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Abstract: Ocular monochromatic aberrations display dynamic behavior 
even when the eye is fixating on a stationary stimulus. The fluctuations are 
commonly characterized in the frequency domain using the power spectrum 
obtained via the Fourier transform. In this paper we used a wavelet-based 
multifractal analytical approach to provide a more in depth analysis of the 
nature of the aberration fluctuations. The aberrations of five subjects were 
measured at 21 Hz using an open-view Shack-Hartmann sensor. We show 
that the aberration dynamics are multifractal. The most frequently occurring 
Hölder exponent for the rms wavefront error, averaged across the five 
subjects, was 0.31 ± 0.10. This suggests that the time course of the 
aberration fluctuations is antipersistant. Future applications of multifractal 
analysis are discussed. 
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1. Introduction 

It is well established that when fixating on a target at a constant vergence, the monochromatic 
aberrations of the human eye display dynamic behavior; see for example [1]. The properties of 
these dynamics are commonly characterized in the frequency domain by computing power 
spectra using the Fourier transform. Such studies have shown that: 

 1( ) ,PSD f
f β∝   (1) 

where PSD(f) is the power spectral density at a given frequency f, and β is the spectral index. 
β is determined from a linear regression of log PSD(f) on log f. For the human eye, the 
spectral index of the time evolution of rms wavefront error has been found to be in the region 
of 1.1-1.5 [1–5]. Power spectra of the type in Eq. (1) are characteristic of self-affine time 
series, and hence fractal processes [6]. Fractals are the building blocks of nature and are found 
everywhere. Examples of physiological fractal processes include fluctuations in the heartbeat 
and brain waves [7–9]. The importance of fractal analysis in physiological signals is that it 
allows one to gain a greater understanding of the underlying process and allows one to discern 
health from pathology [10]. 

Fractal processes are characterized by their fractal dimension D. The larger the fractal 
dimension, the more the time series fills the Euclidean space it is contained in, and the higher 
the degree of irregularity [11]. There are several definitions of D and several methods are used 
to calculate it. One example is the so-called box counting dimension, where 
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where Nε is the number of non-overlapping boxes of length ε required to cover the time series 
[6]. An intuitive meaning of Dbox is shown in Fig. 1 for the case of a square object. The 
procedure for a time series is fundamentally the same. 

 
Fig. 1. The meaning of fractal dimension Dbox as calculated using the box counting dimension. 
It can be argued that a square is not a true fractal as it does not have a fractional dimension. It is 
included here merely to give an intuitive illustration of fractal dimension. 

The spectral index can be used to classify a physiological time series as a realization of 
either a fractional Gaussian noise (fGn) process or fractional Brownian motion (fBm) process 
[6]. The time series can be considered an fGn process if β < 1 and an fBm process if β > 1 [6]. 
Ideally, when determining β for this purpose, the high frequency components beyond fs/8, 
where fs is the sampling frequency, should be discarded [6]. This is not always the case when 
β is reported for the eye. Using the values reported in the literature, β > 1, and so the 
aberration dynamics can be classified as a realization of an fBm process [6]. For such a 
process, it can be shown that D can be determined from β via the Hurst exponent HfBm using 

 2 ,Hurst fBmD H= −   (3) 

where HfBm is the Hurst exponent [6]. The Hurst exponent describes the scaling properties of 
the time series as under the transformation 

 ,x xλ→   (4) 

where the x dimension is scaled by a factor λ, the statistical properties of the signal remain 
invariant if the y dimension is scaled by 

 .fBmHy yλ→   (5) 

Hence the scaled signal looks similar to the original version of the signal as illustrated in  
Fig. 2. HfBm is related to the spectral index by 

 1.
2fBmH β −

=   (6) 

Given the reported values of β found in the literature, one can expect HfBm to fall in the range 
0.05 – 0.25. The Hurst exponent is also a measure of the smoothness of the time series and 
varies between 0 – 1 [12]. If HfBM > 0.5, the time series is persistent, i.e., it tends to continue in 
the direction it is moving and is smoother [12]. For HfBM < 0.5, which is the case found for the 
aberration fluctuations, the signal is antipersistent and tends not to continue in the same 
direction but to turn back on itself giving a less smooth signal. From Eq. (3), one can expect 
the fractal dimension of the ocular aberration dynamics to fall in the range 1.75 – 1.95. 
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Fig. 2. (a) An example of the time course of the rms wavefront error of one subject measured 
over a 6 mm pupil and sampled at 21 Hz. (b) A section of the signal in (a) scaled using Eqs. (4) 
and (5). Hurst exponent = 0.25. 

Using the power spectrum to characterize the fractal properties of the aberration dynamics 
is limited however as it assumes that the signal is monofractal, i.e. it can be described by a 
single Hurst exponent and fractal dimension. Many physiological processes such as the 
heartbeat are in fact multifractal as opposed to monofractal [7–9]. For multifractal time series, 
H, and consequently D, may vary in time. Hence a more in depth analytical approach is 
required to characterize such time series. As ocular aberration dynamics show some 
correlation with the heart beat [13–15], the aim of this investigation was to determine if the 
fluctuations in aberrations are also multifractal. This was achieved using a wavelet-based 
approach. 

2. Aberration measurements 

Aberrations were measured using a Shack-Hartmann sensor as shown in Fig. 3. The eye is 
illuminated by a 785 nm laser diode which provides the light for the wavefront sensing. The 
beam first passes through a rotating diffuser to reduce speckle and enters the eye via reflection 
from a hot mirror. As the hot mirror passes visible light subjects were able to see the target in 
open-view making the viewing more natural. The target used was a black Maltese cross 
viewed on an LCD monitor. It subtended 11.32 minutes of arc at the eye and was placed at a 
distance of 2.7 m (accommodative demand of 0.37 D). The luminance was 255 cd/m2. Further 
details of the system can be found at [4,16]. 

Aberrations were measured on the right eye of five subjects at 21 Hz for a 24 s time 
period. We found that subjects KH and CV could not maintain fixation for this length of time 
and so their aberrations were measured over 12 s. The subject demographics are shown in 
Table 1. Measurements were made over the natural pupil size of each subject and those who 
required spectacles wore them during the experiment. Subjects were stabilized using a bite 
bar. For each Shack-Hartmann measurement the Zernike coefficients up to and including fifth 
radial order were determined using the OSA convention [18]. To reduce the impact of eye 
movements on the reconstruction of the Zernike polynomials, we calculated the pupil center 
relative to the lenslet array center, for each measurement frame. Each spot position relative to 
the center of the lenslet array was given a weighting of one. The centroid of these positions 
was taken as the shift in the pupil center relative to the center of the lenslet array [16]. Blinks 
were removed using a cubic spline function that interpolated between the data points before 
and after a blink [16,17]. From the coefficients, the time course of the rms wavefront error 
was determined. 
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Fig. 3. Shack-Hartmann sensor used for measurement of aberrations. PM: plane mirror; BS: 
beamsplitter; L: lens. Focal length is in millimeters. 

Table 1. Subject demographics 

Subject Age (yrs) Pupil Dia. (mm) Refraction 
JC 32 6.0 Plano 
KH 29 5.5 −1.75/-0.50 × 90 
YP 24 5.0 Plano 
CS 25 4.5 −6.00/-0.50 × 60 
CV 28 4.0 −4.25/-1.25 × 5 

3. Fractal analysis 

To characterize the fractal properties of the rms wavefront error a multifractal formalism 
approach was used [19]. This essentially consists of determining the distribution of 
singularities (abrupt changes) contained in the signal. A singularity is characterized by its 
Hölder exponent h, which is inversely proportional to the strength of the singularity. The 
Hölder exponent reflects the rate of decay of the amplitude of the fluctuations in the time 
series in the neighborhood of the time location that is being analyzed [20]. A high value for 
the Hölder exponent indicates the signal is smooth in that region and so the singularity 
strength is low. For a monofractal time series, there is one singularity strength (i.e. one value 
for the scaling exponent) present, and so the Hurst exponent, which is a global measure, is 
equal to the Hölder exponent [21]. For a multifractal time series, the singularity strength - and 
hence scaling properties - are different for different time (or ‘box’) locations. In this case the 
Hölder exponents can be thought of as ‘local Hurst exponents’ [21], and H becomes h in  
Eq. (3). 

To characterize the signal a singularity (multifractal) spectrum is calculated. This 
represents the statistical distribution of h. An example of such a spectrum is shown in Fig. 4. 
The x-axis represents the Hölder exponent (inverse of singularity strength), and the y-axis 
represents the Hausdorff dimension DHaus. DHaus represents how completely each Hölder 
exponent fills the space (time series) it is embedded in. Hence DHaus(h) is the fractal 
dimension of the singularities characterized by h [22]. For a time series, the maximum 
possible value of DHaus(h) is one. This would indicate that the singularity represented by h is 
present everywhere in the signal [23,24]. 
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Fig. 4. A typical singularity spectrum for a multifractal time series. For a monofractal time 
series the singularity spectrum would be a single point. 

3.1 Overview of singularity spectrum determination 

Calculation of the singularity spectrum can be achieved via a statistical mechanics based 
approach and as such involves concepts such as the partition function [23]. This circumvents 
problems associated with non-isolated singularities, as is often the case for real data [23]. For 
discussion of the relationship between concepts of thermodynamics and calculation of 
multifractal spectra as applied here, see for example [23]. For a measure μ, the partition 
function Z(ε,q) is given by 

 
1

( , ) ( ) ,
N

q
i

i
Z q

ε

ε µ ε
=

= ∑   (7) 

where ε is the box size and so represents the scale at which μ is analyzed. Nε is the number of 
boxes of size ε needed to cover the signal and q is the moment [19]. Positive q-values 
accentuate (increase the weight of) the strong singularities in the formulation of Z(ε,q) while 
negative values accentuate the weak singularities. The next step is calculation of the mass 
exponents given by [25]: 

 
0

log ( , )( ) lim ,
logs

Z qq ετ
ε→

=   (8) 

and so τ(q) describes the scaling of Z with ε: 

 ( )( , ) .qZ q τε ε∝   (9) 

The spectrum and τ(q) are related via a Legendre transform giving 

 ( ) . ( ) ( ),HausD h q h q qτ= −   (10) 

where 

 ( )( ) .d qh q
dq
τ

=   (11) 

For a monofractal time series τ(q) is linear and the singularity spectrum consists of a single 
point. For a multifractal time series τ(q) is non-linear and the singularity spectrum takes the 
form as shown in Fig. 4. As the maximum of DHaus represents the most frequently occurring 
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Hölder exponent, this Hölder exponent can be considered to be the Hurst exponent that best 
describes the time series [23]. 

3.2 Singularity spectrum determination via wavelets 

The main role of wavelets in multifractal analysis is in calculation of the partition function. In 
this case the wavelet is effectively the box in Eq. (7), where ε is the wavelet scale (see below). 
The wavelet transform coefficients are the measure μ. Several authors have demonstrated the 
advantage of wavelet-based techniques over other methods such as traditional box counting 
methods, see for example [21]. Each step will now be outlined and the reason for the choice of 
a wavelet-based approach is highlighted. 

3.2.1 Continuous wavelet transform 

The wavelet coefficients are determined from the continuous wavelet transform (CWT). The 
CWT of a signal x(t) is given by 

 1( , ) ( ) * ,x
tCWT s x t dt

s s
ττ − = Ψ  

 ∫   (12) 

which constitutes a convolution of the signal x(t) with a wavelet Ψ that is translated by τ and 
scaled (stretched) by s. The scale is inversely proportional to frequency. The 1/s normalization 
factor has been used as it removes any bias associated with frequency [26]. There are several 
conditions that need to be satisfied in order for a waveform to be a valid wavelet, such as the 
waveform having zero mean [12]. We used the so called Mexican hat (second derivative of 
Gaussian) wavelet. This wavelet is orthogonal to polynomials of order 1 and so linear trends 
due to drifts in accommodation are removed. This ability to remove low-order polynomials is 
one of the advantages of using wavelets for multifractal analysis, as such polynomials may 
mask the detection of singularities [19]. Figure 5 shows the Mexican hat wavelet and 
illustrates how the CWT is formed. 

3.2.1.1 Practical implementation 

The CWT coefficients were calculated using the cwt function of the Matlab Wavelet Toolbox, 
(Matlab version R2009a, Wavelet Toolbox version 4.4). Following this, the modulus of each 
coefficient was calculated. It was these coefficients that were used throughout the analysis. 
Figure 6b shows the CWT coefficients of the rms wavefront error (Fig. 6a) for subject JC. The 
corresponding frequency represented by each scale fscale, is also shown. This was calculated 
using the Matlab function scal2frq in which 

 ,c
scale

f
f

s T
=

⋅∆
  (13) 

where fc is an estimate of the frequency of the mother (unscaled) wavelet found from the 
dominant peak in the Fourier based power spectrum of the wavelet, s is scale, and ΔT is the 
time between samples. For the Mexican hat wavelet fc is 0.25 Hz. The minimum scale 
(maximum frequency) used in the analysis was the closest integer scale corresponding to 
when fs was the Nyquist frequency (10.5 Hz). The maximum scale (minimum frequency) was 
the closest integer scale corresponding to when fs was the inverse of the length of the signal: 
0.04 Hz for JC, EM and CS, 0.08 Hz for KH and CV. 

Edge effects are inherent to the CWT calculation as part of the wavelet will ‘over-hang’ 
the data at the beginning and end. This effect will increase for increasing scales owing to a 
concomitant increase in the width of the wavelet. The region in which edge effects become 
significant is the cone of influence (COI) [27]. To calculate the COI we calculated the CWT 
for a function that consisted of two delta functions separated by the signal length. The region 
in which the modulus of the CWT was less than 1% of that at the edge was considered to be 
free of edge effects. The COI is illustrated by the black regions in Fig. 6b. 
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Fig. 5. How the CWT is formed. For each wavelet position τ, and wavelet width (scale) s, the 
wavelet is convolved with the signal to form a point in the CWT. The Mexican hat wavelet is 
shown. 

 
Fig. 6. Analytical procedure to obtain the singularity spectrum. (a) The time evolution of the 
rms wavefront error for JC. (b) The continuous wavelet transform. (c) The modulus-maxima 
map. (d) Log of the partition function versus log of the scale. (e) The tau mass exponents 
obtained from the slope of the lines in (d). (f) The singularity spectrum obtained from (e) and 
Eq. (10). 

3.2.2 Wavelet transform modulus maximum map 

As discussed earlier, multifractal analysis consists of locating and determining the strength of 
the singularities contained in the time series. This is achieved by first determining the 
locations of the local maxima for each scale. For a given scale s, point (s,τmax) is a local 
maximum if |CWT(s,τ)|<|CWT(s,τmax)| when τ is either to the left or right of τmax and 
|CWT(s,τ)| ≤ |CWT(s,τmax)| the other side [28]. Following this the maxima are chained across 
scales to form modulus maxima lines. It can be shown that the locations of the singularities 
are the τ values where the maxima lines converge at small scales [28,29]. Only maxima 
belonging to these chains are used in the calculation of the partition function. From Eq. (7), 
the partition function becomes 

 
1

( , ) ( , ) ,
m

qN

i
i

Z s q CWT s m
=

= ∑   (14) 
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where CWT(s,mi) is the coefficient of the maxima i at scale s, and Nm is the number of 
maxima at that scale. In effect, the locations of the modulus maxima tell us where to position 
our ‘boxes’ to capture the singular behavior of the time series [19]. 

3.2.2.1 Practical implementation 

The maxima are chained together from high to low scale to reduce the effects of noise. Chains 
that do not persist down to the smallest scale are removed. For q < 0, small values of the CWT 
result in divergences in the partition function. To prevent this, for each chain, the CWT values 
are tracked from low to high scale and at each scale the supremum is taken [19]. 

As mentioned previously, blinks were removed from the signal and the corresponding data 
points were replaced by a cubic spline function. Any chains which ended in these interpolated 
points were removed from further analysis. Figure 6c shows the resulting so-called skeleton 
map for JC. 

3.2.3 Spectrum determination 

Figure 6e shows the τ(q) spectrum that was determined using Eq. (8). The Hölder exponents 
are given by the slope of the τ(q) spectrum (Eq. (11)). Finally the spectrum is calculated using 
Eq. (10). The singularity spectrum for the rms wavefront error for JC is shown in Fig. 6f. The 
q values used were −3 to + 3. 

3.3 Power spectrum analysis 

We also calculated the power spectrum of the rms wavefront error using the Fourier 
transform. As mentioned previously, the spectral index β can be used to classify a signal and 
determine its fractal dimension. When doing so it is recommended that the high frequency 
components in the range fs/8 < fs< fs/2, where fs is the sampling frequency, are excluded [6]. 
We calculated the spectral index using two frequency regimes, one including the full 
frequency range 0.04 (or 0.08)-10.5 Hz, and one including only the low frequency region  
0.04 (or 0.08)-2.63 Hz. 

4. Results 

Figure 7 shows the CWT of the rms wavefront error for each subject. As can be seen from the 
figure, the CWT for each subject shows a flame-like pattern, although the individual subtleties 
are different from subject to subject. Figure 8 shows the CWT for each Zernike aberration for 
YP. As can be seen from the plots, the CWT of each individual aberration also reveals a 
flame-like pattern. This was true for all subjects. Figure 9 shows the singularity spectra for the 
rms wavefront error for all subjects. The most frequently found Hölder exponent, h(q = 0), 
averaged across subjects is 0.31 ± 0.10. Using Eq. (3), this corresponds to an average fractal 
dimension (DHurst) of 1.69. Figure 10 shows the most frequently found Hölder exponent for 
each aberration averaged across subjects. 

Figure 11 shows the power spectrum of the rms wavefront error for each subject. The 
average spectral index was 1.35 ± 0.23 for the full frequency range, and 1.31 ± 0.32 for the 
low frequency range. Using Eq. (6), this corresponds to an estimated average Hurst exponent 
of 0.18 and 0.16 for the full and low frequency regions respectively. 
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Fig. 7. CWT for the rms wavefront error each subject. The plots have been normalized for each 
subject. 

 
Fig. 8. CWT of each aberration for YP. 
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Fig. 9. rms wavefront error singularity spectrum for each subject. 

 
Fig. 10. Average most frequently found Hölder exponent across subjects for each aberration. 
Error bars represent ± 1 S.D. 
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Fig. 11. Power spectrum of the rms wavefront error for each subject. 

5. Discussion 

In this study we examined the fractal properties of the ocular aberration dynamics of five 
subjects whilst they viewed a stationary target close to optical infinity. 

5.1 Comparison with previous studies 

When considering the power spectrum of the rms wavefront error we found an average slope 
of 1.35 using the full available frequency range. This value is in accordance with other 
studies; see for example [1–5]. When considering the low frequency range the average slope 
was 1.31 confirming that the aberration dynamics can be classified as an fBm process. An 
fBm is a non-stationary process, confirming other studies that indicate the aberration 
dynamics are not stationary [30,31]. The small difference between the slopes for the full 
frequency range and low frequency range may be because of the vergence of the target [32]. 
Future work will include using different viewing distances. 

5.2 Fractal nature of aberration dynamics 

The CWT plots show the self-similarity present in each individual aberration and the rms 
wavefront error. The characteristic flame-like patterns are similar across subjects and 
aberrations. Studies have indicated that higher frequency components of the aberration 
dynamics tend to be more transient compared to lower frequency components [30,31]. The 
CWT provides a multiresolution analysis in which low frequency components are better 
resolved in frequency, and higher frequency components are better resolved in time. Hence 
the CWT is ideally suited to characterize ocular aberration dynamics. 

Like other physiological signals [7–10], we have found that the aberration dynamics of the 
eye cannot be characterized by a single fractal dimension, but are multifractal. The most 
frequently found Hölder exponent for the rms wavefront error averaged across subjects was 
0.31. This indicates that the aberration dynamics are antipersistant. This was also true when 
considering each individual aberration. Multifractal analysis provides a more in depth 
description of the aberration dynamics compared to power spectrum analysis in which a single 
descriptive number – the spectral index – is obtained. For JC and CS, the singularity spectra 
for the rms wavefront error are more skewed in comparison to the other subjects. Subjects KH 
and CV have broader spectra compared to the other subjects. We do not know the reason for 
these individual differences. It may result from differences in how the dynamics of other 
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physiological signals, such as the heartbeat for example, impact the aberration fluctuations. 
This requires further work. The peak of the singularity spectrum for each subject was close to 
one, indicating that the aberration dynamics are singular everywhere. This is also evident from 
the ‘roughness’ throughout the time course of the signal. 

Calculating the Hurst exponent from the spectral indices yielded a value of 0.18 and 0.16 
for the full and low frequency regions respectively. The difference between these values and 
the average most frequently found Hölder exponent is likely to be because the Hurst exponent 
is a global measure. Hence as the singularity spectra are multifractal, there are a range of 
scaling exponents contributing to the signal and so the most frequently found Hölder exponent 
is not necessarily the same as the Hurst exponent obtained from the spectral index. 

5.3 Aberration dynamics, the heartbeat and accommodation 

Several studies have indicated varying degrees of correlation between ocular aberration 
dynamics and the heartbeat [13–15]. Here we found the appearance of the CWTs to be flame-
like which is also evident in the heartbeat [10]. As we did not simultaneously record the 
heartbeat we are unable to determine if there were any similarities between the multifractal 
spectrum for the heartbeat fluctuations and aberration dynamics. This requires further work. 

During steady-state viewing conditions it is well known that the eye exhibits fluctuations 
in accommodation. Using a combination of the defocus and spherical aberration coefficients 
[33], we calculated the singularity spectra for accommodation. We found that the spectra were 
multifractal with a most frequently found Hölder exponent of 0.25 ± 0.11. Certain spectral 
bands in the accommodation power spectrum have been found to be correlated with the 
heartbeat. However, the accommodation system is itself a closed-loop self regulating system. 
Hence there are aspects of its dynamics that are unlikely to be due to the effect of other 
physiological systems on the eye. As other aberrations show a correlation with 
accommodation [34,35], it is likely that regulation of the accommodation loop will impact 
upon fluctuations in these other aberrations also. 

5.4 Potential limitations owing to measurement resolution and time length of the data 

As it is not possible to measure the aberrations with infinite resolution it is possible that there 
are singularities present in the signal that were not captured by our 21 Hz sampling rate. 
Although infinite resolution is not possible, future work will include sampling the aberration 
dynamics at a much faster rate and comparing the spectra obtained from that same signal, 
numerically sampled at different rates. 

Another possible limitation is the time length of the data. For a much longer time length 
one may find the distribution of singularities to be different. Future work will include 
measuring the aberration dynamics over a considerably longer time and calculating the 
multifractal spectrum for different segment lengths within that data set. 

5.5 Future applications of multifractal analysis for ocular aberration 

There is interest in developing models for ocular aberration dynamics, see for example [31]. 
Modeling the fluctuations will aid the optimal design of closed-loop adaptive optics systems 
[36]. Another application is in the study of the accommodation system. It has been found that 
for the heartbeat dynamics for example, the singularity spectrum becomes close to 
monofractal when a subject has heart disease [10]. Hence multifractal analysis has the 
potential to give an insight into subjects that may have problems with accommodation 
function such as progressing myopic subjects [37]. Progressing myopes show prominent low 
frequency fluctuations which may indicate the breakdown of the multifractal spectrum. None 
of our subjects were progressing myopes so we could not determine this. 

6. Conclusion 

We used a wavelet-based approach to determine the fractal properties of the ocular aberration 
dynamics of five subjects whilst viewing a fixed stimulus. We found that the aberration 
dynamics are multifractal and that the analytical procedure used provides a more in depth 
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description of the characteristics of the fluctuations over conventional techniques such as 
power spectrum analysis. This approach has the potential to inform modeling of aberration 
dynamics and to identify subjects with accommodation dysfunction. 
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