Abstract
Bacteriopheophytin g and small amounts of bacteriochlorophyll g have been obtained in high purity from the recently discovered photosynthetic bacterium Heliobacterium chlorum. Preparative methods and precautions in handling these sensitive compounds are described. The compounds have been characterized by californium-252 plasma desorption mass spectrometry, HPLC, visible absorption, and electron spin resonance spectroscopy. Our results agree with the structure of bacteriochlorophyll g advanced by H. Brockmann and A. Lipinski [(1983) Arch. Microbiol. 136, 17-19], with the exception that we find the esterifying alcohol to be farnesol and not geranylgeraniol as originally suggested. Zero field splitting parameters of triplet state bacteriopheophytin g and the ESR properties of the cation free radical of bacteriochlorophyll g are reported. The photoisomerization of the subject compounds has been studied. Bacteriopheophytin g undergoes photo-isomerization in white light to pheophytin a with a half-time of ≈42 min. We suggest that all of the chlorophylls are biosynthesized from a common intermediate containing an ethylidine group, [unk]CH—CH3, such as is present in bacteriochlorophylls b and g.
Keywords: photoisomerization, esterifying alcohol, electron spin resonance
Full text
PDF




Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Caple M. B., Chow H., Strouse C. E. Photosynthetic pigments of green sulfur bacteria. The esterifying alcohols of bacteriochlorophylls c from Chlorobium limicola. J Biol Chem. 1978 Oct 10;253(19):6730–6737. [PubMed] [Google Scholar]
- Chang C. H., Tiede D., Tang J., Smith U., Norris J., Schiffer M. Structure of Rhodopseudomonas sphaeroides R-26 reaction center. FEBS Lett. 1986 Sep 1;205(1):82–86. doi: 10.1016/0014-5793(86)80870-5. [DOI] [PubMed] [Google Scholar]
- Crespi H. L., Smith U., Katz J. J. Phycocyanobilin. Structure and exchange studies by nuclear magnetic resonance and its mode of attachment in phycocyanin. A model for phytochrome. Biochemistry. 1968 Jun;7(6):2232–2242. doi: 10.1021/bi00846a028. [DOI] [PubMed] [Google Scholar]
- Gloe A., Pfennig N. Das Vorkommen von Phytol und Geranylgeraniol in den Bacteriochlorophyllen roter und grüner Schwefelbakterien. Arch Mikrobiol. 1974 Mar 4;96(2):93–101. [PubMed] [Google Scholar]
- Hunt J. E., Macfarlane R. D., Katz J. J., Dougherty R. C. Self-assembled chlorophyll a systems as studied by californium-252 plasma desorption mass spectroscopy. Proc Natl Acad Sci U S A. 1980 Apr;77(4):1745–1748. doi: 10.1073/pnas.77.4.1745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Miller K. R., Jacob J. S., Smith U., Kolaczkowski S., Bowman M. K. Heliobacterium chlorum: cell organization and structure. Arch Microbiol. 1986 Nov;146(2):111–114. doi: 10.1007/BF00402335. [DOI] [PubMed] [Google Scholar]
- Muckle G., Otto J., Rüdiger W. On the linkages between chromophore and protein in biliproteins, VII. Amino acid sequence in the chromophore regions of C-phycoerythrin from Pseudanabaena W 1173 and Phormidium persicinum. Hoppe Seylers Z Physiol Chem. 1978 Mar;359(3):345–355. [PubMed] [Google Scholar]
- Nuijs A. M., Dorssen R. J., Duysens L. N., Amesz J. Excited states and primary photochemical reactions in the photosynthetic bacterium Heliobacterium chlorum. Proc Natl Acad Sci U S A. 1985 Oct;82(20):6865–6868. doi: 10.1073/pnas.82.20.6865. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schoenleber R. W., Lundell D. J., Glazer A. N., Rapoport H. Bilin attachment sites in the alpha and beta subunits of B-phycoerythrin. Structural studies on a doubly peptide-linked phycoerythrobilin. J Biol Chem. 1984 May 10;259(9):5481–5484. [PubMed] [Google Scholar]
- Staehelin L. A., Golecki J. R., Drews G. Supramolecular organization of chlorosomes (chlorobium vesicles) and of their membrane attachment sites in Chlorobium limicola. Biochim Biophys Acta. 1980 Jan 4;589(1):30–45. doi: 10.1016/0005-2728(80)90130-9. [DOI] [PubMed] [Google Scholar]
