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



of active research for three decades, yet nearly every aspect of it remains an open question:
How do we measure privacy protection, and what amount of protection do we want? What is
the optimal method of perturbing the data to achieve this protection? How do we measure
the impact of the perturbation on scientific analysis, and what is an acceptable impact?

In this paper, we focus on the off-line problem of anonymizing a complete table of
microdata, where rows represent records of individuals, and columns represent data
variables collected about those individuals. This is in contrast to the more difficult on-line
problem of anonymizing each row independently as it is collected or released.

Existing off-line anonymization methods generally fall into the classes of adding noise to the
data [3]-[5], swapping cells within columns [6], replacing groups of k records with k copies
of a single representative (microaggregation) [7], [8], cell suppression and global variable
recoding [9]-[11], and replacing the data with synthetic samples from an inferred
distribution [12]-[15]. Some methods involve univariate scale transformation to preserve a
selected statistical property [16], [17], but otherwise they all operate in the data’s original
space under the original basis. Most operate on one variable at a time, with more advanced
methods attempting to take into account some interactions between variables [16], [18].

A common problem with these methods is the difficulty in anonymizing high-dimensional
datasets. Since every variable in the dataset can contribute to a pattern that may reidentify a
record or reveal sensitive information, the anonymization must involve all variables.
Moreover, the more variables there are, the greater each perturbation needs to be to maintain
the same level of privacy protection, and the growth is often exponential [3], [16]. This
curse of dimensionality has led one researcher to conclude that “when a data set contains a
large number of attributes which are open to inference attacks, we are faced with a choice of
either completely suppressing most of the data or losing the desired level of anonymity”
[19].

The main contribution of this paper is the new observation that the anonymizer is not
required to operate in the dataset’s original vector-space basis, and we propose that most if
not all anonymization methods could be improved by operating in a transformed basis. This
can skirt the curse of dimensionality, simplify the algorithm, or improve the privacy
protection or analytic utility of the anonymized data. The second contribution is a set of
proposed measures of anonymity that are more generally useful and more informative than
previous measures.

The rest of this paper is organized as follows. Section II discusses the new measures we
propose to assess the privacy protection of anonymization algorithms, and specifies the
existing measures we will use to evaluate analytic utility. Section III describes the
generation of a spectral basis for anonymization, its advantages, and our two example
applications. Section IV reports the experimental validation of these applications, and
Section V discusses the implications and limitations of our approach.

II. EVALUATING ANONYMIZATION

Anonymization methods must provide both privacy protection and analytic utility. That is, a
method must simultaneously prevent the disclosure of sensitive individual information and
also allow accurate analysis, usually of statistical trends or associations. How successful an
algorithm is depends in part on how these properties are measured. We propose in this
section measures of privacy protection that are more generally applicable and more
informative than existing measures. We also briefly describe existing measures of basic
analytic utility that we will use in our evaluation.
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Notation For the rest of this paper we will call the original dataset A and the anonymized
dataset . Their columns (variables) will be aj and , and their rows (records) will be Aj or

.

A. Disclosure Risk
The threat to privacy from released anonymized data comes from what we will call
computational disclosure. Computational disclosure is the breach of confidentiality that
occurs when an attacker computationally infers information from a released dataset that the
data collectors have pledged to keep confidential. It contrasts with direct disclosure, which is
a breach of confidentiality via malicious or accidental release of the original information.
Computational disclosure can be divided into two types: reidentification disclosure and
predictive disclosure [20], [21].

A reidentification disclosure occurs when an attacker manages to correctly match a
particular person’s identity to a particular record in the released anonymized dataset by
using auxiliary information. If an attacker can confidently match some combination of
attributes from an anonymized record with the same combination from identified auxiliary
information, he can transfer the auxiliary identity to the anonymized record. Attempting to
make this match is called a matching attack. Its risk is usually assessed under the extremely
conservative assumption that the attacker can use the entire original dataset as auxiliary
information [22]. Under this assumption, the attack becomes a problem of matching each
anonymized record with its corresponding original record. If we can prevent the matching
attack from succeeding under these conditions, we can prevent it when the attacker knows
far less about the individuals involved.

A predictive disclosure occurs when an attacker manages to predict the approximate, and
perhaps partial, content of a target record with the help of the anonymized dataset and some
auxiliary information. This risk is interesting because it is not uniquely undertaken by
subjects of the data. It is also borne by those in the same underlying population that did not
participate in the study, and the data collectors have made no pledge of confidentiality to
those non-participants. Furthermore, it is difficult to imagine an application where predictive
disclosure is not a desired outcome of the study. In medical applications, for example, the
motivation for releasing anonymized data is to allow analysts to draw valid conclusions
regarding associations between the data’s variables. We want the anonymized data to
preserve associations between smoking and heart attack, for example, or between a
particular drug and its side effects. We want physicians to be able to predict disease risk
from patients’ symptoms and behavior. This unavoidably allows an attacker to make these
same predictions.

So while we appropriately seek to eliminate reidentification risk, we only seek to control the
risk of predictive disclosure without eliminating it. While on the one hand, a sufficiently
accurate predictive disclosure is really the same thing as a reidentification disclosure, and so
it must be controlled, on the other hand a predictive disclosure risk of zero would destroy the
analytic utility of the data, so some amount must be allowed. We propose that the proper
amount is the predictive disclosure risk that the data presents to non-participants in the
study. In other words, the predictive disclosure risk to participants should be no greater than
the predictive disclosure risk to non-participants, so that participating in the study does not
increase this risk at all.

In previous work, the empirical reidentification rate [22] and k-anonymity [23] have been
common risk-assessment measures. These measures turn out to be both unnecessary and
insufficient for privacy protection [1]. Moreover, they can only be used in certain
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constrained situations, and they don’t estimate predictive disclosure risk at all (though some
variations on k-anonymity, such as k-ambiguity [24], do attempt to partially reduce
predictive disclosure risk). For example, both measures are aimed at preventing an attacker
from successfully choosing which original record was the source for a particular
anonymized record, and they implicitly assume that this unique original source exists for
each anonymized record. With some of our examples, however, an anonymized record has
no unique source record, so neither k-anonymity nor the empirical reidentification rate can
assess the strength of privacy protection they confer. The k-anonymity measure additionally
requires the anonymization to produce groups of k records that are functionally identical,
and we will demonstrate that this requirement is unnecessary for strong privacy protection.
It is also difficult to make a principled decision of what value for k and what rate of
empirical reidentification represents adequate protection.

To overcome these limitations, we propose the new measures prediction distance, prediction
ambiguity, and prediction uncertainty to quantify computational disclosure risk. These are
more general and more informative than prior measures. Each applies to a single original
data point given the whole anonymized dataset. We can calculate the measures for each
original point and compare distributions over all points to judge the adequacy of privacy
protection. The following paragraphs describe these new measures in detail.

Prediction distance Prediction distance  is the distance from a particular original
point Aj to the closest anonymized point in , using some distance measure s. It represents
the closest an attacker can get to predicting the values of an original data point. To allow
scale- and dimensionality-invariant measures, s can be calculated on standardized data and
normalized by the number of dimensions m, such as

(1)

where xi refers to the ith standardized variable in record x. The prediction distance of an
original record Aj would then be

Prediction ambiguity Prediction ambiguity  gives the relative distance from the
record Aj to the nearest vs. the kth-nearest record in the set . Formally,

where  is the ith-closest record in  to Aj, under the distance measure s.

An ambiguity of zero means Aj was an exact match to some record in , and an ambiguity of
one means that the best match from  was a tie among k records. Note that the k tied records
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are not necessarily identical, but are equidistant from Aj. Intuitively, ambiguity represents
the difficulty in selecting the best match from among the k top candidates. Low ambiguity
suggests a prominent best match, high ambiguity suggests a crowd of points all equally
likely to be the best match.

Prediction uncertainty Prediction uncertainty  gives the variation among the k
best matches to Aj. Formally,

where  is the set of k closest matches to Aj under the distance measure s, and v is a
measure of variation, such as the (possibly weighted) average variance of each column in

. Intuitively, prediction uncertainty measures the impact of making a poor choice of the
best match. If prediction uncertainty is low, then the attacker may be able to predict an
accurate value for a sensitive variable even if there are many equally-likely choices for a
good match. If uncertainty is high, choosing a good match is much more important.

Between these three measures of prediction risk we can calculate 1) how accurately an
attacker can predict the values of an original record, 2) how sure he will be that he has made
the best prediction, and 3) the predictive consequences of choosing among the best
possibilities. These properties are missed by the empirical reidentification rate and k-
anonymity. (Recent variants like k-ambiguity do provide lower-bound goals for prediction
uncertainty.)

Mathematically, the new measures are concerned with the local neighborhood of
anonymized data points around a given original data point, and how identifiable the original
point is among the anonymized crowd. The value for k in the measures reflects the size of
the neighborhood considered. In preliminary experiments we found that using large
neighborhoods (such as k = 100) for the measures reduced their ability to differentiate
between strong and weak anonymization (data not shown). This makes sense, since it is
easier to be inconspicuous in a large crowd than in a small one. Smaller neighborhoods, with
5 to 10 neighbors, have worked better for us.

Depending on the application, the three new measures may have unequal importance. For
anonymizations with no unique relationship between original and anonymized records, there
is no reidentification risk, so prediction distance would be of primary importance. For
anonymizations that allow these unique relationships to remain, we may want tighter bounds
on ambiguity and uncertainty. We will demonstrate the use of these measures in Section IV.
As an interesting point of validation, we note that a recent analysis of matching attacks
against a large, public, de-identified (although not anonymized) dataset independently came
up with versions of these measures to use in the attacks, based on suitable choices for the
distance measure s and variation measure v [25].

Our new measures happily lend themselves to defining a reference standard for what
constitutes necessary and sufficient protection against predictive disclosure. Consider a
second dataset A* consisting of a sample from the same population as A, but including none
of the same individuals. Releasing this nonoverlapping sample A* would clearly pose zero
reidentification risk to the subjects of A. It would pose nonzero prediction risk, however,
because the records in A* are similar to those in A, and associations learned from one would
apply to the other.
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We therefore propose using A* as a reference standard for anonymization. If releasing any
anonymized dataset  imposes a computational disclosure risk to the subjects of A that is no
greater than if we had released A* instead,  shall be deemed sufficiently protective of its
subjects’ privacy. This is a high standard, representing the same protection against
computational disclosure as participants would get by opting out of the study. (Of course,
other privacy risks remain, such as direct disclosure, but these require preventive measures
outside the scope of this work.) Requiring the distributions of our three privacy measures to
be no smaller for  than for A* provides evidence (but not proof) of meeting this standard.

In some cases, an anonymizer will have the luxury of enough data to set aside a dataset A*
for this assessment in addition to the dataset A to be anonymzied. In many cases, however,
the anonymizer has no extra data. In these cases a reference standard dataset can be
constructed separately for each record Aj by excluding Aj from the original dataset. Taking
the distance measure as an example, this means that instead of comparing the distribution of

 against d(Aj, A*, s) over all records Aj, we compare the distribution of 
against d(Aj, A–Aj, s), where A–Aj is the original dataset with the record Aj excluded.

Achieving a distribution of  that is no smaller than d(Aj, A – Aj, s) (and similarly
for the other two measures) ensures that according to these measures, releasing the
anonymized dataset puts the subjects of A at no greater computational disclosure risk than if
they had opted out of the study.

If the subjective assessments of the distributions are unclear on whether the standard is met,
a Kolmogorov-Smirnov test can be used with a one-sided null hypothesis that the obtained
distribution is equivalent or greater than the reference standard [26], [27]. This would
require a statistical definition of ‘equivalent’ that is meaningful in practical terms, such as
for example, a vertical difference of 0.05 between the cumulative distributions. Note that
contrary to the common use of p-values, in this case a high p-value would be desirable and
would indicate sufficient protection.

Given these new measures, we may be tempted to use them as simple anonymization goals.
For example, we may consider stating an anonymization goal to achieve a prediction
distance of 0.7 for 90% of the data records. This is of course possible, but there are some
drawbacks to this approach. First, it is difficult to see how to naturally and defensibly choose
such a goal. Second, if the goal is set greater than any portion of the reference distribution, it
does represent stronger privacy protection for that portion, but the added protection may
come at the expense of reduced analytic utility. And since the reference distribution already
represents protection against computational disclosure that is equivalent to nonparticipation,
it may be difficult to justify this loss of utility. Therefore, we recommend the anonymization
goal of meeting the reference distributions for the new measures, unless there is a clear
justification for doing otherwise and the resulting analytic utility is acceptable.

B. Analytic Utility
The most general measure of analytic utility of an anonymized dataset is whether an analyst
can draw equally valid conclusions from it compared to the original data [12], [13], [28]. If
we know the analyses that the analyst intends to run on the data, we can directly assess the
impact by comparing these analyses between the two datasets. Absent this knowledge, we
are forced to use a less-than-ideal measurement of analytic impact.

Some algorithms are designed to preserve only specific statistical measures on the data, and
therefore can be evaluated in part simply by assessing whether those measures are sufficient
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for our analytic needs. Detailed comparisons between algorithms that intend to preserve the
same measures can be done by assessing how well each algorithm does, in fact, preserve
them. The methods we demonstrate here are designed to preserve the univariate means and
variances plus bivariate correlations or rank correlations of the data, and possibly some
univariate distributions. We will therefore use the preservation of these statistics as measures
of analytic utility.

III. SPECTRAL ANONYMIZATION

The main contribution of this paper is the observation the anonymizer is not required to
operate in the original basis of the dataset, and that by switching to a judiciously chosen
alternative basis, we can improve some combination of the privacy protection, the analytic
utility, or the computational efficiency of the anonymization. Specifically, we propose that a
spectral basis, such as that provided by the data’s eigenvectors, can simplify anonymization
methods, improve results, and reduce the curse of dimensionality. We will use the term
spectral anonymization to refer to the use of any spectral basis in anonymization. The
general approach is to project the data onto a spectral basis, apply an anonymization method,
and then project back into the original basis. This section describes the approach in more
detail, and gives some simple examples of its use.

Spectral anonymization can usually handle continuous, ordinal, or binary data naturally.
Categorical attributes can be accomodated by what is usually known as dummy coding or
treatment coding — converting categorical variables with q categories to q binary variables,
and recombining them into a single categorical variable after anonymization. Doing this also
provides the freedom to treat all discrete variables as continuous for some portion of the
anonymization, which can open the way for using some powerful and flexible methods, as
we will demonstrate. This does require some extra processing to return the variables to their
original discrete state, but we believe the results are worth the extra effort. Since it forms
such a fundamental part of our methods, we will discuss this extra processing in a little more
detail.

We have found that an initial {−1, +1} binary encoding works best during anonymization,
and an inverse logit function works well to transform the (continuous) anonymized values to
the [0, 1] range. Our preferred post-processing is to then normalize the q dummy values for
each record in the dataset and consider them a probability distribution over the q categories
of the original attribute. The first benefit of doing this is that it can be useful to simply
release the anonymized data in this state. The record-level probability distribution over the
categories acts as a type of local generalization that doesn’t discard nearly as much
information as a global generalization or local suppression, but still provides necessary
uncertainty about the actual value of the attribute. Depending on the application, this level of
privacy and utility may be acceptable.

Nevertheless, other applications may require privacy guarantees that are not met by the
probabilistic form, or there may be analyses that require a discrete form for all discrete
attributes. In these situations we may convert to a discrete form in several ways. We might,
for example, probabilistically sample a single discrete value from these distributions, or we
might simply select the discrete value that has the highest probability.

We offer the following concrete example. Suppose we have a categorical variable a with
three categories, a ∈ {0, 1, 2} and a data record X with a value for a of X(a) = 2. We first
dummy-code the variable for all records, splitting the variable into three dummy variables
a0, a1, and a2, and encoding them with ai ∈ {−1, +1}. For the record X, this gives X(a) =
X(a0, a1, a2) = (−1, −1, +1). After anonymization, let’s say we have an anonymized record Y
(which may or may not have been derived from X) that has values Y(a) = (−2.5, −1.5,
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+0.41). After the inverse logit transform, we get Y(a) = (0.076, 0.182, 0.601), and after
normalization this becomes Y(a) = (0.088, 0.212, 0.700). So the anonymized value for Y(a)
is a probability distribution, where Y(a) = 0 with probability 0.088, Y(a) = 1 with probability
0.212, and Y(a) = 2 with probability 0.700. If desired, we can select the discrete value that
has the highest probability and release Y(a) = 2, or we can sample from the distribution and
release the sampled point - which means 8.8 percent of the time we would release Y(a) = 0,
21.2 percent of the time we would release Y(a) = 1, and 70.0 percent of the time we would
release Y(a) = 2.

A. Singular Value Decomposition
Singular Value Decomposition (SVD) [29] provides a useful spectral basis for
anonymization. It decomposes a matrix A into A = UDVT, where D is diagonal, and U and V
are orthonormal. The columns of U are the eigenvectors of the matrix AAT, the columns of V
are the eigenvectors of the matrix ATA, and the diagonal elements of D, also known as the
singular values of A, are the squared eigenvalues of both ATA and AAT. The matrices U, D,
and V have special properties that can facilitate anonymization.

The first useful property is that the columns of V represent a basis that is optimally aligned
(as defined below) with the structure of the data in A. Many datasets have internal structure
that keeps them from completely filling the space they reside in, filling instead a potentially
smaller-dimensional manifold within the enclosing space. The matrix V represents axes of
the space that are rotated to optimally align with the embedded manifold.

The second useful property is that the elements on the diagonal of D give the magnitudes of
the data variance or manifold thickness in the directions of this new basis, and the product
UD gives the projections of the data onto the basis. Knowing the values of D allows us to
make engineering decisions about which axes we wish to emphasize in our anonymization,
under the reasonable assumption that the larger dimensions are worth more attention than
the smaller ones. The ‘optimality’ of the basis alignment refers to the fact that the first
column of V describes the direction with the greatest data variance, and each remaining
column gives the perpendicular direction of the greatest remaining variance. This also means
that columns of V describe vectors that minimize their average perpendicular distance to the
data.

A third useful property of SVD is that the columns of U are uncorrelated. This allows us to
anonoymize U one column at a time, skirting the curse of dimensionality, without affecting
linear correlations among the variables.

B. Examples
1) Cell Swapping—Simple cell swapping anonymizes a dataset by exchanging the values
of selected cells within columns of the dataset [6]. This preserves the univariate distributions
of the data but swapping indiscriminately tends to destroy relationships between variables.
The challenge is to select cells for swapping that will preserve the statistics of interest. Since
choosing swaps that exactly preserve particular statistics is NP-hard [30], swaps are sought
that only approximately preserve them.

Approximately preserving even the correlations alone between variables is difficult to do,
because it implies several statistical constraints that need to be met [30]. Variations of
swapping that attempt to preserve statistical properties have turned out to provide little or no
privacy protection [31]-[33], and variations focusing on privacy protection have difficulty
preserving multivariate statistics [6]. There is a recent variation that generates synthetic data
in a multivariate normal distribution, and then replaces the values in each column with the
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equally-ranked values from the original data [33]. This variation, called data shuffling,
represents the state of the art of cell swapping. It has been shown to provide reasonable
privacy protection and to preserve univariate distributions and rank correlations.

Data swapping is well-suited to a spectral variation. Instead of producing the anonymized 
directly, in spectral swapping we apply a uniform random permutation separately to each
column of U (where A = UDVT as above) to produce . We then construct the anonymized

 by . The permutations of U do not affect the correlations of  because the
correlation matrix of U is the identity matrix, and our permutations (approximately) preserve
this. If we first subtract the column means of A, anonymize, and then replace the means, the
spectral variation preserves means, variances, covariances, and linear correlations of the
original data. It also preserves the univariate distributions along the principal components of
A, which in some cases may be more useful than preserving the univariate distributions of
the original variables.

Under anonymization by spectral swapping, the practical reidentification risk is zero
because there is no actual unique correspondence between a released record and any
individual. As we will demonstrate, the protection that spectral swapping provides against
predictive disclosure is stronger than both our reference standard and the comparison data-
shuffling algorithm.

A spectral change of basis is therefore sufficient to transform the weak method of simple
cell swapping into an algorithm with competitive analytic utility and stronger privacy
protection than the state-of-the-art data shuffling algorithm.

2) Microaggregation—Our second example uses the microaggregation method.
Microaggregation anonymizes a dataset by collecting similar data points into groups and
replacing all k members of the group with k copies of a single representative record. It thus
produces a k-anonymous dataset. The representative record may be chosen from the
members of the group or it may be derived and calculated from them.

For this example we’ll use the microaggregation method of Recursive Histogram
Sanitization (RHS) [5]. RHS is one of the few anonymization methods with rigorously
proven anonymity properties, and it demonstrates a large benefit from using a spectral basis.
RHS operates by splitting the n-dimensional data at the median in every dimension, forming
in one pass a total of 2n potential groups. For a high-dimensional dataset, most of these
potential groups will have no members. Of the groups with nonzero membership, if any
have membership greater than 2k records, RHS recurses on those groups.

A major problem with RHS that prevents its practical use is that for high-dimensional data,
the first pass produces many groups that contain only one member, preventing any
anonymization for those records. Our dataset is of sufficiently high dimension to
demonstrate this problem.

SPECTRAL-RHS is the spectral counterpart to RHS that works on the T = UD product matrix
instead of the original A (Fig. 1). SPECTRAL-RHS makes use of the natural order of singular
vectors to prevent the exponential explosion of group formation. In the original RHS, the
relative importance of each column of A is unclear, and all columns are necessarily bisected
simultaneously. In SPECTRAL-RHS, each successive column of the matrix T spans a smaller
range than its predecessor, and we can begin to bisect one at a time based on that ordering.
We can continue to select the column with the largest range at any particular step, bisect it at
the median, and recurse on the two new groups. Upon the algorithm’s return, the thinner

Lasko and Vinterbo Page 9

IEEE Trans Knowl Data Eng. Author manuscript; available in PMC 2011 March 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



dimensions will probably not have been partitioned at all for most groups, but that makes no
difference to the anonymization.

This algorithm illuminates a problem with using the empirical reidentification rate as a
measure of anonymity. Since this algorithm replaces a cluster of membership between k and
2k – 1 with copies of a single representative, we expect an empirical matching rate of

somewhere between  and . However, this non-zero rate does not necessarily mean
that the correctly matched records are at higher risk for reidentification. For identities to be
at risk, the attacker must be able to distinguish correct from incorrect matches, and the
empirical reidentification rate does not expose this distinction. We will show how the new
prediction ambiguity distribution does expose it.

IV. EXPERIMENTAL VALIDATION

A. Dataset
A public dataset was obtained from the National Health and Examination Survey
(NHANES) [34], with 11763 records of 69 continuous, ordinal, and binary attributes (after
converting categorical attributes into binary). The attributes included demographic, clinical,
and behavioral variables. Binary attributes were re-coded as {−1, +1}. Categorical attributes
were dummy coded with q binary attributes replacing a single categorical attribute with q
categories. Anonymized binary attributes were returned to their original representation by
using the normalized logit transform of the anonymized results and thresholded at 0.5.
Continuous variables were all strictly positive and were log transformed and then
standardized. From this we randomly sampled m = 2000 records and selected a
representative n = 28 attributes for computational efficiency.

A second sample of 2000 records that did not include any records in the first sample were
randomly selected from the same set of 11763 records. This was used as the reference
standard in measures of disclosure risk and analytic utility.

B. Anonymization Methods
Spectral swapping and data shuffling [33] were implemented and compared. SPECTRAL-RHS
and non-spectral RHS were implemented as described in Section III-B2, both with design
parameter k = 5 and the procedure MASK(T) replacing all elements of T with their mean. The
choice for k was arbitrary, and typical for microaggregation experiments, and our results are
not strongly dependent on it. A smaller value for k generally produces greater utility and
weaker privacy protection.

For a baseline comparison, (non-spectral) anonymization by adding zero-mean multivariate
normal noise was implemented with a noise covariance matrix bΣ , where b = 0.1 and Σ is
the covariance matrix of the original data. The anonymized data was corrected for mean and
variance distortion [18], [35]. Noise addition is not an effective method for anonymizing
high-dimensional data with many binary attributes, but we include it here as a well-known
benchmark.

C. Privacy Protection Measures
Privacy protection was assessed using prediction distance, prediction ambiguity and
prediction uncertainty with the distance measure of (1) and k = 5. The value for k was
empirically chosen to provide good discrimination between the various anonymization
methods.
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All assessments were made with the continuous data in the standardized log form described
above, original binary data in {−1, +1} encoding, and anonymized binary data in its
continuous form. For statistical comparison, the distribution of each measure was compared
to the corresponding distribution against the reference sample using the one-sided
Kolmogorov-Smirnov test.

For additive noise and SPECTRAL-RHS, reidentification risk was assessed by matching records
with the distance measure of (1). The empirical reidentification rate was assessed, and
distributions of the three privacy measures were compared between correctly and incorrectly
matched records. The area under the receiver operating characteristic curve (AUC) [36] was
calculated with the non-parametric empirical method separately for each privacy measure.
The AUC measures how accurately each method distinguishes correct from incorrect
matches, and is therefore used to indicate whether correct matches are predictably or
unpredictably correct.

D. Analytic Utility Measures
Analytic utility was assessed by comparing the differences in the following target statistics
between the original and anonymized datasets. The univariate means and variances of each
column of the data were calculated, normalized, and compared between datasets, with the
median difference over all columns reported. Normalization was done to adjust for
differences in scale from column to column. The normalization factor for means was the
standard deviation of the column in the original dataset, and the normalization factor for
variances was the variance of the column in the original dataset. Additionally, the
correlation and rank correlation matrices were calculated, and the (unnormalized) median
difference over all entries in each matrix was reported.

E. Results
Privacy Protection The two spectral algorithms improved the privacy protection over their
nonspectral counterparts (Fig. 2). Nonspectral RHS failed to produce any anonymization due
to the dataset’s high dimensionality - the first pass partitioned all but two records into their
own cell, producing distances, ambiguities, and uncertainties of zero. The baseline additive
noise algorithm produced some protection, but that protection was much weaker than the
reference standard despite the high amount of noise added. Spectral swapping and data
shuffling both produced privacy protection superior to the reference standard in all three
measures, with spectral swapping providing the stronger protection in each case. SPECTRAL-
RHS provided prediction distance better than the reference standard; its uncertainty was zero
(weaker than the reference standard) and ambiguity was unity (stronger than the reference
standard) by design.

Under empirical matching, the data anonymized by SPECTRAL-RHS allowed 157 (7.8%) correct
matches (Fig. 3). With k = 5, we expected slightly more than this, somewhere between 11%
and 20% correct. Correct matches were indistinguishable from incorrect matches on the
basis of prediction distance (AUC 0.53), ambiguity (AUC 0.50), or uncertainty (AUC 0.50)
(Fig. 3a).

Additive noise allowed 1984 (99%) correct matches. These were highly distinguishable
from incorrect matches on the basis of prediction ambiguity (AUC 0.98) and to a lesser (but
still large) extent on the basis of distance (AUC 0.85) or uncertainty (AUC 0.83) (Fig. 3b).

Analytic Utility All methods that produced anonymized data approximately preserved all
target statistics, with the exception that SPECTRAL-RHS did not preserve the variance of the
original data (Table I).
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V. DISCUSSION

The great challenge for an anonymization scheme is to provide adequate privacy protection
while minimally affecting the data’s analytic utility. This is difficult to do in general, and is
even more difficult to do with high-dimensional data. We have introduced the observation
that the anonymizer is not required to operate in the original basis of the data, and that
transforming to a judiciously chosen basis can improve some combination of the privacy
protection, the analytic utility, and the computational efficiency of the anonymization.

We’ve given two examples of this principle in practice, using the spectral basis provided by
SVD. Applications to other methods are not difficult to conceive - additive noise [3]-[5], for
example, could be made less disruptive to the multivariate distribution and less susceptible
to the stripping attack [37] if the noise were added along the spectral basis vectors instead of
directly to the original values. Synthetic methods [12]-[15] could potentially produce
simpler or more accurate models in a spectral basis. Cell suppression [9], [23] could be
rendered less susceptible to an imputation attack based on correlations, because correlated
information would be suppressed as a group, and would therefore be more difficult to
replace. Other spectral bases may provide different advantages - exploration of the
possiblities is an area for further research.

Additionally, we have proposed new measures for privacy protection and analytic utility that
are more general and more informative than existing measures. The measures of prediction
distance, prediction ambiguity, and prediction uncertainty quantify how well an attacker can
predict the values in a particular original record. They also allow us to gauge the
vulnerability of anonymized records to a reidentification attack.

Our experiments demonstrate basic improvements in anonymization that can be made by
operating in a spectral basis. In the cell-swapping example, the spectral form of simple
swapping provided competitive analytic utility and stronger privacy protection than data
shuffling. The practical effect of the stronger privacy protection may be less important,
however, since both algorithms give stronger protection than required by the reference
standard, and would both therefore be sufficient by that standard. But the example
demonstrates that simply choosing a judicious basis for anonymization allows the original,
basic cell swapping method to transform from a weak algorithm of mainly historical interest
to one that performs as well as the complex state-of-the-art method.

The experiments also demonstrate how spectral anonymization can help overcome the curse
of dimensionality. In the microaggregation example, the nonspectral RHS method was
unable to anonymize the high-dimensional dataset at all, whereas SPECTRAL-RHS provided
sufficient privacy protection as measured by the reference standard.

Additionally, these examples demonstrate some important added value of the new privacy
measures. The empirical reidentification rate allowed by the microaggregation example was
8.5%, which would appear unacceptable. But this 8.5% in fact refers roughly to a situation
where each original record is approximately equidistant from 12 anonymized records, with
an attacker being forced to choose randomly between the 12 in a matching attack. We would
expect the attacker to choose correctly about one time in 12, but the attacker is unable to
distinguish when that happens.

The distance, ambiguity, and uncertainty curves for SPECTRAL-RHS demonstrate that an
attacker could not tell which which empirical matches are correct based on the closeness of
the match, since they are nearly identical for correct vs. incorrect empirical matches (Fig.
3a). The AUC value of 0.53 for prediction distance is an objective demonstration that for
SPECTRAL-RHS, closer match distance does not at all suggest a correct match (Fig. 3a), and by
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design of the algorithm neither ambiguity nor uncertainty measurements aid in making that
distinction. The privacy protection afforded by SPECTRAL-RHS could therefore be acceptable
for many applications — but we wouldn’t know that by looking at the empirical
reidentification rate alone.

Our privacy measures tell a different story about anonymization by additive noise. They
confirm what we already expected, that this method would be inadequate for our data. Both
prediction distance and ambiguity were weaker (lower) under additive noise than for the
reference standard, indicating high disclosure risk. Indeed, the empirical reidentification rate
was 99%, and correct matches are easily distinguishable from incorrect matches using
prediction ambiguity, and to a slightly lesser degree using distance or uncertainty (Fig. 3b).
Prediction ambiguity, for example, is much lower for correct matches than for incorrect
matches, and would be a reliable indicator of a successful reidentification — one could
accept any match with an ambiguity below 0.6, and this would find 90% of the correct
matches, with no incorrect matches. We suspect, but did not investigate, that a model built
on the combination of the three measures would be even better at predicting correct vs.
incorrect matches.

The concept of spectral anonymization is therefore attractive due to its simplicity and power.
Intuitively, the benefits of spectral anonymization come from aligning the axes of
anonymization to better correspond to the inherent structure in the data. For data with simple
structure, the realignment can produce optimal results. Spectral swapping on multivariate
normal data, for example, would produce perfect anonymization (in the sense that it meets
or exceeds our reference standard) and perfect analytic utility (in the sense that all statistics
computed on the anonymized data would be equally valid as those computed on the original
data). But this type of data is uncommon in the real world. For real-world data with
nonlinear structure, the realignment can help, but further improvements need to be made.
The question of how to adapt spectral methods to optimally anonymize data with nonlinear
structure is a direction for future research.
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Fig. 1.
The spectral adaptation of the Recursive Histogram Sanitization procedure. T is the spectral
matrix to be anonymized with anonymization parameter k. The procedure SELECT-COLUMN

selects the column of T with the largest range. The procedure PARTITION(T, i) divides T at the
median of its ith column, returning two matrices. The procedure MASK(T) performs the
desired masking, such as replacing all elements of T with their mean. The procedure MERGE

concatenates its array arguments in a vertical stack.
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Fig. 2.
Privacy protection of basic spectral anonymization. The distributions of the three anonymity
measures over all points in the original dataset are shown as cumuluative probability
densities. Curves at or to the right of the Nonoverlapping Sample indicate acceptable
protection according to that measure. Spectral algorithms are seen to provide improved
privacy protection over their nonspectral counterparts. The measures for nonspectral
additive noise are also shown for comparison. Nonspectral RHS failed to anonymize at all,
and is not shown.
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Fig. 3.
Reidentification analysis using the new privacy measures. Correct matches (solid lines) are
distinguishable from incorrect (dashed lines) under additive noise anonymization, but not
under SPECTRAL-RHS. Reidentification risk is therefore high for additive noise, low for SPECTRAL-
RHS. AUC is the area under the Receiver Operating Characteristic curve that results from
using the measure as a predictor of a correct match. See Section V for further discussion of
these figures.
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TABLE I

Analytic utility measures giving the differences between the statistic in the original data and that in the
anonymized data, for the four anonymization methods and the reference standard nonoverlapping sample. A
value for an anonymization method roughly equal to or less than that for the nonoverlapping sample indicates
sufficient preservation of that statistic. Target statistics are the normalized differences in column means and
variances, and differences between entries in the correlation and rank correlation matrix, as explained in the
text. All methods are seen to sufficiently preseve all target statistics, except variance was not preserved by
Spectral RHS. Nonspectral RHS failed to provide any anonymization at all, so it is not included

Median difference in

mean var cor rank cor

Spectral Swapping < 10−13 0.022 0.013 0.016

Spectral RHS < 10−13 0.37 0.056 0.063

Data Shuffling < 10−13 < 10−13 0.025 0.020

Additive Noise < 10−13 0.007 0.007 0.011

Nonoverlapping Sample 0.035 0.021 0.017 0.016
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