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Abstract
Angiogenesis and osteogenesis are tightly coupled during bone development and regeneration.
Mesenchymal cells in the developing stroma elicit angiogenic signals to recruit new blood vessels
into bone. Reciprocal signals, likely emanating from the incoming vascular endothelium, stimulate
mesenchymal cell specification through additional interactions with cells within the vascular stem
cell niche. The hypoxia-inducible factor-1 alpha (HIF-1) pathway has been identified as a key
component in this process. We demonstrated that overexpression of HIF-1 in mature osteoblasts
through disruption of the von Hippel-Lindau protein profoundly increases angiogenesis and
osteogenesis; these processes appear to be coupled by cell nonautonomous mechanisms involving
the action of vascular endothelial growth factor (VEGF) on the endothelial cells. The same
occurred in the model of injury-mediated bone regeneration (distraction osteogenesis).
Surprisingly, manipulation of HIF-1 does not influence angiogenesis of the skull bones, where
earlier activation of HIF-1 in the condensing mesenchyme upregulates osterix during cranial bone
formation.
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Introduction
The processes of angiogenesis and bone formation are coupled both temporally and spatially
during skeletal development and repair. Blood vessels carry oxygen and nutrients to the
bone but also play a role in bone formation and remodeling by mediating the interaction
between osteoblasts, osteocytes, osteoclasts, and vascular cells. Ossification of the skeleton
coincides with robust vessel in-growth. During endochondral bone formation, chondrocytes
model the growth plate at the distal ends of the long bones and become hypertrophic and
hypoxic. Blood vessel invasion from the metaphyseal region into the avascular cartilage
coincides with the formation of bone on the cartilaginous template.1 The nutrient artery
arises from the systemic circulation, enters the diaphysis, and then branches into ascending
and descending medullary arteries within the marrow cavity. These vessels are then further
subdivided into arterioles, which penetrate the endosteal surface to form the primary supply
of the diaphyseal cortex.2 In the skull, parietal bones are supplied by one major branch of
the meningeal artery. From each of these vessels, separate branches supply the dura wherein
a fine-vessel network covers the developing bone. As the skull mineralizes, numerous fine
vessels penetrate within the periosteum and dura and enter the cortical plates. At each of
these skeletal sites, bone does not form unless blood vessels develop.

The critical relationship between angiogenesis and bone formation was demonstrated in
early studies by Coolbaugh, who showed that surgical disruption of blood supply to bone
produced marked alterations in bone density, tensile strength, and modulus of elasticity.3
Subsequent work by Trueta and Harrison demonstrated that bone mineralization and the
development of the hypertrophic zone in the growth plate were disturbed after the
interruption of the blood supply to the growth plate.4,5 Contemporary studies using chemical
or physical approaches to block angiogenesis have provided more direct evidence that
vascular invasion into cartilage of the growth plate is necessary for long-bone formation
during endochondral ossification.6

Angiogenic-osteogenic coupling in bone development
The nature of the cellular and molecular mechanisms responsible for coupling angiogenesis
and bone formation remain poorly understood, but a primary driving force is tissue hypoxia.
During organogenesis, the orderly programs of differentiation and migration involve
hypoxia-driven diffusion of oxygen in the embryo. In turn, molecular responses to oxygen
gradients are responsible for the proper differentiation and maintenance of the developing
vasculature.7 Multiple cell types are involved in these processes, including endothelial cells,
pericytes, smooth muscle cells, and leukocytes. In addition, an expanding list of factors has
emerged that coordinate the angiogenic response.8,9 Among these factors, VEGF is a well-
characterized proangiogenic factor that is activated by hypoxia and plays a critical role in
angiogenesis during the development of most tissues including bone.

As long bones form, VEGF is released by hypertrophic chondrocytes and functions to
initiate blood vessel invasion into cartilage, a prerequisite for bone growth.6,10,11

Administration of a soluble VEGF receptor 1 mFlt(1–3)-IgG completely blocked
neoangiogenesis in the growth plates of 24-day-old mice and resulted in expansion of the
hypertrophic zone and decreased bone mass. These findings suggested that growth plate
vascularization is VEGF-dependent.6 Zelzer and Olsen demonstrated that blood vessels were
recruited to the perichondrium of the developing mouse tibia as early as embryonic day (E)
13.5–14.5 through the actions of VEGF produced in perichondrial cells.12 This action was
followed by vessel invasion into the hypertrophic cartilage at E14.5. Consistent with these
observations, mice expressing only the soluble isoform of VEGF, VEGF120, but lacking
VEGF164 and VEGF188 isoforms, exhibited delayed blood-vessel penetration into the
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perichondrium.11 This finding also suggests that VEGF164 and VEGF188 might specifically
function to coordinate perichondrial angiogenesis. VEGF production in bone cells is
regulated by hypoxia as well as a variety of signaling pathways including prostaglandins E1
and E2, transforming growth factor-β(TGF-β), bone morphogenetic proteins (BMPs),
fibroblast growth factor 2 (FGF-2), insulin-like growth factor 1 (IGF-1), endothelin-1, and
vitamin D3.12 Interestingly, each of these factors has been reported to be responsive to the
hypoxia-inducible factor-α(HIF-α) pathway. Our recent studies, described below, showed
that manipulation of the HIF-1 pathway in osteoblasts, with consequent overproduction of
VEGF and other angiogenic factors, stimulated angiogenesis in the long bones that was
associated with robust bone formation at the sites of vessel in-growth.

The hypoxia-inducible factor pathway
HIF is an αβ heterodimeric transcription factor that mediates the adaptation of many
multicellular organisms to molecular oxygen.13 The HIF family comprises three α subunits:
HIF-1α, HIF-2α and HIF-3α. HIF-2α and HIF-3α have limited homology with HIF-1α, but
all three subunits share the conserved pVHL-binding domain and are consequently regulated
by hypoxia in the same way as HIF-1α.14 HIF-1α and HIF-2α can at times function
redundantly to promote the expression of the same set of target genes.15 The HIF-1β subunit
(also known as the aryl hydrocarbon receptor nuclear translocator, ARNT) is constitutively
expressed in the nucleus in an oxygen-independent manner.16 The abundance of the α
subunits becomes elevated during hypoxia through a regulated proteolytic process. HIF-α
subunits contain an oxygen-dependent degradation (ODD) domain, which contains prolyl
residues that are recognized and hydroxylated by specific prolyl hydroxylase domain (PHD)
enzymes.17 Under normoxia, prolyl hydroxylation at residues 402 and 564 within the ODD
domain mediates the binding of the E3 ubiquitin ligase pVHL, a component of the complex
that targets HIF-α for proteasomal degradation.18 Hydroxylation of HIF-α requires
molecular oxygen and iron, and is inhibited by hypoxia. Under these conditions, the HIF-α
subunit accumulates in the cytoplasm and then translocates to the nucleus, where it
dimerizes with the HIF-1β subunit. This dimer then binds to a highly conserved hypoxia-
response element (HRE) within promoters of hypoxia-responsive genes.19 Genes containing
functional HREs encode proteins involved in angiogenesis (VEGF, endothelin-1),
maturation of red blood cells (erythropoietin, transferrin), energy metabolism (glucose
transporter 1 and 3), and cell proliferation and viability (insulin-like growth factor 2, p21).20

In addition to hypoxia, proinflammatory cytokines, growth factors and biomechanical
stimuli are also known to regulate the HIF pathway. For example, the proinflammatory
mediator, nitric oxide (NO), has been shown to promote HIF-1α activation under normoxic
conditions.21 HIF-1α is highly expressed in cells treated with insulin-like growth factor 1
and 2, fibroblast growth factor 2, or epidermal growth factor in relationship to cell
proliferation,22 and HIF-1 DNA binding is stimulated by proinflammatory cytokines or
insulin.23,24 Mechanical stretch induces HIF-1α accumulation in myocytes through
activation of the PI3K/AKT/mTOR pathway in rat myocardium. Similarly, HIF-1α is
upregulated in smooth muscle following experimental distension of rat aorta25 and in
vascular smooth muscle cells subjected to cyclical stretch.26 Both biomechanical and
proinflammatory signals are generated in skeletal tissue after injury and therefore may
contribute to the acute induction of HIF-1α during bone regeneration.

Developmental functions of HIFα depend on the skeletal context
Because of the established role of HIF-1 in sensing and responding to oxygen and nutrient
demands in a variety of cell types, we hypothesized that HIF-1 functions during bone
development to promote skeletogenesis. We tested this idea using a genetic approach to
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determine the cellular and molecular effects of gain or loss of HIF-1 function by conditional
mutagenesis in mouse osteoblasts.27,28 Mice overexpressing HIFs by disrupting VHL
(referred to herein as ΔVHL) showed striking and progressive increases in bone volume,
whereas the diameter of the ΔHIF-1 mutant bones was reduced relative to the controls.
Importantly, the amount of bone in the axial skeleton of these two mutants was directly
proportional to the amount of skeletal vasculature. These observations suggested the
possibility that loss of pVHL with consequent upregulation of HIFs in osteoblasts increased
the production of angiogenic factors which promoted bone formation secondarily to
increasing angiogenesis. Consistent with this idea, the expression of VEGF mRNA was
upregulated in the trabecular bone of ΔVHL femurs.

Surprisingly, manipulation of HIF-1 levels in osteoblasts using the OC-Cre mouse did not
influence the formation of the flat bones of the skull. As reviewed above, the calvarial bones
are formed through an intramembranous process involving condensing mesenchymal cells
derived from the neural crest. These precursor cells appear to be able to differentiate directly
into osteoblasts without first forming a cartilaginous intermediate.29 This difference in the
development programs and embryologic origin of the bone precursor cells responsible for
endochondral and intramembranous bone might explain the site-specific skeletal phenotype
of the VHL deficient mice.

To test this idea further we created a mouse lacking HIF-1 in early mesenchymal cells using
a dermo-1 promoter-driven Cre transgenic mouse in which Cre was expressed in the
condensing mesenchyme.30 These mice had skeletal defects in the spine, shortened ribs and
limbs, but no missing bones. Endochondral bone development was impaired, as evidenced
by the shortening of E14.5 tibias. By E18.5, there was further disorganization of the growth
plates accompanied by complete failure of chondrocyte hypertrophy. Striking defects in
intramembranous bone were also observed. The mutant mice had smaller, less-mineralized
skulls compared to controls with diminished parietal bone mineralization and widened
sutures. These defects were first noted at day E15.5 and persisted in the newborn mice.
Close inspection of skulls from the dermo1-Cre+/−, HIF-1 fl/fl mutants showed only a
modest difference in vascularization compared to control littermates. By contrast, the mutant
mice exhibited a pronounced defect (or delay) in the mineralization of the parietal bones of
the cranial vault. In situ hybridization of candidate genes expressed by developing
osteoblasts revealed a decrease in osterix, Runx2, Col-1 and osteocalcin mRNA compared to
that observed in control littermates. Analysis of Runx2 and osterix promoters revealed two
consensus hypoxia-responsive elements (HRE binding motifs) in the proximal osterix
promoter, whereas none were evident in the Runx2 promoter. To determine whether osterix
is a direct target for HIF-1, C2C12 cells were co-transfected with pHAHIF-1α plasmid and
osterix promoter luciferase reporter excluding (OSX-71) or including (OSX-1269) HIF-1α
binding sites or pGL3 vector as control, and then incubated for 24 h under normoxic and
hypoxic conditions. Under these conditions, the activity of OSX-1269 was significantly
increased under both normoxic and hypoxic conditions. Chromatin immunoprecipitation
(ChIP) assays using lysates from primary osteoblasts were cultured under either normoxic or
hypoxic conditions for 12 h. Interaction of HIF-1 with the osterix promoter was confirmed
by RT-PCR and quantified by real-time PCR. These data strongly suggest that HIF-1
influences mesenchymal cells to differentiate along the osteoblast pathway, in part though
its ability to activate osterix gene expression. When considered together with the effects of
HIF manipulations in the long bones described above, it appears that HIF-1 is essential for
both endochondral and intramembranous bone formation, but that it functions differently at
different stages of skeletal development as suggested by previous studies.31–33

Wan et al. Page 4

Ann N Y Acad Sci. Author manuscript; available in PMC 2011 March 2.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Conclusion
The studies summarized above support a conceptual model in which HIF-1 is a key
molecule that couples angiogenesis to bone formation.34 In this model, mesenchymal cells at
the surface of developing long bones sense reduced oxygen and or nutrient levels and
upregulate HIF subunits. HIF-1 targets such as VEGF and other angiogenic mediators are
produced in close proximity with the stroma. In this context, it is also possible that HIF-1
influences the development of the osteoblast-vascular niche.35 Thus, reciprocal signals
generated by the vascular endothelial cells, or alternatively from a distinct subendothelial
cell population such as CD146 positive cells,36 likely have an impact on resident pre-
osteoblasts that causes them to mature and divide. This process is exponential, with ever-
increasing numbers of new blood vessels inducing more osteoblast progenitors, which then
mature and function to form more individual bone formation units (niches). Other stimuli
might mediate angiogenic-osteogenic coupling after bone injury, a tissue setting replete with
inflammatory mediators. At other skeletal sites such as the calvaria, the relationship of
angiogenesis and osteogenesis appears to be different. In this setting, it appears that HIF-1
acts to directly stimulate bone progenitor cell differentiation. Current studies are being
designed to elucidate the functional mechanisms underlying HIF-1/VEGF-stimulated
angiogenesis and osteogenesis.
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