ERG oncogene modulates prostaglandin signaling in prostate cancer cells

Ahmed A. Mohamed,¹ Shyh-Han Tan,¹ Chen Sun,¹ Syed Shaheduzzaman,¹ Ying Hu,¹ Gyorgy Petrovics,¹ Yongmei Chen,¹ Isabell A. Sesterhenn,^{2,3} Hua Li,¹ Taduru Sreenath,¹ David G. McLeod,^{1,3,4} Albert Dobi^{1,3,*} and Shiv Srivastava^{1,3,*}

¹Center for Prostate Disease Research; Department of Surgery; Uniformed Services University of the Health Sciences; Rockville, MD USA; ²Department of Genitourinary Pathology; Armed Forces Institute of Pathology; ³US Military Cancer Institute; ⁴Center for Prostate Disease Research; Urology Service; Walter Reed Army Medical Center; Washington, DC USA

Key words: prostate, cancer, ETS, ERG, TMPRSS2, oncogene, HPGD, tumor suppressor, prostaglandin, inflammation

Abbreviations: CaP, prostate cancer; *ERG, ETS*-related gene; *HPGD*, 15-hydroxy-prostaglandin dehydrogenase; AR, androgen receptor; PGE₂, prostaglandin E₂; EP4, E prostanoid receptor type 4; uPA, urokinase-type plasminogen activator; COX-2, cyclooxygenase 2; IL-1β, interleukin 1beta; ChIP, chromatin immunoprecipitation; LCM, laser capture micro-dissection; BrdU, bromodeoxyuridine; DAB, 3'3'-diaminobenzidine

Androgen dependent induction of the ETS related gene (*ERG*) expression in more than half of all prostate cancers results from gene fusions involving regulatory sequence of androgen regulated genes (i.e., *TMPRSS2, SLC45A3 and NDRG1*) and protein coding sequence of the *ERG*. Emerging studies in experimental models underscore the functions of ERG in prostate tumorigenesis. However, biological and biochemical functions of *ERG* in prostate cancer (CaP) remain to be elucidated. This study suggests that *ERG* activation plays a role in prostaglandin signaling because knockdown of ERG expression in *TMPRSS2-ERG* fusion containing CaP cells leads to altered levels of the 15-hydroxy-prostaglandin dehydrogenase (HPGD), a tumor suppressor and prostaglandin catabolizing enzyme and prostaglandin E₂ (PGE₂). We demonstrate that *HPGD* expression is regulated by the binding of the ERG protein to the core promoter of this gene. Moreover, prostaglandin E₂ dependent cell growth and urokinase-type plasminogen activator (uPA) expression are also affected by ERG knockdown. Together, these data imply that the ERG oncoprotein in CaP cells positively influence prostaglandin mediated signaling, which may contribute to tumor progression.

Introduction

Prevalent gene fusions involving regulatory sequences of androgen receptor (AR) regulated prostate associated genes (predominantly *TMPRSS2*) and protein coding sequences of the nuclear transcription factors in the ETS transcription family (predominantly *ERG*) result in overexpression of *ERG* in two-thirds of prostate cancer (CaP) patients.¹⁻¹³ Emerging studies in experimental models suggest oncogenic functions of *ERG* and *ETV1* in CaP.^{6,14-17} Our earlier report suggested a regulatory role of the ERG oncoprotein in prostate epithelial differentiation program and activation of *C-MYC* in CaP cells.⁵ Recent studies in mouse models show cooperative effects of *ERG* overexpression and the PI3-Kinase pathway in CaP progression.^{14,16,18} Thus, a better understanding of *ERG* functions in CaP biology may lead to rational therapeutic strategies for *ERG* positive tumors.

During our recent evaluation of *ERG* downstream transcriptional targets, we noted consistent induction of the 15-hydroxyprostaglandin dehydrogenase gene (*HPGD*) in response to ERG

knockdown.⁵ HPGD is an important enzyme in prostaglandin metabolism that catalyzes the oxidation of prostaglandins into inactive keto-metabolites. HPGD physiologically antagonizes COX-2, a prostaglandin-synthesizing enzyme, thus playing a critical role in diverse physiological aspects ranging from inflammation to cancer.^{19,20} Recent studies have indicated that HPGD is downregulated in a majority of lung, colon, breast and bladder cancers. Tumor suppressor functions of HPGD have been demonstrated in cell culture and mouse models.²¹⁻²⁶ Moreover, accumulating evidence suggests the involvement of HPGD in chemopreventive effects of non-steroid antiinflammatory drugs (NSAIDs). Several NSAIDs, including Celecoxib, Indomethacin and Flurbiprofen, exert their antiinflammatory effects by inducing HPGD or inhibiting COX-2.27-29 However, other studies have shown HPGD involvement with cell differentiation and immune regulation.^{30,31} Due to these diverse functions of HPGD and the suggested roles of inflammation in prostate cancer,³² we have focused on the regulation of HPGD and related signaling events in the context of TMPRSS2-ERG fusion in prostate cancer cells.

^{*}Correspondence to: Albert Dobi and Shiv Srivastava; Email: adobi@cpdr.org and ssrivastava@cpdr.org

Submitted: 08/30/10; Revised: 11/06/10; Accepted: 11/11/10

DOI: 10.4161/cbt.11.4.14180

Figure 1. ERG regulates HPGD expression and PGE₂ in VCaP cells. (A) VCaP cells transfected with ERG siRNA (E1, E2) or with non-targeting siRNA (NT) from triplicate experiments were harvested on day 4 post transfection and processed for immunoblot analysis for detecting ERG and HPGD. Tubulin expression was used as the input control. (B) Induction of HPGD expression in response to ERG knockdown in a time dependent fashion. Transfected VCaP cells, as described in the Materials and Methods, were harvested on days 1, 4 and 8 post-transfection and processed for immunoblot assay for detecting ERG and HPGD proteins. (C) Ectopic expression of ERG decreased HPGD protein levels. VCaP cells were infected with either wild type ERG2 adenovirus expression vector (Adv-ERG2) or control adenovirus expression vector (Adv-CTL). (D) Sub-cellular localization of ERG and HPGD in response to ERG siRNA (E1) or non-targeting siRNA (NT) was assessed by immunofluorescence assay in VCaP cells. (E) PGE₂ levels were measured in the conditioned medium of VCaP cells transfected with either non-targeting siRNA (NT) or ERG siRNA (E1) in the presence of IL-1β. Cells were harvested after 24 h and total lysate were prepared for PGE₂ normalization (insert).

Results

HPGD expression is upregulated in response to ERG inhibition. Evaluation of ERG siRNA (E1, E2) treatment in the *TMPRSS2-ERG* expressing human prostate cancer cell line (VCaP cells) revealed robust upregulation of HPGD (Fig. 1A and B). Consistent with this observation, VCaP cells infected with an adenovirus vector expressing wild type ERG-2 (Adv-E2) inhibited HPGD protein expression (Fig. 1C). Further, immunofluorescence staining showed that cells expressing siRNA to ERG showed a robust reduction of ERG transcription factor in the nuclei of VCaP cells as well as an overexpression of cytoplasmic HPGD (Fig. 1D).

Cytokine mediated PGE_2 induction is inhibited by ERG knockdown. To assess the effect of ERG inhibition on prostaglandin E_2 (PGE₂), VCaP cells transfected with ERG siRNA (E1) or non-targeting siRNA (NT) were analyzed for Interleukin-1beta (IL-1 β) induced PGE₂. PGE₂ was significantly inhibited in ERG siRNA transfected VCaP cells in comparison to the control NT siRNA transfected VCaP cells (Fig. 1E).

ERG is recruited to the core promoter of *HPGD*. An ETS binding site was identified in the core promoter at -200 bp upstream of the *HPGD* transcription initiation site by using MatInspector software (Genomatix GmbH, Munich, Germany), consistent with earlier reports showing the presence of ETS transcription factor binding sites within the *HPGD* promoter upstream sequences.^{33,34} Chromatin immunoprecipitation assays

(ChIP) confirmed the specific recruitment of the ERG oncoprotein to the predicted ETS site of the *HPGD* core promoter, which was significantly reduced in ERG siRNA treated VCaP cells (Fig. 2). The observations of ERG-induced alterations in *HPGD* gene expression, along with the recruitment of ERG to the *HPGD* promoter suggested that ERG directly regulates *HPGD* expression in prostate tumor cells.

 PGE_2 dependent cell growth is abrogated by depletion of ERG. Because ERG knockdown resulted in the overexpression of HPGD, which is known to metabolize PGE_2 into inactive keto-metabolites, we hypothesized that ERG knockdown would lead to inhibition of PGE_2 associated biological and biochemical functions. PGE_2 has been shown to induce growth in prostate cancer cell culture models.³⁵ VCaP cells were transfected with either of ERG siRNA or NT siRNA in the presence or absence of PGE_2 . As expected, PGE_2 treatment increased the incorporation of Bromodeoxyuridine (BrdU) into the nucleus of control NT siRNA transfected VCaP cells. In contrast, significantly less BrdU incorporation was observed in ERG siRNA treated cells (Fig. 3A and B). These findings indicate that PGE_2 mediated cell growth is inhibited when ERG is depleted from prostate cancer cells.

ERG knockdown reduced PGE₂ receptor 4 (E prostanoid receptor type 4, EP4) expression. To further investigate ERG involvement in the prostaglandin signaling, we evaluated the relationship between ERG and the PGE₂ receptor, EP4. ERG depletion decreased EP4 protein expression in VCaP cells, indicating

Figure 2. ERG is recruited to the HPGD core promoter ETS binding site in VCaP cells. ERG recruitment is specific to the core ETS binding site of HPGD and is eliminated by ERG siRNA treatment. Upstream and downstream sequences with no ETS binding element were used as negative controls. In the ChIP assay recruitment of ERG to the KLK3/PSA, C-MYC and SLC45A3 gene promoter upstream regions were also tested as positive controls of ERG binding as similar data have been reported before (controls).⁵ Input indicates control genomic DNA amplicons.

that ERG does affect EP4, a key regulator of the prostaglandin pathway (Fig. 4A).

 PGE_2 induced urokinase-type plasminogen activator (uPA) expression in prostate cancer cells is inhibited by ERG knockdown. Urokinase-type plasminogen activator (uPA) mediated signaling has been implicated in tumor cell invasion, survival and metastasis in a variety of cancers.^{36,37} PGE₂ has been reported to increase cell growth, induce uPA expression and enhance tumor metastasis and angiogenesis in prostate cancer.³⁸ Studies evaluating *ERG* functions have also shown that *ERG* induces cell invasion associated genes including uPA.^{15,17} To determine the effect of ERG on PGE₂ induced uPA expression, *TMPRSS2-ERG* harboring VCaP cells were treated with PGE₂. Expression of uPA protein in response to PGE₂ treatment was inhibited by ERG knockdown (**Fig. 4B**).

HPGD expression is attenuated in TMPRSS2-ERG fusion positive prostate cancer specimens. HPGD expression is downregulated in many solid tumors.^{22,23} On the basis of our data, we hypothesized that *HPGD* expression will be decreased in CaP cells harboring the *TMPRSS2-ERG* fusion. We compared *HPGD* expression levels between *TMPRSS2-ERG* positive and negative prostate tumor specimens in 28 patients. For this analysis, we selected well-to-moderately differentiated tumor specimens in order to minimize potentially confounding genetic alterations associating with more advanced tumors with poorly differentiated phenotypes. Laser capture micro-dissection (LCM) derived RNA samples were evaluated for *HPGD* expression levels. The results, although not reaching statistical significance, revealed a trend towards decreased *HPGD* RNA expression in *TMPRSS2-ERG* positive tumors, which is consistent with the reciprocal relationship of *HPGD* expression observed in response to ERG knockdown in VCaP cells (Fig. 5). A more uniform suppression of the *HPGD* gene was found in the fusion positive tumor cells while the fusion negative tumor cells showed heterogeneity of expression with most of the samples showing higher *HPGD* expression.

Discussion

It is now established that *ERG* expression in CaP is activated by gene fusions involving androgen regulated promoter sequences, such as, *TMPRSS2*, *SLC45A3*, *NDRG1* and the ERG protein coding sequence, which represent one of the most common oncogenic alterations in CaP.^{1,2,8,39,40} However, the biochemical mechanisms by which elevated ERG contributes to the development and/or progression of CaP needs further clarification. Our findings showing that *ERG* alterations may influence the components of the prostaglandin signaling pathway in CaP cells; *HPGD* in particular, suggest a new biological function of *ERG* in prostate cancer cells.

Figure 3. PGE₂ induced CaP cell growth is inhibited by ERG knockdown. VCaP cells were evaluated for cell growth in the presence (+) or absence (-) of PGE₂ in response to non-targeting siRNA (NT) or ERG siRNA (E1). (A) BrdU nuclear staining of proliferating cells. In the presence of PGE₂, VCaP cells with control NT siRNA showed dramatically increased BrdU nuclear staining in response to PGE₂ treatment. In contrast, ERG siRNA transfected VCaP cells show significantly decreased BrdU nuclear staining both in the presence or absence of PGE₂. (B) Relative percent of BrdU positive cells. In control NT siRNA transfected cells, BrdU incorporation is higher in PGE₂ treated cells than in the untreated group. In contrast, BrdU incorporation is low in both ERG siRNA treated groups irrespective to PGE₂ treatment.

On the basis of data presented in this study we propose that elevated expression of *ERG* leads to decreased *HPGD*, increased prostaglandin E_2 and its EP4 receptor; the cumulative effects of these changes may contribute to increased tumor cell growth and invasion (Fig. 6). Signal transduction pathways such as C-MYC, the PI3K/PTEN/AKT axis or AR-mediated signaling may also influence *ERG* functions in CaP progression as defined by recent studies.^{5,14,16,18,41,42} Our study shows that *ERG* regulates the expression of *HPGD*, suggesting that *ERG* plays a role in prostate tumorigenesis in part through modulation of prostaglandin signaling pathway. We have previously reported that *ERG* activates *C-MYC* and abrogates differentiation genes (*KLK3*/PSA, *MSMB*, *SLC45A3*).⁵ Although the role of *HPGD* in prostate cells differentiation is unclear, it is intriguing that other reports have shown a role of *HPGD* regulating cell differentiation.³⁰

Several biological processes that are important in tumorigenesis such as angiogenesis, cell proliferation and motility, inhibition of the immune responses and apoptosis are known to be regulated by prostaglandins, specifically PGE, 43 Steady state cellular levels of PGE, depend on the relative rates of COX-2/PGE synthase dependent biosynthesis and HPGD dependent degradation.^{25,43} Inflammation, as well as alterations in enzymes involved in prostaglandin synthesis or degradation have been suggested to play roles in CaP.^{22,23,32,35,44,45} Our study suggests the biological potential for ERG activation to interfere with prostaglandin signaling and the associated physiological context such as inflammation, suspected of fueling prostate tumorigenesis.^{32,44} It is also important to point out that in contrast to HPGD, ERG does not affect COX-2 expression in ERG siRNA treated VCaP cells (data not shown).

In summary, this study establishes that ERG knockdown results in overexpression of HPGD, downregulation of EP4, inhibition of PGE₂ induction of cell growth and uPA expression, suggesting a role for the ERG oncoprotein in inflammation and prostate tumorigenesis. Given that *TMPRSS2-ERG* fusion occurs relatively early and is a common oncogenic activation in prostate tumorigenesis, ERG or ERG network components such as HPGD may be further evaluated as a target for prevention, as well as early therapeutic intervention in CaP.

Methods and Materials

Cell culture and treatment. Human prostate tumor cell line, VCaP, was purchased from American Type Culture Collection (ATCC). Cells were maintained in DMEM (cat.# 30-2002, ATCC), supplemented with 10% of fetal bovine serum (cat.#21640-079, Invitrogen) in a humidified CO₂ (5%) incubator at 37°C. Synthetic androgen analog, R1881 (cat.# NLP005005MG, Perkin Elmer) at 0.1 nM concentrations was used for androgen treatment. For prostaglandin E₂, treatment,

Figure 4. EP4 levels are reduced and uPA induction is inhibited in response to ERG knockdown. (A) EP4 protein levels were evaluated by immunoblot assays. Result shows that EP4 is downregulated in response to ERG knockdown. (B) Expression of uPA was assessed by immunoblotting at 1, 2, 4, 8 and 12 hours time points in VCaP cells treated with PGE₂ as described in the Methods and Materials. PGE₂ induces uPA in NT siRNA treated cells, whereas, ERG knockdown prevents uPA induction.

10 μ M of prostaglandin E₂ (cat.# 14010, Cayman Chemical) was used. Five pico grams of IL-1 β (cat.#19401-5UG, Sigma) was used for IL-1 β treatment. Ten millimolar of BrdU was used for BrdU cell proliferation assay (cat.#550891, BD Biosciences).

Inhibition of endogenous ERG by siRNA. Small interfering RNA (siRNA) oligo duplex (5'-CGA CAU CCU UCU CUC ACA UAU-3' and 5'-UGA UGU UGA UAA AGC CUU A-3') against human ERG gene (E1, E2 respectively) (Gene ID: 2078, Accession: NM_004449) was purchased from Dharmacon. Two different siRNA each targeting ERG were used to assure that the effect we observed was specific and was not due to off target or none specific effect of siRNA (Fig. 1A). Since both siRNA showed identical results, one siRNA was selected and used in subsequent experiments. Non-targeting (NT) siRNA duplexes were used as control (D-001206-13-20; Dharmacon). Adenovirus expression vectors encoding the wild type protein products of ERG isoform 2 (Accessions: NM_004449.4) and adenovirus control vector were previously described in reference 5. VCaP cells were cultured in DMEM supplemented with 10% of Charcoal/Dextran stripped serum (cFBS), (cat.#100-119, Gemini Bio-Products) for 72 hours followed by transfection with 50 nM of NT siRNA or ERG siRNA using Lipofectamine 2000 (cat.#11668-109, Invitrogen). Twentyfour hours after transfection, cells were treated with 0.1 nM of R1881. Cells were harvested at days 1, 4 and 8 post treatments for western blot analysis. For ectopic expression of ERG, VCaP cells were infected with adenoviral ERG (Adv-ERG2) or control (Adv-CTL) expression vectors. Infected cells were incubated for 48 hours followed by cell harvesting and western blot analysis.

 PGE_2 treatment. VCaP cells were transfected with either NT siRNA or ERG siRNA. Cells were treated with 10 μ M of PGE₂ (cat.# 14010, Cayman Chemicals) at the time of R1881

Figure 5. *HPGD* transcript levels are lower in *TMPRSS2-ERG* fusion positive prostate tumor epithelial cells than in fusion negative tumor cells. Total RNA isolated from LCM prostate epithelial tumor cells and VCaP cells were used for evaluation of *HPGD* and *GAPDH* expression. Tissue expression levels of *HPGD* normalized for *GAPDH* are shown in comparison to the normalized expression levels in VCaP cells. Evaluation of *HPGD* expression between *TMPRSS2-ERG* fusion positive (+) and negative (-) prostate tumors revealed a trend towards decreased *HPGD* RNA expression in fusion positive tumors.

treatment and cell growth medium were changed every two days with fresh DMEM containing 0.1 nM of R1881 and 10 μ M of PGE₂. Cells were then harvested at days 1, 4 and 8 for cell growth assay. For assaying PGE, mediated signaling read-out, cells were

Figure 6. Proposed model for ERG functions in prostaglandin signaling pathway. Inhibition of HPGD as result of TMPRSS2-ERG overexpression prevents PGE₂ catabolism, thus accumulation of PGE₂ will result in uPA activation and cell growth, contributing to the progression of CaP. ERG directly binds to the promoter of uPA.

treated with 10 μ M of PGE₂ and harvested after 1, 2, 4, 8 and 12 hours post treatment.

Western blot assays. Cells were lysed in Mammalian Protein Extraction Reagent (M-PER) (cat.# 78501, Pierce) containing protease inhibitor cocktail and phosphatase inhibitor cocktails I and II (cat.# P8340, P2850 and P5726, respectively, Sigma). Cell lysates equivalent to 50 µg of protein were separated on 4-12% Bis-Tris Gel (cat.#NP0335BOX, Invitrogen) and transferred to PVDF membrane (cat.# LC2005, Invitrogen). Membranes were incubated with primary antibodies: Anti-ERG monoclonal antibody (CPDR ERG-MAb, generated in our laboratory),46,47 anti-HPGD (cat.# sc-48910, Santa Cruz Biotechnology), anti-α-Tubulin (cat.# sc-5286, Santa Cruz Biotechnology), at 4°C for 12 hours. Membranes were washed three times for five minutes each at room temperature followed by treatment with secondary antibodies: sheep anti-mouse IgG-HRP (cat.# NXA931, GE Health Care) or bovine-anti goat IgG-HRP (cat.# sc-2352, Santa Cruz Biotechnology) at 24°C for one hour. Finally membranes were washed three times and developed with ECL western blot detection reagent (cat.#RPN2209, GE Health Care).

BrdU cell proliferation assay. VCaP cells were grown in DMEM containing 10% hormone depleted cFBS for 72 hours followed by transfection with 50 nM of NT siRNA or ERG siRNA. Twelve hours post-transfection, cells were treated with 0.1 nM R1881 alone, or with 0.1 nM R1881 and 10 µM PGE, Bromodeoxyuridine (BrdU) incorporation technique was used to determine the effect of the ERG knockdown and PGE, treatment on cell proliferation. In brief, forty eight hours post transfection; cells were pulse-label with 10 mM BrdU (cat.#550891, BD Biosciences) for additional 24 h. Cells were then washed twice with 1x PBS, fixed with 4% paraformaldehyde for 20 minutes at room temperature and centrifuged onto silanized slides (cat.#89033-034, VWR, West Chester, PA) with a cytospin centrifuge. Slides were boiled at 90°C for 20 minutes, washed once with PBS after cooling down to 30°C, blocked in H₂O₂ for 10 minutes followed by ddH₂O wash. Biotinylated mouse monoclonal anti-BrdU antibody (Cat.#B8434, Sigma, St. Louis, MO) was added to the slides and were incubated for 30 min at room temperature followed by PBS wash. Visualization of incorporated BrdU was carried out with Peroxidase substrate kit DAB (cat.# SK-4100, Vector Laboratories) as recommended by the supplier. The slides were analyzed under Leica DMLB upright microscope using x20 objective lens. BrdU incorporation was calculated from the number of stained BrdU-positive cells per 100 cells counted in each field. A total of five fields per experiment were evaluated.

Immuno-fluorescence assay. VCaP cells transfected with either ERG siRNA or non-targeting siRNA were fixed with 4% paraformaldehyde and centrifuged onto silanized slides (Sigma) with a cytospin centrifuge. Cells were immunostained with anti-HPGD antibody (cat.# 160615, Cayman Chemical), or CPDR ERG-MAb^{46,47} followed by goat anti-rabbit Alexa-594 or anti-mouse Alexa-594 secondary antibodies (cat.s#A11037 and A11032, respectively, Invitrogen). Images were captured using a 40x/0.65 N-Plan objective on a Leica DMLB upright microscope with a QImaging Retiga-EX CCD camera (Burnaby) controlled by OpenLab software (Improvision). Images were converted into color and merged by using Adobe Photoshop.

PGE₂ measurement. PGE₂ was measured in the conditioned medium by using an enzyme linked immunoassay kit (cat.#930-001, Assay designs) according to the manufacturer's recommendation. VCaP Cells were grown in DMEM containing 10% of FBS for 48 hours and then transfected with 25 nM of NT siRNA or ERG siRNA. Twenty-four hours post-transfection, cell growth media was replaced with fresh pre-warmed DMEM containing 10% FBS. Seventy-two hours post transfection, the old medium was exchanged with fresh pre-warmed DMEM containing 10% FBS and 5 pg/ml of IL-1 β for each groups of cells for 24 hours and the conditioned media were collected for PGE₂ analysis and cells were harvested for total protein extraction which is used for PGE, normalization.

Quantitative reverse transcription-polymerase chain reaction (QRT-PCR). Radical prostatectomy specimens were obtained under an Institutional Review Board (IRB) approved protocol (#20405). Total RNA from LCM derived tumor epithelial cells were used for QRT-PCR as previously described in reference 10 by using Sybr green PCR Master Mix Kit (cat.#4304437, Applied Biosystems). Relative expression of HPGD (normalized to GAPDH) was determined as described before in reference 48. Primers used for HPGD gene amplifications were as follows: forward primer: 5'-AAC CTC AGA AGA CTC TGT TCA TCC A-3', and reverse primer: 5'-CCA AAA TGT CCA GTC TTC CAA AGT-3'. GAPDH gene expression was detected using forward primer: 5'-GAG CCA CAT CGC CTC AGA CAC C-3'; and reverse primer: 5'-GTT CTC AGC TTG ACG GTG CC-3'. The HPGD expression level in VCaP prostate cancer cell line was used as the standard for generating relative expression value.

ChIP assay. VCaP cells were seeded in DMEM containing 10% cFBS and were grown for three days. Cells were transfected with 50 nM of ERG siRNA or with 50 nM of control NT

siRNA and were further incubated in 10% FBS containing DMEM for 48 hours. Cells were processed for ChIP assay as described before in reference 5 and 49. Amplification reactions were carried out on T-Gradient Thermoblock (Biometra) by using 95°C, 15 s; 55°C 30 s; 72°C 60 s program setting. For detecting genomic input DNA and specific ChIP products 35 and 40 PCR amplification cycles were used, respectively. ETS binding sites within the target regions were identified by matrix match analysis using the MatInspector software (Genomatix GmbH). ERG protein was detected by an anti-ERG monoclonal antibody (CPDR ERG-MAb).46,47 For amplifying the human HPGD gene (Gene ID: 3248, Accession: U63296 NM_000860) core promoter 5'-GCGAGTCCGGAAGGCAAAGAT-3' ETS binding site (V\$ETS1/ELK10.2) the forward 5'-GGGCACTGAAGGAAACTCTTCTT-3' and reverse 5'-GTTCTGGAGCGCCAAGCTT-3' primer pair was used. Two sites that lack ETS binding sites of approximately 1,200 bp upstream and other 1,200 pb downstream of the HPGD transcription initiation site were used as negative internal controls. Primers used for the negative controls are upstream forward 5'-GCC AGG GAG GCA GTG TAT AA-3' and reverse 5'-AGA ACA CGG GGC AAA TTA AA-3'. Downstream negative control primers are: downstream forward 5'-GGG ACT AAG AGA CAT TGC TTG CTC-3' and reverse 5'-CTG GCA GCT TGG TAAG AATG CA-3'. For assaying the negative control regions, 40 cycles of PCR amplification cycles were used for both ChIP and input amplifications. Amplicons were detected only in input amplification reaction. As another negative control, we used ChIP with IgG controls.

Statistical analysis. Wilcoxon Rank-sum test was used to compare HPGD transcript expressions between *TMPRSS2*-*ERG* fusion positive and fusion negative prostate epithelial samples and data is presented with median \pm standard deviation (SD). A Student's t-test was used for the comparison of the effect of prostaglandin E_2 induced cell growth, cytokine induced PGE₂. All data are presented as means \pm standard deviation (SD), n = 3.

Acknowledgements

This research was supported by the Center for Prostate Disease Research Program through an ongoing grant from the US Army Medical Research and Material Command, NIH Grant, RO1 DK065977 to Shiv Srivastava and Gyorgy Petrovics. The authors would like to thank Ms. Tia Morris for editing the manuscript and Mr. Stephen Doyle for graphics design. The views expressed in this manuscript are those of the authors and do not reflect the official policy of the Department of the Army, Department of Defense or the US Government. Released for publication by the WRAMC Public Affairs Office. The authors declare no competing financial interest.

References

- Petrovics G, Liu A, Shaheduzzaman S, Furusato B, Sun C, Chen Y, et al. Frequent overexpression of ETSrelated gene-1 (ERG1) in prostate cancer transcriptome. Oncogene 2005; 24:3847-52.
- Tomlins SA, Rhodes DR, Perner S, Dhanasekaran SM, Mehra R, Sun XW, et al. Recurrent fusion of TMPRSS2 and ETS transcription factor genes in prostate cancer. Science 2005; 310:644-8.
- Kumar-Sinha C, Tomlins SA, Chinnaiyan AM. Recurrent gene fusions in prostate cancer. Nat Rev Cancer 2008; 8:497-511.
- Demichelis F, Fall K, Perner S, Andren O, Schmidt F, Setlur SR, et al. TMPRSS2:ERG gene fusion associated with lethal prostate cancer in a watchful waiting cohort. Oncogene 2007; 26:4596-9.
- Sun C, Dobi A, Mohamed A, Li H, Thangapazham RL, Furusato B, et al. TMPRSS2-ERG fusion, a common genomic alteration in prostate cancer activates C-MYC and abrogates prostate epithelial differentiation. Oncogene 2008; 27:5348-53.
- Gopalan A, Leversha MA, Satagopan JM, Zhou Q, Al-Ahmadie HA, Fine SW, et al. TMPRSS2-ERG gene fusion is not associated with outcome in patients treated by prostatectomy. Cancer Res 2009; 69:1400-6.
- Rostad K, Mannelqvist M, Halvorsen OJ, Oyan AM, Bo TH, Stordrange L, et al. ERG upregulation and related ETS transcription factors in prostate cancer. Int J Oncol 2007; 30:19-32.
- Perner S, Mosquera JM, Demichelis F, Hofer MD, Paris PL, Simko J, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion. Am J Surg Pathol 2007; 31:882-8.
- Mehra R, Tomlins SA, Yu J, Cao X, Wang L, Menon A, et al. Characterization of TMPRSS2-ETS gene aberrations in androgen-independent metastatic prostate cancer. Cancer Res 2008; 68:3584-90.
- Hu Y, Dobi A, Sreenath T, Cook C, Tadase AY, Ravindranath L, et al. Delineation of TMPRSS2-ERG splice variants in prostate cancer. Clin Cancer Res 2008; 14:4719-25.
- Rickman DS, Pflueger D, Moss B, VanDoren VE, Chen CX, de la Taille A, et al. SLC45A3-ELK4 is a novel and frequent erythroblast transformation-specific fusion transcript in prostate cancer. Cancer Res 2009; 69:2734-8.
- Furusato B, Gao CL, Ravindranath L, Chen Y, Cullen J, McLeod DG, et al. Mapping of TMPRSS2-ERG fusions in the context of multi-focal prostate cancer. Mod Pathol 2008; 21:67-75.
- Pflueger D, Rickman DS, Sboner A, Perner S, LaFargue CJ, Svensson MA, et al. N-myc downstream regulated gene 1 (NDRG1) is fused to ERG in prostate cancer. Neoplasia 2009; 11:804-11.
- Carver BS, Tran J, Gopalan A, Chen Z, Shaikh S, Carracedo A, et al. Aberrant ERG expression cooperates with loss of PTEN to promote cancer progression in the prostate. Nat Genet 2009; 41:619-24.
- Klezovitch O, Risk M, Coleman I, Lucas JM, Null M, True LD, et al. A causal role for ERG in neoplastic transformation of prostate epithelium. Proc Natl Acad Sci USA 2008; 105:2105-10.
- Zong Y, Xin L, Goldstein AS, Lawson DA, Teitell MA,Witte ON. ETS family transcription factors collaborate with alternative signaling pathways to induce carcinoma from adult murine prostate cells. Proc Natl Acad Sci USA 2009; 106:12465-70.
- Tomlins SA, Laxman B, Varambally S, Cao X, Yu J, Helgeson BE, et al. Role of the TMPRSS2-ERG gene fusion in prostate cancer. Neoplasia 2008; 10:177-88.

- King JC, Xu J, Wongvipat J, Hieronymus H, Carver BS, Leung DH, et al. Cooperativity of TMPRSS2-ERG with PI3-kinase pathway activation in prostate oncogenesis. Nat Genet 2009; 41:524-6.
- Tai HH, Cho H, Tong M, Ding Y. NAD^{*}-linked 15-hydroxyprostaglandin dehydrogenase: structure and biological functions. Curr Pharm Des 2006; 12:955-62.
- Heighway J, Knapp T, Boyce L, Brennand S, Field JK, Betticher DC, et al. Expression profiling of primary non-small cell lung cancer for target identification. Oncogene 2002; 21:7749-63.
- 21. Sugimoto Y, Narumiya S. Prostaglandin E receptors. J Biol Chem 2007; 282:11613-7.
- Myung SJ, Rerko RM, Yan M, Platzer P, Guda K, Dotson A, et al. 15-Hydroxyprostaglandin dehydrogenase is an in vivo suppressor of colon tumorigenesis. Proc Natl Acad Sci USA 2006; 103:12098-102.
- Wolf I, O'Kelly J, Rubinek T, Tong M, Nguyen A, Lin BT, et al. 15-hydroxyprostaglandin dehydrogenase is a tumor suppressor of human breast cancer. Cancer Res 2006; 66:7818-23.
- Wang D, DuBois RN. Pro-inflammatory prostaglandins and progression of colorectal cancer. Cancer Lett 2008; 267:197-203.
- Chaudry AA, Wahle KW, McClinton S, Moffat LE. Arachidonic acid metabolism in benign and malignant prostatic tissue in vitro: effects of fatty acids and cyclooxygenase inhibitors. Int J Cancer 1994; 57:176-80.
- Ma X, Kundu N, Rifat S, Walser T, Fulton AM. Prostaglandin E receptor EP4 antagonism inhibits breast cancer metastasis. Cancer Res 2006; 66:2923-7.
- Quidville V, Segond N, Lausson S, Frenkian M, Cohen R, Jullienne A. 15-Hydroxyprostaglandindehydrogenase is involved in anti-proliferative effect of non-steroidal anti-inflammatory drugs COX-1 inhibitors on a human medullary thyroid carcinoma cell line. Prostaglandins Other Lipid Mediat 2006; 81:14-30.
- Frenkian M, Segond N, Pidoux E, Cohen R, Jullienne A. Indomethacin, a COX inhibitor, enhances 15-PGDH and decreases human tumoral C cells proliferation. Prostaglandins 2001; 65:11-20.
- Chi X, Freeman BM, Tong M, Zhao Y, Tai HH. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) is upregulated by flurbiprofen and other non-steroidal anti-inflammatory drugs in human colon cancer HT29 cells. Arch Biochem Biophys 2009; 487:139-45.
- Tseng-Rogenski S, Lee IL, Gebhardt D, Fischer SM, Wood C, Park JM, et al. Loss of 15-hydroxyprostaglandin dehydrogenase expression disrupts urothelial differentiation. Urology 2008; 71:346-50.
- Eruslanov E, Kaliberov S, Daurkin I, Kaliberova L, Buchsbaum D, Vieweg J, et al. Altered expression of 15-hydroxyprostaglandin dehydrogenase in tumor-infiltrated CD11b myeloid cells: a mechanism for immune evasion in cancer. J Immunol 2009; 182:7548-57.
- De Marzo AM, Nakai Y, Nelson WG. Inflammation, atrophy and prostate carcinogenesis. Urol Oncol 2007; 25:398-400.
- 33. Greenland KJ, Jantke I, Jenatschke S, Bracken KE, Vinson C, Gellersen B. The human NAD*-dependent 15-hydroxyprostaglandin dehydrogenase gene promoter is controlled by Ets and activating protein-1 transcription factors and progesterone. Endocrinology 2000; 141:581-97.
- Nandy A, Jenatschke S, Hartung B, Milde-Langosch K, Bamberger AM, Gellersen B. Genomic structure and transcriptional regulation of the human NAD⁺dependent 15-hydroxyprostaglandin dehydrogenase gene. J Mol Endocrinol 2003; 31:105-21.

- Lee KS, Lee HJ, Ahn KS, Kim SH, Nam D, Kim DK, et al. Cyclooxygenase-2/prostaglandin E₂ pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett 2009; 280:93-100.
- 36. Ahmad A, Kong D, Wang Z, Sarkar SH, Banerjee S, Sarkar FH. Downregulation of uPA and uPAR by 3,3'-diindolylmethane contributes to the inhibition of cell growth and migration of breast cancer cells. J Cell Biochem 2009; 108:916-25.
- Noskova V, Ahmadi S, Asander E, Casslen B. Ovarian cancer cells stimulate uPA gene expression in fibroblastic stromal cells via multiple paracrine and autocrine mechanisms. Gynecol Oncol 2009; 115:121-6.
- 38. Chen Y, Hughes-Fulford M. Prostaglandin E_2 and the protein kinase A pathway mediate arachidonic acid induction of c-fos in human prostate cancer cells. Br J Cancer 2000; 82:2000-6.
- Perner S, Demichelis F, Beroukhim R, Schmidt FH, Mosquera JM, Setlur S, et al. TMPRSS2:ERG fusionassociated deletions provide insight into the heterogeneity of prostate cancer. Cancer Res 2006; 66:8337-41.
- Nam RK, Sugar L, Wang Z, Yang W, Kitching R, Klotz LH, et al. Expression of TMPRSS2:ERG gene fusion in prostate cancer cells is an important prognostic factor for cancer progression. Cancer Biol Ther 2007; 6:40-5.
- Shin S, Kim TD, Jin F, van Deursen JM, Dehm SM, Tindall DJ, et al. Induction of prostatic intraepithelial neoplasia and modulation of androgen receptor by ETS variant 1/ETS-related protein 81. Cancer Res 2009; 69:8102-10.
- Yu J, Mani RS, Cao Q, Brenner CJ, Cao X, Wang X, et al. An integrated network of androgen receptor, polycomb and TMPRSS2-ERG gene fusions in prostate cancer progression. Cancer Cell 17:443-54.
- Hawcroft G, Ko CW,Hull MA. Prostaglandin E₂-EP4 receptor signalling promotes tumorigenic behaviour of HT-29 human colorectal cancer cells. Oncogene 2007; 26:3006-19.
- De Marzo AM, Platz EA, Sutcliffe S, Xu J, Gronberg H, Drake CG, et al. Inflammation in prostate carcinogenesis. Nat Rev Cancer 2007; 7:256-69.
- 45. Otani T, Yamaguchi K, Scherl E, Du B, Tai HH, Greifer M, et al. Levels of NAD(+)-dependent 15-hydroxyprostaglandin dehydrogenase are reduced in inflammatory bowel disease: evidence for involvement of TNFalpha. Am J Physiol Gastrointest Liver Physiol 2006; 290:361-8.
- 46. Furusato B, Tan SH, Young D, Dobi A, Sun C, Mohamed AA, et al. ERG oncoprotein expression in prostate cancer: clonal progression of ERG-positive tumor cells and potential for ERG-based stratification. Prostate Cancer Prostatic Dis 2010; 13:228-37.
- Mohamed AA, Tan SH, Mikhalkevich N, Ponniah S, Vasioukhin V, Bieberich CJ, et al. Ets family protein, ERG expression in developing and adult mouse tissues by a highly specific monoclonal antibody. Journal of Cancer 2010; 1:197-208.
- Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 2001; 25:402-8.
- Masuda K, Werner T, Maheshwari S, Frisch M, Oh S, Petrovics G, et al. Androgen receptor binding sites identified by a GREF_GATA model. J Mol Biol 2005; 353:763-71.