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Wavelet transform (WT) is a potential tool for the

detection of microcalcifications, an early sign of

breast cancer. This article describes the implementa-

tion and evaluates the performance of two novel WT-

based schemes for the automatic detection of clus-

tered microcalcifications in digitized mammograms.

Employing a one-dimensional WT technique that uti-

lizes the pseudo-periodicity property of image

sequences, the proposed algorithms achieve high

detection efficiency and low processing memory re-

quirements. The detection is achieved from the par-

ent–child relationship between the zero-crossings

[Marr-Hildreth (M-H) detector] /local extrema (Canny

detector) of the WT coefficients at different levels of

decomposition. The detected pixels are weighted

before the inverse transform is computed, and they

are segmented by simple global gray level thres-

holding. Both detectors produce 95% detection sen-

sitivity, even though there are more false positives for

the M-H detector. The M-H detector preserves the

shape information and provides better detection

sensitivity for mammograms containing widely dis-

tributed calcifications.
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TODAY, BREAST CANCER is the most
frequent form of cancer in women and

also the leading cause of mortality.1 There is
clear evidence that early diagnosis and treat-
ment significantly increase the chance of sur-
vival.2,3 Among the different diagnostic
methods available for detection of breast can-
cer, mammography is widely recognized as the
chief modality for early detection in asymp-
tomatic women.3

One of the early symptoms of breast cancer is
the appearance of microcalcification clusters,
which have a higher X-ray attenuation than the

normal breast tissue and appear as a group of
small, localized, granular bright spots in mam-
mograms. Popular methods for computer-aided
detection of clustered microcalcifications in-
clude the difference image,4 multiscale process-
ing based on fuzzy pyramidal linking,5 and
spatial filtering techniques.6 An efficient meth-
od for the detection of microcalcification must
be capable of detecting objects with very small
but varying sizes. Recently discovered multi-
orientation and multiresolution properties of
the human visual system7 has led to the idea of
wavelet-based multiresolution analysis for
detection of microcalcification.

A wavelet transform (WT) is a decomposition
of an image onto a family of functions called a
wavelet family. Contrary to the conventional
transforms having a fixed resolution in the
spatial and frequency domain, the resolution of
a WT varies with a scale parameter, decom-
posing an image into a set of frequency bands.
This variation in resolution helps the WT to
characterize the irregularities in an image lo-
cally. The wavelet approach has been used for
contrast enhancement, detection, and segmen-
tation8-10 of microcalcifications.
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In this article, we represent the microcalcifi-
cation detection as an edge detection problem. A
one-dimensional (1-D) processing technique
based on a discrete wavelet transform (DWT) is
employed for detection. The image sequences
are found to be pseudoperiodic when treated as
1-D signals. Taking the multiplexed wavelet
transform (MWT), ie, DWT over samples that
are spaced one period apart,11 leads to a repre-
sentation of these pseudoperiodic signals in
terms of regularized oscillatory components
plus period-to-period fluctuations. Hence the
edge information gets pushed into the detail
spaces more efficiently than is the case with
conventional DWT. The edge detection meth-
ods using 2-D operators smear the edge infor-
mation as a smoothing operation always
precedes the edge detection operator. But
smoothing is very important, because the dif-
ferential operators are very sensitive to
noise.12,13 Because the method proposed here
uses a 1-D processing technique, the gray level
transitions of an edge in the orthogonal direc-
tion will not be disturbed.14 Moreover, the
processing memory requirement is reduced to a
size equal to the length/breadth of an image
from that of the whole image in the 2-D DWT
methods.

MATERIALS AND METHODS

Detection of Microcalcification as an Edge
Detection Operation

Microcalcifications, small concentrations of calcium in

the breast, represent an early sign of possible cancerous

growth. Individual calcifications are not worrisome; but

when they appear in groups, they can indicate a potential

tumor. Five or more calcifications, measuring less than one

millimeter, in a volume of one cubic centimeter, define a

‘‘cluster.’’ The probability of malignancy increases as the

size of the individual calcification decreases and also when

the total number of calcifications per limit area increases.

The risk increases when they are heterogeneous in size and

shape. The major constraint in their detection is the low

contrast between normal and malignant tissues, especially in

younger women. Their small size also contributes to a lower

subject contrast. The assumptions made with regard to the

nature of the microcalcifications are as follows:

1. They are of higher frequency than the surrounding breast

tissue, hence they appear brighter.

2. They are usually 0.1 to 1 mm in size.

3. The average calcification is roughly circular, and can be

treated as a circular-symmetric Gaussian function.

Discrete Wavelet Transform

Wavelets are basis functions in a vector space comprising a

scaling function / with its associated wavelet function w and

their dual functions ~/ and ~w. The basis functions at scale j,

and translation or shift k in the case of 1-D may be denoted

by {/j,k} and {wj,k}, j,k2Z, where

/j;kðxÞ ¼ 2�j=2/ð2�jx� kÞ; and

wj;kðxÞ ¼ 2�j=2wð2�jx� kÞ:
ð1Þ

The dual functions are defined in a similar way.

For fast DWT computation a sub band filtering scheme

is used, where / and w are represented by the corresponding

discrete filters g(n) and h(n), n 2 Z, respectively, called the

decomposition or analysis filters. Furthermore, there exist

the reconstruction or synthesis filters as the dual filters ~g(n)

and ~h(n). The wavelet and scaling transform coefficients Xj

and bj of a signal x(n) at any level j are given by

Xj½n� ¼
X
k

bj�1½k�h½n� 2k�; and

bj½n� ¼
X
k

bj�1½k�g½n� 2k�;
ð2Þ

where, j = 1,2...J; n, k2Z, b0[n] = x[n], the input signal.

The synthesis equation is:

cj½n� ¼ cjþ1½n=2� 	 ~g½n� þ Xjþ1½n=2� 	 ~h½n� for j ð3Þ

where cJ[n] = bJ[n] and c0[n] = y[n], the reconstructed

signal, which is the same as the input signal x[n].

To apply wavelet decomposition to images, 2D extension

of wavelets is required. This can be achieved by the use of

separable or non-separable wavelets. In this article, we

consider separable wavelets only. From the 1D basis, it is

possible to construct a 2-D separable wavelet basis with four

basis functions, one sealing function /0
j;k;l(x, y), and three

wavelet functions ws
j;k;l(x, y), s 2 {1,2,3} given by:

/0
j;k;lðx; yÞ ¼/j;kðxÞ/j;lðyÞ; w1

j;k;lðx; yÞ ¼ /j;kðxÞwj;lðyÞ;
w2
j;k;lðx; yÞ ¼wj;kðxÞ/j;lðyÞ; w3

j;k;lðx; yÞ ¼ wj;kðxÞwj;lðyÞ:
ð4Þ

These basis functions span the four j-level linear vector

spaces rather than just two as in the 1-D case. An analogous

definition holds for the dual scaling function ~/0
j;k;l(x, y) and

the wavelet function ~ws
j;k;l(x, y).

2-D Discrete Wavelet Transform

The M-level wavelet representation of a 2-D function f is

given by

fðx; yÞ ¼
X
k;j

cMk;l/
0
M;k;lðx; yÞ þ

XM
j¼1

X
r2s

X
k;l

d j;r
k;lw

r
j;k;lðx; yÞ:

ð5Þ

The approximation and the detail coefficients in the above

expression are cMk;l ¼ f; ~/0
M;k;l

D E
and d j;r

k;l ¼ f; ~ws
j;k;l

D E
respec-
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tively, where <.,.> denotes the inner product in the l2 (Z2)

space. The 2-D basis given by equation (4) may be repre-

sented by the four possible tensor products gg, gh, hg, and hh

of the 1-D filters g and h. Let cj and dj,s) denote the 2-D

sequences cjk;land d j;s
k;l, k,l 2 Z and s = {1,2,3}. The scaling

and wavelet transform coefficients at a coarser level, j+1, are

computed from cj by convolution followed by downsam-

pling, as follows:

cjþ1 ¼ ð## 2Þðgg 	 cjÞ; djþ1;1 ¼ ð## 2Þðgh 	 cjÞ;
djþ1;2 ¼ ð## 2Þðhg 	 cjÞ; djþ1;3 ¼ ð## 2Þðhh 	 cjÞ;

ð6Þ

for j = 0,1,...,M)1. Here * denotes 2-D convolution and

(##2) denotes downsampling by a factor of 2 in both the x

and the y directions. The given image is treated as c0.

To perform the 2-D DWT computation as above, instead

of using the 2-D filters, one can employ a separable exten-

sion of the 1-D decomposition algorithm. The rows of the

data are convolved with the first 1-D filter and every other

column is retained. The above process is repeated column-

wise using the other 1-D filter. Further stages of 2-D

decomposition are obtained by recursively applying the

procedure to the low-pass filtered output of the previous

stage.

The wavelet reconstruction is performed recursively,

starting at level M by upsampling (denoted by ""2) followed

by convolution using the dual filters. The signal recon-

structed at the jth-level from coefficients at the j + 1th level

may be expressed as:

cj ¼ ~g~g 	 ðð"" 2Þcjþ1Þ þ ~g~h 	 ðð"" 2Þd jþ1;1Þþ
~h~g 	 ðð"" 2Þdjþ1;2Þ þ ~h~h 	 ðð"" 2Þd jþ1;3Þ:

ð7Þ

Edge Detection Using Wavelet
Transform

Recently, a new edge filter based on WT was proposed by

Mallat and Zhong.15 They combined the properties of WT

and a gradient method to form a ‘‘multiscale’’ edge detector.

In their work, the first derivative of a cubic spline function is

utilized to detect the local extreme values of WT as edge

points. However, the ultimate goal of the work was to

efficiently compress the input image. Therefore, although

the adopted wavelet is capable of detecting edges, the per-

formance of edge detection was not a major concern in their

work.

Most multiscale edge detectors smooth the signal at

various scales and detect sharp variation points from their

first or second derivatives. The extrema of the first

derivative corresponds to the zero-crossings of the second

derivative and to the inflation points of the smoothed

signal. It is proved that if a wavelet is the second deriv-

ative of a smoothing function, the zero crossings of the

WT indicate the location of the sharper signal varia-

tions.15

Any function h(x) whose integral is equal to 1 and that

converges to 0 at infinity can be considered as a smoothing

function. An example is a Gaussian function. Let h(x) be a

function twice differential and let

waðxÞ ¼ dhðxÞ
dx

and wbðxÞ ¼ d2hðxÞ
dx

: ð7Þ

By definition, wa (x) and wb (x) can be considered to be

wavelets because their integral is equal to zero. The WT of a

function f(x) at scale s and position x computed with respect

to wa (x) and wb (x) is defined by:

Wa
s fðxÞ ¼ f 	 wa

s ðxÞ; and Wb
s fðxÞ ¼ f 	 wb

s ðxÞ; ð8Þ

Wa
s fðxÞ ¼ s

d

dx
ðf 	 hsÞðxÞ; and Wb

s fðxÞ ¼ s2 d 2

dx2
ðf 	 hsÞðxÞ

ð9Þ

The local extrema of ½Wa
s thus correspond to the zero

crossings of Wb
s and to the inflation points of f * hs (x). In

the particular case, h(x) is a Gaussian, the zero-crossing

detection is equivalent to a Marr-Hildreth edge detection,16

and extrema detection corresponds to a Canny edge detec-

tion.17

This can easily be extended to the 2-D case. Here, we

have to use a 2-D smoothing function h (x, y), whose inte-

gral over x and y is equal to zero and converges to 1 at

infinity. Edges are defined as points (x0, y0) where the

modulus of the gradient vector is the maximum in the

direction towards which the gradient vector points in the

image plane f * hs (x, y). Relating this to a 2-D WT, one can

locate the edge points from the two components Wa
s f (x, y)

and Wb
s f (x, y), as discussed in the 1-D case.

Multiplexed Wavelet Transform

The concept of MWT was first proposed by Evangelista11

as a class of transforms for the representation of pseudo-

periodic signals with constant period. This transform sim-

plifies the analysis of the pseudo-periodic signals by

decomposing them into a regular asymptotically periodic

signal and a number of fluctuations over this signal.

The MWT of a signal x(n), of period M, is defined as the

set of coefficients

Xj;k;q ¼
X
n

xðnÞfj;k;qðnÞ; ð10Þ

where j = 1,2...; k is an integer; q = 0,1,2...M)1. fj,k,q (n),

the multiplexed wavelets, are defined as

fj;k;qðnÞ ¼
X
s

wj;kðsÞdðn� sM� qÞ; ð11Þ

given a complete and orthonormal set of ordinary wavelets

wj,k (n).

The Inverse MWT (IMWT) is given by

xðnÞ ¼
X
j

X
k

XM�1

q¼0

Xj;k;qfj;k;qðnÞ: ð12Þ

In this work, images are treated as oscillatory signals,

although they are not periodic in a strict mathematical

sense. The periods along the horizontal and vertical direc-
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tions are taken to be the width and the length of the image

segment, respectively. Any pixel in an image of size L · W

can be represented as Vq(r) or Vr(q) where r = 1,2...L)1 and

q = 1,2...W)1. Considering its periodicity along the vertical

direction alone, the J-level MWT of the image may be ex-

pressed as

V̂j;k;q ¼
X
r

VqðrÞwj;kðrÞ; and r̂j;k;q ¼
X
r

VqðrÞ/j;kðrÞ;

ð13Þ

where j = 1,2...J; k 2 Z and /j,k, the scaling function

associated with the wavelet function wj,k. V̂j;k;q are the MWT

coefficients of the signal Vq(r) at jth scale and kth shift, and

r̂J;k;qare the multiplexed scaling transform coefficients of the

same section of the signal at Jth scale and kth shift (residue

after J levels of MWT decomposition). Similar expressions

are obtained by considering the image as a 1D signal along

the horizontal direction as well.

From Eq (13) we can see that in the MWT, the WT is

taken over samples that are spaced one period apart. Hence,

the interperiod fluctuations of the signal are better sieved

out in the wavelet partials, whereas the residue holds the

asymptotically periodic information. It is quite different for

the DWT, where the oscillatory part, as well as the fluctu-

ations, gets filtered into different wavelet and scaling par-

tials altogether, depending on the frequency content of the

signal. A comparison between MWT and 2-D DWT tech-

niques on a simple synthetic image using ‘‘Bior 6.8,’’ a bi-

orthogonal wavelet basis, is shown in Figure 1. Figure 1b

and c are, respectively, the images reconstructed from the

third-level MWT and DWT scaling partials of the original

image shown in Figure 1a.. The illustrations clearly show

that the edge information gets precisely filtered into the

wavelet partials of the MWT, leaving its scaling partials

with only the edges blurred, whereas additional information

is lost from the scaling partials of DWT. Hence, accurate

reconstruction of the edges can be achieved from the MWT

wavelet partials.

PROPOSED METHOD

This section describes the novel WT-based 1-D process-

ing techniques for detecting and segmenting microcalcifica-

tions in digitized mammograms. The edge features formed

by microcalcifications located in parenchymal structures are

detected using the zero-crossings/local extrema of the MWT

coefficients. The use of zero-crossings results in a M-H edge

detector and the local extrema results in a Canny edge

detector.18 We have selected the Biorthogonal wavelet ‘‘bior

1.3’’ of support 6 for edge detection. The level of processing

required depends on the resolution of image data. It has

been experimentally determined that a 3-level decomposi-

tion is sufficient for detecting the microcalcifications from

the images in the databases we have used.

The interperiod fluctuations corresponding to the inten-

sity changes along the horizontal direction are determined

by computing the MWT of the image up to the desired level,

taking it to be periodic along the vertical direction. Simi-

larly, considering the periodicity along the other direction,

the MWT is computed to give the edge information along

the vertical direction. Singular points are determined from

the zero-crossings /local extrema of the MWT coefficients

along both directions. The isolated single-pixel intensity

changes, ie, noise, are eliminated by retaining only those

zero-crossings that hold a parent–child relationship19 be-

tween the coarsest level and the finest level of detail. In this

way the sensitivity of the differential operators to noise is

taken care of without smearing the edges.

The retained points are boosted appropriately to enhance

the edge features. The IMWT is applied to these points to

get the horizontal and vertical edge maps, which are then

combined and scaled to get the complete microcalcification

information. Global gray-level thresholding based on image

statistics is applied to the combined edge map to segment

possible microcalcifications. The threshold T is selected to

be proportional to the mean of the reconstructed edge map

‘‘M’’ i.e., T = kM; k has been experimentally determined to

Fig 1. Comparison of performance of discrete wavelet transform (DWT) and multiplexed wavelet transform (MWT) for edge

detection. (a) Original image; (b) image reconstructed from third-level MWT scaling partials; (c) image reconstructed from third-

level DWT scaling partials.

288 MINI ET AL



be a real number such that 1 < k < 2. Because we are

adopting a 1-D processing technique, a single row/column is

considered for processing at a time. The implementation

consists of the following steps:

� Step I: MWT computation. Computation of the MWT

coefficients up to the desired level for a row/column of the

image.

� Step II: Removal of noise. Discarding all zero-crossings/

local extrema that do not hold a parent–child relationship

between finer to coarser levels.

� Step III: Inverse transform. Scalar multiplication of the

retained coefficients to boost them and take the inverse

transform. Steps I to III produce the edge map for a single

row/column. These steps are repeated for all rows/columns

to get the complete horizontal/vertical edge maps.

� Step IV: Thresholding. Global gray-level thresholding is

used on the combined edge map to segment possible

microcalcifications.

Detection Criteria

The results are expressed in terms of sensitivity or ‘‘true

positive’’ (TP) and specificity or ‘‘false positive’’ (FP). As

there are no universally accepted detection criteria, we have

selected the criteria proposed by Karssemeijer.6 Accord-

ingly, for counting TPs, a cluster is considered detected if

two or more microcalcifications are found in the region of

film identified by an expert radiologist. A FP is counted if

two or more erroneous detections are made within an empty

closed region of 0.5 cm width.

Data

We have tested the algorithm on an ensemble of 40 mam-

mograms (22 mammograms altogether containing 27 micro-

calcification clusters, 3 with distributed calcifications, and 15

normal ones) taken from the freely distributed digitized

mammograms of the Mammographic Image Analysis Society

(MIAS) database of the University of Essex, England.20 The

images in the database are digitized at 50-micron pixel edge,

which are then reduced to 200-micron pixel edge and clipped

or padded so that every image has 1024 · 1024 pixels. The

accompanying ‘‘Ground Truth’’ contains details regarding

the character of the background tissue, class, severity, and

coordinates of the center of the abnormality and approximate

radius of the circle enclosing it.

We have also validated the algorithms using a local

database consisting of 40 mammograms, containing 28 mi-

crocalcification clusters in 27 mammograms and 13 normal

studies. The mammograms in the local database were col-

lected from restricted mammographic centers and scanned

using a UMAX Powerlook III scanner at a resolution of

2000 pixels/square inch. The abnormal regions in these

mammograms were identified by an expert radiologist.

RESULTS AND DISCUSSION

Typical examples of microcalcification
detection using the two methods are illustrated

for three mammograms in Figure 2. The images
clearly indicate that the shape of the cluster is
preserved in the M-H method compared to
Canny method. This is due to the symmetric
nature and the ability of the M-H operator to
form closed contous. The M-H edge detector
provides better detection sensitivity for mam-
mograms containing widely distributed calcifi-
cations.

The detection capability of the two proposed
methods and the conventional 2D DWT meth-
od are tabulated in Table 1 for different
thresholds. The number of TPs, FPs, and mis-
sed TPs (MTP) for two different values of k are
shown for the MIAS database, as well as the
local database. It can be seen that as the
threshold is increased the FPs decrease, but the
sensitivity is also decreased. For screening
mammography applications, where a high rate
of FP is not tolerable, a high threshold is pre-
ferred. In diagnostic applications, sensitivity is
the important factor and hence smaller thresh-
olds are to be used.

The application of our algorithm on the
MIAS database resulted in a TP identification
rate of 95%, against 0.6 FP clusters per image
for the M-H edge detector (Table 1). (Rate of
FP is computed considering all 40 images).
With the locally obtained mammograms, a TP
identification rate of 93% at the rate of 0.55 FP
clusters per image was obtained. The Canny
method produced the same TP detection rate at
the cost of a slightly lower FP per image, 0.55
for the MIAS database and 0.5 for the local
database.

Detection can be achieved using any of the
biorthogonal wavelets. We have selected
‘‘bior1.3,’’ one of the smaller biorthogonal
wavelets. It is found that the shape of the cluster
is captured more accurately by the larger bior-
thogonal wavelets such as ‘‘bior4.4,’’ ‘‘bior
5.5,’’ and ‘‘bior6.8.’’ This is probably because
these filters approximate the response of the
human visual system, in the sense that they are
similar in form to the Laplacian of Gaussian
described by Marr.16

To further validate our algorithm, we have
compared it with some of the state-of-the art
algorithms that have used the same database.
By applying a triple ring filter to the MIAS
database, Ibrahim et al.21 claim to have ob-

MULTIPLEXED WAVELET TRANSFORM MAMMOGRAPHY 289



tained a sensitivity of 95.8% with a FP rate of
1.8 clusters/image. They have used 43 mamo-
grams, 24 normal ones and 19 others, each
containing one microcalcification cluster. Vil-

arrasa et al.22 have used morphological opera-
tions to remove noise background and came up
with a TP rate of 85% on the MIAS data set. By
multiscale morphological operations and en-

Fig 2. Comparison of detection of microcalcifications from various mammograms using Canny and Marr-Hildreth (M-H)

detectors. (a) Sections of original mammograms containing a well-defined microcalcification cluster: (left) hard to find cluster

(middle) widely distributed calcifications (right); (b & c) microcalcifications detected by Canny and M-H detectors, respectively,

from the mammograms in (a).

Table 1. Comparison of Sensitivity and Specificity of Microcalcification Detection Using Canny, Marr-Hildreth (M-H), and Con-

ventional 2D Discrete Wavelet Transform (DWT) Detectors for Two Values of k Such That k1 > k2

MIAS Database

Canny M-H 2D DWT

k MTP TP FP MTP TP FP MTP TP FP

k1 2 25 22 2 25 24 6 21 31

k2 15 12 9 14 13 9 18 9 12

Local Database

k1 2 26 20 2 26 22 4 24 29

k2 12 16 8 10 18 10 15 13 6

MTP: missed true positive; TP: true positive; FP: false positive; MIAS: Mammographic Image Analysis Society (Essex, UK).
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tropy thresholding, Melloul and Joskowicz
have arrived at a TP rate of 93.75%.22

CONCLUSIONS

Microcalcification detection using two
wavelet-based edge detectors was performed
and the performance of the two detectors was
evaluated. We were able to achieve 95%
detection accuracy for the MIAS database. It
has been found that the M-H edge detector
retains the shape information of the clusters,
which is essential for classification. Also, it
detects distributed microcalcifications more
efficiently. Both methods are suitable for
detecting subtle microcalcifications that could
not be detected by other methods. Because the
1-D processing technique employed here will
not smear the edge information in the
orthogonal direction, better detection efficiency
is obtained. Moreover, the processing memory
requirement is reduced to the size of one row
or column, from that of the whole image for a
2-D operator.

REFERENCES

1. Kopans DB: Breast Imaging, Philadelphia: J. B. Lip-

pincott Company, 1989

2. Lester RG: The contribution of radiology to the

diagnosis, management, and cure of breast cancer. Radiol-

ogy 151:158, 1984

3. Smith RA: Epidemiology of breast cancer categorical

course in physics, Technical Aspects Breast Imaging. Radiol

Soc North Am 21-33, 1993

4. Chan HP, Doi K, Vyborny CJ, et al: Improvement in

radiologist’s detection of clustered microcalcifications on

mammograms: the potential of computer aided diagnosis.

Invest Radiol 25:1102-1110, 1990

5. Lo BC, Chan HP, Lin JS, et al: Artificial convolution

neural network for medical image pattern recognitions.

Neural Netw 8:1201-1214, 1995

6. Karssemeijer N: A stochastic method for automated

detection of microcalcification in digital mammograms.

Information Prooess Digit Imaging 76:227-238, 1991

7. Wiesel TN: Post natal development of the visual cortex

and the influence of environment. Nature 229(5883):583-

591, 1982

8. Qian W, Chian W, Clarke LP, et al: Tree structured non-

linear filter and wavelet transform for microcalcification seg-

mentation in mammography In: Acharya RS, Goldgof DB

(eds). Biomedical Image Processing and Biomedical Visuali-

zation. SPIE, Proc, 1993, pp 509-520

9. Strickland RN, Hann HI: Wavelet transforms for

detecting microcalcifications in mammograms. IEEE Trans

Med Imaging 15:218-228, 1996

10. Yoshida Y, Doi K, Nishikawa RM, et al: Automated

detection of clustered microcalcifications in digital mam-

mograms using wavelet processing techniques. Medical

Imaging, Proc. SPIE 2167:868-886, 1994

11. Evangelista G: Comb and multiplexed wavelet

transforms and their applications to signal processing. IEEE

Trans. Signal Process 42:292-303, 1994

12. Gonzales RC, Wintz P: Digital Image Processing

Reading, MA: Addison-Wesley, 1987

13. Shirai Y: Three Dimensional Computer Vision. New

York: Springer-Verlag, 1985

14. Kiran KP, Sukhendu D, Yegnanarayana B: One

dimensional processing for edge detection using Hilbert

transform. In Proceedings of the Indian Conference on

Computer Vision, Graphics and Image Processing (ICVGIP

2000), 25–31, 2000

15. Mallat S, Zhong S: Characterization of Signals from

Multiscale Edges. IEEE Trans. Pattern Analysis and Ma-

chine Intelligence 14:710–732, 1989

16. Marr D: Vision San Francisco: W.H. Freeman, 1982

17. Canny J: A computational approach to edge detec-

tion. IEEE Trans. Pattern Analysis and Machine Intelli-

gence, PAMI-8:679-698, 1986

18. Mini MG, Devassia VP, Thomas T: Detection of

microcalcification in digitized mammograms using wavelet

transform local extrema. J Digit Imaging 16(Suppl. 1):8-10,

2003

19. Shapiro JM: Embedded image coding using zero trees

of wavelet coefficients. IEEE Trans. Signal Process 41:3445-

3462, 1993

20. Suckling J, et al: The Mammographic Image Analysis

Society Digital Mammogram Database. Exerpta Medica.

International Congress Series 1069:375-378, 1994

21. Ibrahim N, Fujita H, Haray T, et al: Automated

detection of clustered microcalcifications on mammograms:

CAD system application to MIAS database. Phys Med Biol

42:2577-2589, 1997

22. Vilarrasa A, Gimenez V, Manrique D, et al.: A new

algorithm for computerized detection of microcalcifications

in digital mammograms. Proceedings of the Int. Conference

on Computer-Aided Radiology and Surgery, CARS,

98:224–229, 1998

23. Melloul M, Joskowicz L: Segmentation of microcal-

cification in x-ray mammograms using entropy threshold-

ing. Proceedings of the International Conference on

Computer-Aided Radiology and Surgery, CARS, 2002

MULTIPLEXED WAVELET TRANSFORM MAMMOGRAPHY 291


