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Abstract: A new approach to predicting the ligand-binding sites of proteins was developed, using
protein-ligand docking computation. In this method, many compounds in a random library are

docked onto the whole protein surface. We assumed that the true ligand-binding site would exhibit

stronger affinity to the compounds in the random library than the other sites, even if the random
library did not include the ligand corresponding to the true binding site. We also assumed that the

affinity of the true ligand-binding site would be correlated to the docking scores of the compounds

in the random library, if the ligand-binding site was correctly predicted. We call this method the
molecular-docking binding-site finding (MolSite) method. The MolSite method was applied to 89

known protein-ligand complex structures extracted from the Protein Data Bank, and it predicted

the correct binding sites with about 80–99% accuracy, when only the single top-ranked site was
adopted. In addition, the average docking score was weakly correlated to the experimental

protein-ligand binding free energy, with a correlation coefficient of 0.44.

Keywords: protein pocket prediction; ligand pocket; ligand binding site prediction; protein-
compound docking; protein-ligand binding free energy

Introduction

Finding functional sites on protein molecular surfa-

ces is crucial for revealing the mechanisms of molec-

ular signaling involving target proteins. Ligand-

binding sites are among the most promising targets

for drug candidates, whose actions depend upon the

inhibition or regulation of the target protein func-

tions. However, in some cases, such ligand-binding

sites must be predicted, because little or no experi-

mental information about the protein’s functional

sites exists. For example, such information is lacking

for many of the proteins with tertiary structures

that have been determined by structural genomics

projects. In addition, non-native ligand-binding sites

need to be searched because of putative protein

structural changes, due to allosteric effects.

Many researchers have published studies on the

prediction of ligand-binding sites.1–30 Some methods

use the mathematical shapes of target proteins, and

identify the corresponding concavities as potential

ligand-binding sites.1–23 In these approaches, the

volumes of the binding pocket can be determined,

but the boundaries between the pocket and non-

pocket regions are often unclear. Other methods use

a spherical probe with a suitable radius, and calcu-

late the pseudo energy between the protein and the

probe.24–27 A site that is predicted to bind the probe

strongly is selected as a ligand-binding site.
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Evolutionary information is also employed, under

the assumption that the amino-acid sequence of the

ligand-binding site must be conserved in the evolu-

tion process. Thus, conserved sequences are poten-

tial candidates for ligand-binding sites. The propen-

sity of each amino-acid residue to exist at a ligand-

binding site has also been calculated from a data-

base of protein-ligand complex structures.2,28–30 Trp,

Phe, Tyr, and Arg tend to form ligand-binding sites,

while Gly, Ala and Pro do not. Methods combining

these bodies of knowledge have also been exam-

ined,30 and suggested the presence of multiple

potential ligand-binding sites, even if only one true

binding site exists.

Besides ligand-binding site prediction, the func-

tional analysis and classification of the pockets have

been reported.31–33 As with the folds of the proteins,

the structural variety of the ligand-binding sites

should be finite, and common structural motifs of

ligand-binding sites are frequently observed, even if

the global folds or amino-acid sequences are quite

different.31 These findings suggest that the struc-

tural variety of ligands, as well as the variety of

ligand-binding pockets, may be limited, and thus a

finite number of compounds could form a probe set

for detecting a ligand-binding pocket by a protein-

compound docking study.

Currently, the accuracy of the above predictions

is roughly 50–80%, when the top-ranked predicted

pocket is adopted as the candidate binding site.1

When the top three to five predicted sites are

adopted, the probability of finding the true site

among them increases to 70–90%.1,28 However, it is

still necessary to improve the accuracy and to esti-

mate the affinity of the pocket. Information about

the pocket location and size is not very useful if the

pocket lacks strong affinity to any compound. Smith

et al.34 showed that the average IC50 of known drugs

is 30 nM, and that 70% of known drugs have an

IC50 < 50 nM.

In the current study, we proposed a new method

for ligand-binding site prediction based on protein-

compound docking simulation, and we tried to esti-

mate the protein compound binding free energy

without known ligands. In our method, actual com-

pounds were randomly selected from a large com-

pound library, and their three-dimensional (3D)

structures were used as the probes, instead of a

spherical probe. Each compound was then docked

onto the protein surface by the ligand-flexible dock-

ing of in silico drug screening. We assumed that the

true ligand-binding site would show stronger affinity

than the other sites to the compounds in the random

library, even if the random library did not include

the true binders to the binding site. This assumption

was based on a previous experiment, in which we

applied an in silico structure-based drug screening

method to more than ten target proteins, and found

that the docking poses of almost all compounds were

localized around their true ligand-binding sites. We

also assumed that the affinity of the true ligand-

binding site would be correlated to the docking

scores of the compounds in the random library if the

ligand-binding site was correctly predicted, because

the affinity of a drug depends on the shape of the

ligand-binding pocket. In general, a deep binding

pocket shows stronger affinity than a shallow

pocket. We call this method the molecular-docking

binding-site finding (MolSite) method. The MolSite

method was applied to 89 proteins, and it predicted

the ligand-binding sites of these proteins fairly cor-

rectly. The MolSite method was also used to examine

the protein-compound affinity for 50 proteins, but

only weak correlations were found between the pre-

dicted and experimental binding free energies when

the volumes of the pockets were small.

Results

Ligand-binding site prediction

The Ca carbons were selected as the centers of the

scoring grids for the 89 target proteins, as men-

tioned in the previous section. On average, 29.3 Ca
carbons were selected for each target protein, and a

3D mesh was generated around the Ca carbons. The

minimum number of selected Ca carbons was 10, for

2pk4, and the maximum number was 53, for 1dbj.

The 10,000 compounds of the C1, C2 and C3 probe

sets were docked to the whole surfaces of the target

proteins, using the above mesh potential (see Table I

and Materials section). The protein-compound dock-

ing was flexible, allowing up to 100 conformers for

each compound, and was performed by the Sievgene/

myPresto program, with an average docking time of

about 2 seconds per compound. The Savg, S1 and Stop

scores were calculated for each scoring grid from

these docking scores for the C1, C2 and C3 sets.

Table II shows the probabilities of finding the

true scoring grid among the selected scoring grids

by the three different scores, when the C1 set was

used as the probe set (see Fig. 1 and Method sec-

tion). The definition of ‘‘true scoring grid’’ is the con-

dition in which the selected scoring grid contains the

average atomic coordinates of the experimentally

determined bound ligand. If multiple grids contain

the average atomic coordinates of the experimentally

determined bound ligand, then the true scoring grid

was selected among these grids as follows: the dis-

tance between the center Ca carbon of the true scor-

ing grid and the average coordinates of the bound

ligand must be the minimum value among the val-

ues obtained from these grids. When the Savg score

was used for the selection, all true scoring grids

were selected. If the scoring grid had been randomly

selected, then the probability of finding the true

scoring grid would have been 3.4%, since the
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average number of scoring grids was 29.3 (3.4% ¼
100%/29.3). The S1 score gave the second best pre-

diction probability. The Stop score was inferior to

both the Savg and S1 scores. When the C2 and C3

sets were used as the probe set, the results were

almost the same as those obtained with the C1 set,

as shown in Table II. The probability of finding the

true scoring grid did not depend on the choice of the

probe set. The difference in the probability was less

than 3%. When the Savg score was used for the selec-

tion, the true scoring grids were selected at 100%

probability.

Table III shows the prediction results for the

centers of the ligand-binding sites, when the C1 set

was used as the probe set. The scoring grids were

selected using the Savg score. The distances between

the center of the predicted ligand-binding site and

the center of the bound ligand (Dc) were calculated

for the 89 proteins. This distance was adopted as the

measure of the prediction accuracy by Brylinski and

Skolnick.28 The minimum distances between the

center of each predicted binding site and any atom

of the bound ligand (Dmin) were also calculated, as

shown in Table III. This minimum distance was

adopted as the measure of the prediction accuracy

by Huang.1 The Dmin values are smaller than the

Dc values in many cases, but there are some excep-

tions. The bound ligand of 1a6w adopts an ‘‘L’’ shape,

and that of 1epo has a ‘‘C’’ shape. In these cases, the

average coordinates of the ligand’s atoms are outside

of the molecule, and thus the Dc values are smaller

than the Dmin values.

Table I. Summary of the Number of Heavy Atoms in
Each Compound Set

Compound sets Min. Average Max.

C1 7 20.37 26
C2 9 20.36 26
C3 8 20.36 26
Liganda 5 21.25 46

Min., Max., and Average represent the minimum, maxi-
mum and average numbers of heavy atoms of the com-
pound sets, respectively.
a Ligands of the protein-compound complex structures sum-
marized in Appendix A.

Table II. Probability that the Selected Scoring Grids
Include the True Ligand-Binding Sites, Depending on
the Scores Used for Selection

Library Savg Stop S1

C1a 98.89 68.18 89.77
C1b 100.00 68.63 90.20
C2b 100.00 70.59 88.24
C3b 100.00 80.39 88.24

Values in the table are in %. C1, C2, and C3 are the three
different compound libraries.
a All 88 proteins were used (Appendix A).
b The 50 proteins with DG values were used (Appendix B).

Table III. Summary of the Dc and Dmin Values for All
89 Target Proteins

Distance

Number Target protein Dc (Å) Dmin (Å)

1 1a6w 0.50 0.82
2 1acj 1.87 0.69
3 1bid 3.79 1.72
4 1blh 2.19 2.57
5 1byb 2.12 1.78
6 1cdo 1.65 1.01
7 1fbp 1.10 0.78
8 1gca 0.41 1.00
9 1hew 5.28 1.02
10 1hfc 2.03 0.95
11 1hyt 5.74 1.17
12 1ida 1.45 0.88
13 1igj 5.11 1.77
14 1imb 1.41 1.48
15 1inc 4.89 1.04
16 1ivd 1.50 0.88
17 1mrg 3.08 1.56
18 1mtw 4.08 0.73
19 1okm 1.88 1.06
20 1pdz 1.98 0.53
21 1phd 2.62 1.30
22 1pso 2.02 0.52
23 1qpe 0.64 0.42
24 1rbp 2.12 1.42
25 1rne 1.58 0.68
26 1rob 0.88 0.59
27 1snc 0.87 0.48
28 1srf 1.81 0.87
29 2ctc 1.69 1.30
30 2h4n 3.22 0.69
31 2pk4 3.22 0.69
32 2sim 1.10 1.10
33 2tmn 0.82 0.95
34 3gch 2.87 0.90
35 3mth 2.39 1.02
36 4phv 39.98 27.29
37 5cna 1.82 1.05
38 5p2p 2.24 1.77
39 6rsa 2.54 0.88
40 1dwd 0.79 0.98
41 1stp 1.17 1.18
42 1ulb 3.37 1.18
43 2ifb 0.41 2.03
44 3ptb 3.60 1.37
45 2ypi 1.56 1.17
46 4dfr 3.69 0.53
47 7cpa 3.67 0.73
48 1apu 3.73 1.78
49 1abe1 7.15 9.64
50 1abe2 7.15 9.64
51 1abf1 5.78 7.39
52 1abf2 4.72 7.40
53 1cbx 1.66 3.22
54 1dbb 0.94 2.59
55 1dbj 1.29 1.57
56 1dog 0.96 2.70
57 1ebg 0.59 1.51
58 1epo 1.03 3.05
59 1etr 1.12 2.51
60 1ets 1.07 2.54
61 1ett 1.58 3.06
62 1hpv 1.47 0.44
63 1hsl 0.76 1.12
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In the MolSite method, the center of the pre-

dicted docking pocket is given by the average coordi-

nates of the docking poses of all compounds in the

candidate scoring grid. In the current study, the cen-

ter of the predicted docking pocket was the average

coordinates of the 10,000 docking poses. The distri-

bution (root-mean square deviation; RMSD) of the

average coordinates of the 10,000 docked poses was

calculated for each target protein. The average

RMSD value for the 88 targets was 1.61 Å. This av-

erage RMSD value means that most of the docked

poses were overlapped around the center of the pre-

dicted docking pocket for each target protein, when

the compounds were selected randomly. With a

greater number of compounds, we can expect the av-

erage coordinates of the docking pose to converge to

a point.

For several targets (4phv, 1abe, 2r04, 1abf, etc.),

the MolSite method failed in the prediction of the

binding sites. Therefore, the probe-size dependence

of the prediction was examined. Table IV shows the

results obtained by the ‘‘Small’’ compound set, con-

sisting of the ligands with HA < 13 atoms in

the protein-ligand complex structures listed in

Table III. (Continued)

Distance

Number Target protein Dc (Å) Dmin (Å)

64 1htf1 1.68 3.08
65 1htf2 1.40 4.14
66 1hvr 0.62 1.33
67 1mbi 4.05 4.92
68 1mnc 1.26 5.23
69 1nsd 1.23 2.40
70 1pgp 4.01 5.43
71 1phf 1.11 1.75
72 1phg 1.04 0.85
73 1ppc 1.80 2.05
74 1pph 1.97 2.34
75 1rbp 0.57 2.48
76 1tmn 0.84 3.30
77 1tng 2.21 4.19
78 1tnh 0.81 3.78
79 2cgr 0.43 3.05
80 2cpp 0.68 0.81
81 2gbp 1.96 2.95
82 2phh 2.53 3.51
83 2r04 2.45 8.62
84 2tsc 0.66 4.12
85 5abp1 5.18 7.48
86 5abp2 5.13 7.57
87 5cpp 0.91 0.62
88 5tln 0.96 2.96
89 6cpa 0.69 3.60

Average 3.34 1.82

This prediction is based on the Savg score. Dc: the distance
between the center of the predicted ligand-binding site and
the center of the bound ligand. Dmin: the minimum dis-
tance between the center of the predicted binding site and
any atom of the bound ligand.

Table IV. Summary of the Dc and Dmin Values
for all 89 Target Proteins Obtained by the
Small-Compound Set

Distance

Number Target protein Dc (Å) Dmin (Å)

1 1a6w 1.49 0.64
2 1acj 2.18 1.00
3 1bid 4.04 1.88
4 1blh 2.50 1.84
5 1byb 3.29 0.89
6 1cdo 1.60 1.52
7 1fbp 1.83 1.96
8 1gca 0.73 0.80
9 1hew 6.31 0.72
10 1hfc 4.04 0.52
11 1hyt 5.60 1.36
12 1ida 1.53 0.46
13 1igj 7.05 0.56
14 1imb 3.00 0.73
15 1inc 4.51 0.54
16 1ivd 0.77 0.64
17 1mrg 1.19 0.79
18 1mtw 5.28 1.21
19 1okm 3.10 0.65
20 1pdz 1.12 0.65
21 1phd 1.59 1.05
22 1pso 1.81 0.86
23 1qpe 3.68 0.83
24 1rbp 2.45 1.48
25 1rne 1.48 0.80
26 1rob 1.33 1.44
27 1snc 2.97 1.92
28 1srf 2.94 0.65
29 2ctc 0.80 1.48
30 2h4n 1.75 0.59
31 2pk4 1.48 0.79
32 2sim 1.71 1.05
33 2tmn 1.16 1.21
34 3gch 4.12 1.30
35 3mth 3.86 2.61
36 4phv 4.65 0.59
37 5cna 0.73 1.24
38 5p2p 4.04 1.10
39 6rsa 2.28 0.77
40 1dwd 5.46 2.95
41 1stp 1.61 1.32
42 1ulb 3.86 2.08
43 2ifb 4.11 1.65
44 3ptb 1.53 1.48
45 2ypi 4.07 1.50
46 4dfr 4.28 1.05
47 7cpa 3.67 2.62
48 1apu 3.10 1.40
49 1abe1 1.76 0.80
50 1abe2 1.76 0.80
51 1abf1 1.42 0.51
52 1abf2 1.49 0.67
53 1cbx 2.42 1.34
54 1dbb 3.53 0.75
55 1dbj 3.14 0.67
56 1dog 1.06 1.05
57 1ebg 1.16 0.32
58 1epo 2.30 0.74
59 1etr 3.73 1.91
60 1ets 9.06 3.42
61 1ett 7.01 3.84
62 1hpv 0.79 0.85
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Appendix C. The number of molecules was 21. After

the scoring grid was determined using the C1 set,

these 21 ligands were docked to the target proteins

and the average coordinates of the docking poses

were calculated. For 4phv, 1abe1, 1abe2, 1abf1,

1abf2, 5abp1 and 5abp2, the Dc and Dmin values

were drastically decreased using the Small set, as

compared to the results summarized in Table III. In

actual ligand-binding site prediction, we usually do

not know the ligand a priori. Thus, we did not use

the results from the Small set for comparison with

those obtained by other docking programs.

The prediction accuracies of our MolSite

method, obtained with the C1 library, are shown in

Tables V and VI with the accuracies of other meth-

ods,1,28 where the 48 target proteins are the same

ones used for the validation of LIGSITE, PASS, Q-

site finder and SURFNET.1 The target protein set

was different from the set used for the validation of

FINDSITE.28 Since the results obtained from the C2

and C3 libraries were exactly the same as those

obtained from the C1 set when the 50 protein set

(protein numbers 40-89 in Tables III and IV) was

employed, only the C1 library was used.

When we used the 48 proteins to evaluate the

prediction accuracy of the current method, the prob-

abilities of Dc < 4 Å and Dmin < 4 Å were 87.50%

and 97.92%, respectively. When we used all 89 pro-

teins (¼50þ48–9) to evaluate the current method,

the probabilities of Dc < 4 Å and Dmin < 4 Å were

88.76% and 85.40%, respectively. Therefore, the pre-

diction performance of the MolSite method was bet-

ter than that of the other methods. The Dc values

determined by the MolSite method in this table were

obtained from the top-ranked prediction site. On the

contrary, the Dc values for the top 5 predicted sites

were the lowest for the FINDSITE and LIGSITE

methods.28 The Dmin values were obtained from the

top-ranked prediction site.28

We examined the breakdown of the docking

scores and the differences between the docking

scores at the true binding site and the other sites.

Table IV. (Continued)

Distance

Number Target protein Dc (Å) Dmin (Å)

63 1hsl 1.18 1.00
64 1htf1 3.19 1.15
65 1htf2 2.80 1.76
66 1hvr 3.74 1.82
67 1mbi 7.32 6.36
68 1mnc 8.16 4.13
69 1nsd 1.81 1.29
70 1pgp 3.97 2.43
71 1phf 0.78 0.52
72 1phg 0.44 1.53
73 1ppc 4.60 1.47
74 1pph 3.42 1.54
75 1rbp 4.28 1.55
76 1tmn 4.39 1.12
77 1tng 1.63 1.39
78 1tnh 1.67 1.94
79 2cgr 5.64 0.55
80 2cpp 0.51 0.86
81 2gbp 0.97 1.03
82 2phh 1.48 1.04
83 2r04 7.80 3.08
84 2tsc 5.87 1.98
85 5abp1 1.10 0.38
86 5abp2 1.29 0.51
87 5cpp 0.49 1.36
88 5tln 3.16 0.65
89 6cpa 3.86 0.48

Average 3.12 1.53

This prediction is based on the Savg score. Dc: the distance
between the center of the predicted ligand-binding site and
the center of the bound ligand. Dmin: the minimum dis-
tance between the center of the predicted binding site and
any atom of the bound ligand.

Table V. Summary of the Pocket-Prediction Accuracies of Various Methods. Prediction Accuracy of MolSite for the
48 Target Proteins, Which were Used for the Validation of LIGSITE, PASS, Q-site Finder, and SURFNET, as Shown
in Appendix A

Method MolSite MolSite
FIND
SITE

LIG
SITE

Meta
Pocket

LIG
SITE PASS

Q-site
Finder SURFNET

No of Pocketsa Top 1 Top 1 Top 5 Top 5 Top 1 Top 1 Top 1 Top 1 Top 1

Distance (D) Dc Dmin Dc Dc Dmin Dmin Dmin Dmin Dmin
D < 8 Åb 97.92 97.92 — — — — —s — —
D < 6 Åb 97.92 97.92 — — — — — — —
D < 5 Åb 91.67 97.92 — — — — — — —
D < 4 Åb 87.50 97.92 70.9c 51.3c 83.0d 81.0d 58.0d 75.0d 42.0d

D < 3 Åb 68.75 97.92 — — — — — — —

The values in this table are in %. This prediction is based on the Savg score. Dc: the distance between the center of the pre-
dicted ligand-binding site and the center of the bound ligand. Dmin: the minimum distance between the center of the pre-
dicted binding site and any atom of the bound ligand.
a Number of pockets indicates the number of predicted pockets used for the analysis. If one of the predicted pockets is cor-
rect, then the prediction is counted as a successful prediction.
b The 48 target proteins were used.
c Reference 28.
d Reference 1.
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The Sievgene docking score consists of an accessible

surface term (mainly hydrophobic interaction), an

electrostatic term, a hydrogen bonding term and a

van der Waals term. The total score, and the accessi-

ble surface, electrostatic, hydrogen bonding and van

der Waals terms at the true binding site were 1.29,

1.28, 0.78, 1.32, and 1.26 times larger than those

values at the other sites, respectively. The contribu-

tions of the accessible surface, electrostatic, hydro-

gen bonding and van der Waals terms were 89.9%,

0.88%, 5.41% and 3.78%, respectively. On average,

65% of the total accessible surface of the compound

was buried in the protein. At the true binding site,

78% of the total accessible surface of the compound

was buried in the protein. These results suggest

that the surface complementarity and the hydropho-

bic interactions between the protein and the com-

pounds are important in distinguishing the true

binding site from the other sites.

The MolSite method was also applied to the

unbound (apo) structures of 20 target proteins,

which were the (5*n þ 1)th and (5*n þ 3)th (where

n¼0,.., 9) proteins of Table IV of reference 2. The

prediction results are summarized in Table VII. To

calculate the Dc and Dmin values, the Ca carbons of

the unbound protein were superimposed on those of

the bound (holo) protein, and the Dc and Dmin val-

ues were calculated based on the ligand coordinates

of the bound protein. The apo and holo proteins are

summarized in Table VII. The C1, C2 and C3 sets

were used as the probe set. The scoring grids were

selected using the Savg score. The MolSite method

worked well for both the unbound and bound struc-

tures. The prediction results did not depend on the

choice of the probe set. The probabilities of Dc < 4 Å

and Dmin < 4 Å were 80% and 100%, respectively.

This prediction accuracy for the apo protein was

almost the same as that for the holo protein.

Figure 2(A,B) show the ligand-binding site pre-

diction results obtained by the current MolSite

method, summarizing the data in Tables III, IV, and

VII. It is clear that the prediction results were only

slightly dependent on the selected library, and that

the prediction performance for apo proteins was sim-

ilar to that for holo proteins. As compared with the

performances of other methods (i.e., Fig. 2 of

Table VI. Summary of the Pocket-Prediction
Accuracies of Various Methods. Prediction accuracy
of MolSite for the Total of 89 Target Proteins, as
Shown in Appendixes A and B

Method MolSite MolSite
No. of pocketsa Top 1 Top 1
Distance Dc Dmin

D < 8 Åb 98.88 95.51
D < 6 Åb 98.88 91.01
D < 5 Åb 92.13 89.89
D < 4 Åb 88.76 85.40
D < 3 Åb 79.78 76.40

a Number of pockets indicates the number of predicted
pockets used for the analysis. If one of the predicted pock-
ets is correct, then the prediction is counted as a successful
prediction.
b All 89 target proteins were used.

Table VII. Summary of the Dc and Dmin Values for 20 apo Proteins

Library C1 C1 C2 C2 C3 C3
Distance Dc Dmin Dc Dmin Dc Dmin

Apo Holo RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å) RMSD (Å)

1hel 1hew 4.85 1.04 4.86 1.03 4.86 1.03
1hsi 1ida 3.02 2.03 3.03 2.05 2.99 2.03
1krn 2pk4 2.48 1.29 2.48 1.28 2.47 1.28
1pdy 1pdz 1.66 0.90 1.67 0.91 1.67 0.91
1stn 1snc 4.30 0.50 4.31 0.49 4.33 0.49
1swb 1stp 7.41 1.23 7.41 1.22 7.40 1.20
3app 1apu 3.08 1.11 3.08 1.11 3.05 1.13
3p2p 5p2p 0.50 0.98 0.52 0.97 0.52 0.97
3tms 1bid 0.60 0.99 0.62 0.98 0.57 1.00
5dfr 4dfr 2.00 1.72 1.97 1.72 2.03 1.70
1mrg 1ahc 2.59 1.37 2.58 1.37 2.58 1.36
1blh 1djb 3.26 1.90 3.24 1.90 3.24 1.91
1inc 1esa 3.51 0.88 3.47 0.86 3.51 0.88
1dwd 1hxf 4.15 0.66 4.17 0.66 4.16 0.68
2ifb 1ifb 1.15 1.90 1.16 1.91 1.15 1.92
2tmn 1l3f 2.36 0.95 2.38 0.96 2.38 0.97
1pso 1psn 3.17 0.55 3.19 0.56 3.18 0.57
5cna 2ctv 1.56 0.26 1.58 0.25 1.60 0.23
1stp 2rta 0.90 1.28 0.90 1.28 0.88 1.27
6rsa 7rat 2.45 0.90 2.46 0.89 2.45 0.89

Average 2.75 1.12 2.75 1.12 2.75 1.12

This prediction is based on the Savg score.

100 PROTEINSCIENCE.ORG Prediction of Ligand-Binding Sites



reference 28), the performance of MolSite is equiva-

lent or superior to those of other methods, although

the data sets were different.

We also examined the dependence of the num-

ber of compounds on the prediction accuracy. For the

20 apo structures, 10, 100, and 1,000 randomly

selected compounds were used, instead of the 10,000

compounds. The prediction accuracy was improved

by increasing the number of compounds. Namely,

the probabilities of Dc < 4 Å were 60%, 60%, 70%

and 70% for 10, 100, 1,000 and 10,000 compounds,

respectively. The probabilities of Dc < 5 Å were 70%,

80%, 80% and 90% for 10, 100, 1,000 and 10,000

compounds, respectively. The average Dc values

were 3.34 Å, 3.52 Å, 3.42 Å and 2.99 Å for 10, 100,

1,000 and 10,000 compounds, respectively. The Mol-

Site method could work with even 10 compounds,

and the accuracy was not drastically improved with

more compounds. Therefore, 104 compounds should

be sufficient to use the MolSite method effectively.

When only one ligand of the target protein was

used, the MolSite method still worked, but failed in

some cases. The ligands were prepared for 16 apo

structures (see Appendix D). The probabilities of Dc

< 4 Å were 75% and Dmin < 4 Å were 81.25%. How-

ever, for three target proteins (1djb, 1esa and 1l3f),

the MolSite method failed in prediction (Dc > 20 Å

and Dmin > 18 Å).

Prediction of ligand-binding affinity

Figure 3 shows a comparison between the experi-

mental DG values and the Savg values. The PDB

identifiers of the 50 proteins used are summarized

in Appendix B (protein numbers 40–89 in Tables III

and IV). When all 50 results were used, there was

almost no correlation between the experimental DG
value and the Savg or S1 value. The correlation coef-

ficients of Savg and S1 to the experimental DG values

were 0.195 and 0.186, respectively. As shown in

Tables III and IV, the prediction failed in several

cases, but all of the results were used to calculate

the correlation. The docking scores were distributed

around 3–4, suggesting that the difference between

the strongest and weakest affinities was about 30%.

On the contrary, the experimental DG values ranged

from �2 kcal/mol to �18 kcal/mol. Thus, the DG
value cannot be predicted well by any score obtained

by the MolSite method. The correlation coefficients

of Savg and S1 were higher than those of the Stop

score.

The volumes of the ligands in this dataset were

widely distributed. As shown in Table I, the smallest

Figure 1. Schematic representation of the molecular-docking binding-site finding (MolSite) method.
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number of heavy atoms in a ligand was only 5, and

the largest number was 46. In contrast, the smallest

number of heavy atoms in the compounds was 7-9,

and the largest number of heavy atoms was 26. If

the pocket is too large, as compared with the com-

pounds of the decoy set, then those probes cannot

estimate the protein-compound interaction of the

whole pocket. Moreover, if the MolSite method fails

in pocket prediction, then the docking score is not

meaningful for estimating the protein-compound

interaction of the true pocket. In this analysis,

ligands with HA � 26 were selected, and the predic-

tion cases with Dc < 4 Å were chosen. Then, 22 tar-

get proteins (complex structures) were selected for

the DG prediction.

Figure 4 shows a comparison between the experi-

mental DG values and the Savg values for the 22

selected target proteins. A weak correlation appears

between the experimental DG value and the Savg or S1

value. Namely, the correlation coefficient between DG

and Savg was 0.441 (linear regression yielded DG ¼
�3.429 Savg þ 3.559), and that between DG and S1

was 0.425 (linear regression yielded DG ¼ �3.306 S1 þ
3.201). The Savg score was slightly better than the S1

score for the affinity prediction, even though the true

binder was unknown. When the volume of the binding

pocket was limited, the affinity of the binding pocket

could be predicted, but the accuracy was not very high.

Discussion
In Table III, the MolSite method failed to predict the

binding sites of 4phv, 1abe, 2r04, 1abf and 5abp.

Figure 2. Performance of the MolSite method. The results

are presented as the fraction of proteins with Dc and Dmin.

Filled circles, open circles and open triangles represent the

results of all 89 holo target proteins with the C1 library,

those with the small compound set, and those of the 20

apo target proteins with the C1 library, respectively. (A)

Fraction of proteins vs. Dc value, (B) fraction of proteins vs.

Dmin value.

Figure 3. Correlation between the experimental DG value

and the Savg value obtained by the Sievgene protein-

compound docking program for all 50 target proteins. The

solid line represents the linear regression result by the

least-squares fit.

Figure 4. Correlation between the experimental DG value

and the Savg value obtained by the Sievgene protein-

compound docking program for the selected target

proteins. The solid line represents the linear regression

result by the least-squares fit.

102 PROTEINSCIENCE.ORG Prediction of Ligand-Binding Sites



Three of these—1abe, 1abf and 5abp—are sugar-

binding proteins, with small binding pockets buried

in the proteins. The ligands of 1abe, 1abf and 5abp

have only 5–8 heavy atoms. The compounds of sets

C1–C3 are much larger than sugars, and no mem-

bers of our probe set could bind to the pocket cor-

rectly. All of the compounds were docked onto the

protein surface, and no docking poses were gener-

ated for the actual buried binding pocket. We

hypothesized that if the probe set had consisted of

small compounds with sizes similar to those of sug-

ars, then the MolSite method could have predicted

the true binding pocket.

Therefore, we used the set of small compounds

as the probe set, and the results are shown in Table

IV. The small binding pockets in 1abe, 1abf, and

5abp were well predicted. In addition, the prediction

of the buried pocket in 4phv was greatly improved.

Therefore, when the ligand for a target protein is

known to be small, we can use the Small set for bet-

ter prediction accuracy.

For in silico screening, the conditions of Dc <4

Å and Dmin <4 Å proved too severe. As shown in

Table II, 98.89% of the ligand-binding sites were

included in the selected scoring grids by the Savg

score. This prediction of the scoring grid should be

sufficiently high for in silico screening. Such high

accuracy should be required for docking pose

analysis.

A comparison of Figure 3 with 4 reveals that

the DG values show better correlation with the Savg

or S1 values for smaller ligands with HA � 26,

rather than larger ligands with HA > 26. The molec-

ular size of the C1–C3 sets was generally smaller

than that of the ligands of the 50 protein-ligand

complexes. Namely, the average number of heavy

atoms of the C1–C3 sets was 20.4, and the range of

the number of heavy atoms (HA) was 7–9 � HA �
26. If the probe set consisted of large compounds,

then the Savg or S1 value would show better correla-

tion to the experimental DG than that in the current

study. The precise reproduction of these DG values

would be difficult, since the DG value depends on

the ligand that binds the same pocket. The ligand ef-

ficiency (LE) has been proposed as a measure of

druggability, with LE ¼ -DG /HA.35,36 The LE values

of known drugs range from 0.1 kcal/mol/atom to 0.7

kcal/mol/atom, and the average LE value is 0.4 kcal/

mol/atom.35,36 In the current study, the LE values

ranged from 0.104 kcal/mol/atom to 1.640 kcal/mol/

atom. Three LE values of the current data were

extremely high (LE > 0.9 kcal/mol/atom). The DG
value of a compound with an extremely low LE

value could be improved by some chemical modifica-

tions, but we could not determine the maximum af-

finity. The maximum affinity of the pocket is not

defined well enough to allow the prediction of the af-

finity without a known active compound.

Our previous work showed that the DG value

predicted by our own docking program, Sievgene, is

not highly accurate, with a correlation coefficient

between the experimental and predicted DG values

of about 0.7, which is the same as those of other

docking programs.37 The previous work was based

on exactly the same 50 protein-compound complex

structures used in the current study. This accuracy

is the upper limit by a naı̈ve docking study. In the

current study, the correlation coefficient between the

experimental and predicted DG values was about

0.4, without using the true ligands (binders). A cor-

relation coefficient of 0.4 is not very high, but it may

not be so bad, considering the upper limit, 0.7.

One of the drawbacks of the MolSite method is

the computational time. The MolSite method is a

sort of ensemble docking study. When the protein

surface is divided into 50 scoring grids and the

library consists of 10,000 compounds, the total num-

ber of dockings is 50 � 10,000 dockings. Thus, the

total CPU time is 1,000,000 seconds (¼278 hours)

for one target protein by one processor. However,

completely parallel computation can easily be per-

formed, by distributing the individual docking proce-

dures to different CPUs. Therefore, despite this

drawback, the MolSite method is useful for reliably

predicting the possible ligand-binding sites for a tar-

get protein.

The MolSite method can easily be improved by

increasing the compound database, and its predic-

tion accuracy is high. Once the ligand-binding

pocket is predicted, the subsequent in silico drug

screening docks millions of compounds. In recent en-

semble docking studies, multiple target-protein

structures have been used, and the CPU time

required for in silico screening is much longer than

that needed for the MolSite method.

In the current study, Sievgene was adopted as

the protein-compound docking program. Many pro-

tein-compound docking programs have been

reported,38–40 and there is no clearly superior

method.41 In the current study, we used the ordinary

Sievgene score, rather than the special function.

Thus, other protein-compound docking programs

besides Sievgene could be used for the MolSite

method.

Materials and Methods

Protein-compound docking on the whole protein sur-

face was performed using a random compound

library, and the ligand-binding sites were predicted

based on the docking scores of these compounds. We

assumed that the ligand-binding site would show

stronger affinity to a compound than the other

regions do, even if the compound was not the true

binder of the site. Figure 1 provides a schematic rep-

resentation of this MolSite method.
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Since it is too time-consuming for a docking pro-

gram to dock a compound on the whole protein sur-

face, the entire protein surface was first divided into

many small grid boxes for the docking procedure

with the random compound library. The centers of

these boxes were set to the positions of the Ca car-

bons. The grid boxes are called the ‘‘scoring grids’’

hereafter. The Ca carbons were selected to reduce

the computational time. The minimum distance

between two Ca carbons was set at 8 Å. The Ca car-

bon of the first residue was adopted first. If two Ca
carbons were closer than 8 Å, then the Ca carbon

belonging to the latter residue was neglected. As a

result, 10–53 Ca carbons were selected for the target

proteins.

The scoring grid was a cubic region with a cell

size of 30 � 30 � 30 Å3, composed of a 3D mesh

with grid points separated by 1 Å, each with the

potential energy for ligand-binding to the target pro-

tein. Neighboring grids overlapped. All compounds

of the random library were docked in these scoring

grids.

To evaluate the ‘‘binding site likeness’’ of the

grid, we prepared the following three scores.

• Type1: Savg, The average value of all docking

scores of compounds of the library.
• Type 2: Stop, The best docking score among all

docking scores of compounds of the library.
• Type 3: S1, where S1 ¼ Savg þ r, where r is the

deviation of the docking scores, and

r ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN
i¼1

ðscorei � SavgÞ2
N � 1

vuut ;

scorei and N are the docking score of the i-th com-

pound and the number of compounds in the

library, respectively.

Usually, only one compound among the 10,000

randomly selected compounds is a truly active com-

pound that experimentally shows strong affinity to

the target protein. Thus, the protein-compound af-

finity is given by this truly active compound, among

the many compounds. The highest docking score

should be closer to the true docking score than the

other scores, and docking scores lower than the

highest score should be meaningless. Based on this

logic, the Stop score should be the most reliable

indicator.

However, the Stop score strongly depends on the

choice of the random library. If the library contains

a strong binder, then the Stop value should be very

high. On the contrary, the Stop value may not be so

high if the library lacks a strong binder. To reduce

this library dependency, the average score value and

deviation were introduced. Using the S1 or Savg val-

ues, the library dependency in the prediction of the

ligand-binding sites could be reduced.

Each of these three scores (S1, Savg, and Stop)

was calculated for each scoring grid, and the grid

that yielded the best score was selected as the candi-

date scoring grid that contains the ligand-binding

pocket. The center of the predicted docking pocket

was then determined by the average coordinates of

the docking poses of all compounds in the candidate

scoring grid. The predicted affinity was given by

each of the three scores (S1, Savg, and Stop) obtained

in the candidate scoring grid.

To examine the MolSite method, we performed a

protein-ligand docking simulation based on the

known complex structures registered in the Protein

Data Bank. The protein set consisted of two sets

originating from the references. Here, 50 complexes

with their experimental binding free energy values

were selected from the database that was used for

the determination of the DG scores of the PRO_

LEADS (protein numbers 40–89 in Tables III and

IV).42 Forty-eight complexes were selected from the

database that was used for the ligand-binding site

prediction of the LIGSITE CSC (protein numbers 1–

48 in Tables III and IV).2 Ten proteins were redun-

dant (protein numbers 40–48 in Tables III and IV).

Thus, a total of 89 (¼50þ48–9) proteins were used

in the current study. The PDB identifiers are sum-

marized in Appendix A. All water molecules were

removed from the proteins, and all missing hydrogen

atoms were added to form all-atom models of the

proteins. For ligand-flexible docking, the Sievgene/

myPresto program (protein-compound docking pro-

gram) was used to generate up to 100 conformers for

each compound.43 The Sievgene/myPresto program

is available for free, from the web sites http://presto.

protein.osaka-u.ac.jp/myPresto4/ and http://med-

als.jp/myPresto/index.html. Sievgene reconstructed

27.7%, 56.9%, and 66.2% of the total of 180 com-

plexes that were adopted in the previous study43

with RMSDs < 1 Å, 2 Å, and 3 Å, respectively, and

the average computational time was 2 CPU seconds.

Three compound libraries (C1, C2 and C3) were

prepared. Each library consisted of 10,000 randomly

selected compounds from the LigandBox compound

database.44 The atomic charges of each compound

were determined by the Mulliken charge, using

MOPAC AM1 quantum chemical calculations (Quan-

tum Chemistry Program Exchange, (QCPE), Indiana

University, Bloomington, IN). The molecular weight

(MW) of each compound was restricted to 150 Da <

MW < 340 Da. The minimum, maximum and aver-

age numbers of heavy atoms (HA) are summarized

in Table I.

The atomic charges of the proteins were the

same as those in AMBER parm99.45 The minimum,

maximum and average numbers of heavy atoms
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(HA) of the ligands of those protein-ligand complex

structures are also summarized in Table I.

Conclusion

We developed the MolSite method for the prediction

of the ligand-binding sites of a target protein. In this

method, many compounds in a random library are

docked over the whole surface of the target protein,

and the ligand-binding site is predicted based on the

resulting docking scores. We assumed that the

actual ligand-binding sites would show statistically

better docking scores and higher affinities to com-

pounds in the random library than other sites do,

even if the compounds are not the true ligands.

We applied the MolSite method to 89 known

protein-ligand complex structures extracted from the

PDB. The ligand-binding sites were predicted for the

bound states of these target proteins. The center of

the ligand-binding site was defined as the average

coordinates of the bound ligand of the original com-

plex structure. The center of the predicted ligand-

binding site was defined as the average coordinates

of all of the docked compounds of the probe set. The

prediction accuracy was measured by the distance

between the predicted center of the pocket and the

actual center of the original complex structure.

The prediction accuracy of the MolSite method

was higher than those of the other methods. Namely,

the ligand-binding sites were predicted with 87.5%

and 97.9% accuracies for the Dc value < 4 Å and the

Dmin value < 4 Å for the bound structures, respec-

tively, when only the single top-ranked site was

adopted. The MolSite method worked well for both

the unbound and bound structures. We also exam-

ined the prediction of the affinity of the ligand-bind-

ing site. When the pocket was small, the average

docking score showed weak correlation to the experi-

mental binding free energy. The results generated

by the MolSite method did not depend on the choice

of the compound data set.

Appendix A: Forty-Eight Proteins for

Ligand-Binding Site Prediction and Binding

Free Energy Estimation
The following PDB identifier complexes were used:

1bid, 1cdo, 1fbp, 1gca, 1hew, 1hyt, 1inc, 1rbp, 5cna,

1a6w, 1acj, 1blh, 1ivd, 1mtw, 1okm, 1phd, 1qpe, 1srf,

2h4n, 2sim, 3gch, 3mth, 5p2p, 1imb, 6rsa, 1rob,

4phv, 1byb, 1hfc, 1ida, 1igj, 1mrg, 1pdz, 1pso, 1rne,

1snc, 2ctc, 2pk4, 1apu, 1dwd, 1stp, 1ulb, 2ifb, 3ptb,

2ypi, 4dfr, 2tmn, and 7cpa.

Appendix B: Fifty Proteins for Binding Free
Energy Estimation

The following PDB identifier complexes were used:

1abe, 1abf, 1apu, 1cbx, 1dbb, 1dbj, 1dog, 1dwd, 1ebg,

1epo, 1etr, 1ets, 1ett, 1hpv, 1hsl, 1htf, 1hvr, 1mnc,

1nsd, 1pgp, 1phf, 1phg, 1ppc, 1pph, 1rbp, 1stp,

1tmn, 1tng, 1tnh, 1ulb, 2cgr, 2cpp, 2gbp, 2ifb, 2phh,

2r04, 2tmn, 2tsc, 2ypi, 3ptb, 4dfr, 5abp, 5cpp, 5tln,

6cpa, and 7cpa. For 1abe, 1abf, 5abp, and 1htf, two

receptor pockets were prepared, since each of these

proteins binds two ligands.

Appendix C: Small Set

The small set consisted of the ligands of the follow-

ing protein-ligand complex structures: 1mbi, 1tng,

1dwb, 1ebg, 1tnh, 2ypi, 3ptb, 1abe, 2phh, 1abf, 1dog,

1hsl, 1phf, 1ulb, 2cpp, 5cpp, 2gbp and 5abp. For

1abe, 1abf, 5abp, and 1htf, two receptor pockets

were prepared, since each of these proteins binds

the ligand with two different ligand-binding poses.

Appendix D: Sixteen Proteins for

Ligand-Binding Site Prediction Using Only One
Ligand Included in the Bound Complex Crystal

The following PDB identifier complexes were used:

1ahc, 1bid, 1djb, 1esa, 1hew, 1hxf, 1ida, 1ifb, 1l3f,

1pdz, 1snc, 2ctv, 2pk4, 2rta, 4dfr, and 5p2p. The

used ligands for prediction of these proteins are

the ligands of the holo structures summarized in

Table VII.
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