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Abstract
Using the two-state, continuous-time random walk model, we develop expressions for the mobility
and the plate height during DNA electrophoresis in an ordered post array that delineate the
contributions due to (i) the random distance between collisions and (ii) the random duration of a
collision. These contributions are expressed in terms of the means and variances of the underlying
stochastic processes, which we evaluate from a large ensemble of Brownian dynamics simulations
performed using different electric fields and molecular weights in a hexagonal array of 1 μm posts
with a 3 μm center-to-center distance. If we fix the molecular weight, we find that the collision
frequency governs the mobility. In contrast, the average collision duration is the most important
factor for predicting the mobility as a function of DNA size at constant Péclet number. The plate
height is reasonably well-described by a single post rope-over-pulley model, provided that the
extension of the molecule is small. Our results only account for dispersion inside the post array
and thus represent a theoretical lower bound on the plate height in an actual device.
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1 Introduction
Continuous-time random walk (CTRW) models are a powerful tool for understanding, at a
fundamental level, the sources of dispersion and concomitant band broadening during
electrophoresis in a gel [1–4] or a microfabricated post array [5–8]. We focus here on the
latter system, which has the potential for rapid separations of long DNA [9–13]. Modeling
DNA transport in post arrays benefits from their ordered geometries and the insights gained
from studies of the collision with a small, isolated post [14–16]. Thus, we are optimistic that
a predictive model for DNA electrophoresis in post arrays, based on CTRW theory,
ultimately will allow us to engineer such devices.

The existing CTRW models for DNA electrophoresis in a post array [5–8] only qualitatively
capture the mobility and band broadening seen in experiments and simulations. In Part I of
this series [17], we investigated the microscale probability densities of the existing models
using a combination of videomicroscopy experiments and Brownian dynamics (BD)
simulations. We found that the probability density for the unhooking time is reasonably well
captured by the standard rope-over-pulley microscale model [15], provided that we correct
for the finite size of the post. In contrast, the distance between collisions is much harder to
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predict. In particular, the existing models for the distance between collisions [5–8] account
for neither the electric field strength (apart from the chain extension during the collision) nor
the local variations in electric field in an electrically insulating post array. The extant
microscale models for the transport between collisions thus require significant modifications
before they can be used for engineering purposes.

In Part II of this series, we take a different approach to CTRW modeling of DNA
electrophoresis in a post array. Rather than start from some microscale model, we use a two-
state CTRW model [18] to develop expressions for the mobility and the plate height in a
post array that delineate the contributions due to the unhooking time and the distance
between collisions. These are generic results that do not depend on any particular
microscopic model. We used Brownian dynamics simulations to study both contributing
factors as a function of the electric field strength and molecular weight for a given array
geometry. Our approach permits a deeper insight into the transport process than we could
obtain by simply computing the dispersivity (or plate height) alone [19,20]. Moreover, as the
two-state model subsumes prior CTRW models [2,5–8,18] and expresses the mean velocity
and dispersivity in terms of moments of the pertinent microscale processes, the approach
here represents the proper starting point for future modeling efforts.

2 Methods and Materials
2.1 Two-State Continuous-Time Random Walk

Weiss derived the asymptotic results for a two-state continuous-time random walk [18] in
which a given cycle of the walk leads to a displacement over a random distance x = x1 + x2
during a random time t = t1 + t2. In a post array, we define the first state as the translation
between hooking events (x1 = x, t1 = tT) and the second state as the hooked state (x2 = 0, t2 =
tH). If the moments of x and t are finite, the above model leads to the mean velocity [18]

(1)

with 〈t〉 = 〈tH〉 + 〈tT〉 . The dispersivity [18],

(2)

includes a contribution due to the space-time correlation,

(3)

In the latter equations, 〈 · · · 〉 represents the average over many cycles and  is the variance
of i over many cycles. For example, .

Using this approach, we calculated the dimensionless mobility from previous simulation
data [19] finding that the two-state model gives an excellent prediction of the mobility. The
predictions of the two-state model and two of the previous CTRW models [6–8] are shown
against the simulation data [19] in Supporting Information Fig. A1.
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2.2 Brownian Dynamics Simulations
We simulated DNA transport in a regular hexagonal post array of 1 μm diameter posts with
a = 3 μm center to center spacing using Brownian dynamics (BD) in a non-uniform electric
field to generate trajectories of the DNA in the post array. From the BD simulation results,
we extract the random variables used in the CTRW calculation. While we used a 2 μm high
channel in Part I to aid visualization [17], we used a 4.5 μm high channel here to reflect the
deeper channels used in separation experiments to increase the signal [10,13,21]. The
simulation algorithm is described elsewhere [19]. Briefly, we used Nb beads connected by
Marko-Siggia wormlike chain springs [22]. Excluded volume interactions were modeled
with a soft potential [23]. Interactions between DNA and boundaries were handled by the
Heyes-Melrose algorithm [24]. The key differences between the simulations used here and
our prior work [19] are (i) the electric field is computed using a finite element solution; (ii)
the code is vectorized in Fortran 95; and (iii) the post boundary is implemented as a
continuous curve rather than an 448-sided polygon.

The ratio of convective forces to thermal fluctuations in the simulation was tuned by the
Péclet number, defined as

(4)

where ξ is the bead drag coefficient, l = 0.5833 μm is the maximum extension of a spring,
kBT is the thermal energy, μ0 is the free solution mobility, and E is the applied electric field.
We simulated the trajectory of a molecule over 1 mm of the post array for Péclet numbers
ranging from Pe = 0.523 to Pe = 20 and sizes ranging from Nb = 12 to Nb = 42, where Nb =
37 beads represents λ DNA.

Although we found a conversion between the simulation and experiment in Part I [17], the
latter was obtained using data for a 2 μm deep channel. To estimate the electric field
corresponding to a given Péclet number in a 4.5 μm deep channel, we experimentally
measured the diffusion coefficient of λ DNA in a 4.5 μm channel containing 1 μm diameter
posts using the particle tracking method in Part I [17]. The corresponding diffusion
coefficient, D = 0.46 μm2/s, is the same as the bulk diffusion coefficient to within
experimental error [25]. If we assume that the in-array mobility (i.e., when the DNA is not
interacting with a post), μ0 = 1.45 ×10−4 cm2/Vs, is unchanged from its value in the 2 μm
deep channel [17] and the chain is freely-draining, these parameters lead to a Péclet number
Pe = 1.14 being equivalent to an electric field E = 23 V/cm in the 4.5 μm deep channel. In
what follows, we use this Péclet number for the constant Pe case.

The following analysis is based on ensembles of 100 non-interacting molecules for each
value of Nb and Pe. The data were analyzed using the same algorithms as in Part I [17]. Each
data point thus consists of hundreds (or even thousands) of collisions. To estimate the error
in our measurement, we calculated the standard error of each statistic. Since the standard
error scales with the inverse of the square root of the number of collisions, the sampling
error is very small. For example, for Nb = 26 the error of the plate height is between 1% and
2%. This error is smaller than the size of the symbols in the following plate height figures,
and thus is not displayed. The error in the mobility calculation is significant and thus is
included in the corresponding figures.
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3 Results and Discussion
3.1 Limiting Cases

The current model captures the extant CTRW models [5–8], which were based on the
partially separable Scher-Lax CTRW [26]. The models [5–8] assume that the translation
between collisions occurs at the uniform rate U = μ0E, where μ0 is the free-solution
electrophoretic mobility and E is the electric field strength. As a result, x = UtT, which

implies that  and . The two-state dispersivity given by Eq. (2) then
reduces to

(5)

The term (1−Ū/U ) represents the delay caused by the hooking collisions and multiplies the
variance in distance between collisions. Thus, Eq. (5) shares some semblance with the lever-
rule [27].

All of the existing CTRW models [5–8] assume a probability ρ of colliding in a given row of
the array after an exclusion region of size n* = L/a, where L is the length of the chain during
unhooking and a is the spacing between posts. The corresponding expectation for the
distance of a cycle is 〈x〉 = a(n* + ρ−1 − 1) and the variance is . If we
include a pre-averaged unraveling of the chain during the collision [2,5–7], then the

expectation and variance for the holdup time are 〈tH〉 = 3L/(2U) and . If we do
not include the pre-averaged unraveling [8], then we subtract its deterministic contribution
L/U from the expectation to give 〈tH〉 = L/(2U). Since the unraveling time is pre-averaged,
the variance in the holdup time is unchanged.

Inserting these expectations and variances in Eqs. (1) and (5) readily leads to the mobility
and dispersivity formulae reported in previous Scher-Lax CTRW models [5,7,8]. We have
also confirmed, through significant algebra, that the Scher-Lax CTRW model of transport in
a post array is equivalent to the present two-state model. We recall that the model of Ref. [5]
with ρ = 1 leads to the geometration model [2], which is itself a Montroll-Weiss CTRW
[28]. Thus, the two-state model [18] that we adopt here is indeed a generalization of the
existing CTRW models.

In the limit of zero posts, the dispersivity of the DNA should limit to the molecular
diffusivity. However, this result cannot be recovered from Eq. (2) because the latter result
was based on finite moments for x and t [18]. As the distance between collisions grows, the
moments for x and tT become unbounded and we reach an anomalous diffusion regime.
(When a collision occurs, we would still expect the moments of tH to remain bounded.)
While results exist for unbounded moments in x [29], we have two reasons to believe this
limit will not be of much interest for separations. First, the experimental data reported in
Part I of this series [17] indicate that the distance between collisions decays exponentially
and thus has bounded moments. Second, a system with large distances between collisions
will have very low separation resolution. Nevertheless, if the distance between collisions
were to decay algebraically then the mathematical tools are available to modify the present
analysis.
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3.2 Electrophoretic Mobility
3.2.1 Constant DNA Size—For each ensemble of molecules, we calculated the
dimensionless electrophoretic mobility (μ/μ0) according to

(6)

We simulated 26 bead DNA at Péclet numbers from 0.523 to 4.83 and 12 bead DNA at
Péclet numbers from 0.523 to 20 to measure the dependence of the mobility on the electric
field.

The dimensionless electrophoretic mobility is shown as a function of Pe for Nb = 26 beads
in Fig. 1. At low Pe, the mobility decreases with increasing Pe until a critical Péclet number,
Pe*, is reached, after which the mobility increases with increasing Pe. These two regimes in
DNA mobility have been reported elsewhere [20,30]. For Pe < Pe*, the number of collisions
is limited by the relatively small stretching force when the chain collides with the post; the
DNA is not pulled from its equilibrium coil state into a hairpin around the post. Indeed, we
found many more molecules experience roll-off collisions at lower Pe numbers. As Pe
increases in this low Pe regime, the number of collisions increases until the critical Pe* is
reached. At the critical Péclet number, we observed the highest frequency of collisions and
the lowest mobility. Scaling arguments suggest that Pe* occurs at Pe*Nb ≈ 20 [20], in
agreement with our 26 bead DNA data. However, as seen in the inset of Fig. 1, Pe* occurs at
significantly higher Pe than scaling laws predict for the 12 bead case. Note that the post
diameter in our simulations is 1 μm, while the previous studies used 0.15 μm posts [20] or
an asymptotically thin post [30]. The 26 bead DNA is large enough that the force required to
stretch the molecule around a 1 μm diameter post is similar to the force required to stretch
the molecule around a thin post. However, the force required to hook the 12 bead DNA is
larger; thus Pe* is also larger.

For Pe > Pe*, the number of collisions decreases with increasing Pe, resulting in an increase
in mobility. In this high Pe regime, the collision frequency is limited by (i) the relaxation of
the chain after a collision [19] and (ii) the lateral diffusion of the chain to a position in front
of a subsequent post. These diffusive processes are largely independent of the applied
electric field. Thus, at a higher Pe, the molecule bypasses more rows of posts before the
subsequent collision.

Using the two state model, we can determine whether the change in mobility as a function of
the electric field is dominated by the hooked state or the translating state. Since the hold-up
time in the simulation scales linearly with Pe, we converted the hold-up time to a distance by
xH = U〈tH〉, similar to Eq. 1. This xH is interpreted as the distance lost by the molecule
because of the collision [31]. We found that xH increases slightly in the low Pe regime, then
reaches a constant value of 5.47± 0.20 μm above Pe*. In contrast, the distance traveled
during the translating state, 〈x〉, exhibits a strong dependence on Pe that mimics the trend of
the mobility data, as seen in Fig 1. We note that our simulations were run for a constant
distance of 1 mm and thus 〈x〉 is inversely proportional to the number of collisions and the
collision probability. Thus, the distance between collisions controls the change in mobility
as a function of the electric field.

3.2.2 Constant Péclet Number—While the study of a single size of DNA at varying Pe
reveals interesting physics behind the transport process, DNA separation occurs at a single
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Pe for many DNA sizes. To study the transport of a mixture of DNA, we simulated DNA
sizes between 15 ≤Nb ≤42 at Pe = 1.14.

We found that the mobility decreases monotonically with the DNA size as expected from
prior experiments in post arrays [16]. As in the constant Pe case, the mobility decreases as
the number of collisions increases. The range of DNA sizes spans both transport regimes [Pe
< Pe*(Nb) and Pe > Pe*(Nb)] discussed in the previous section. In both regimes, larger
molecules form more hooking collisions. At low Pe, the applied force required to form a
hooking conformation is smaller for a longer chain; at high Pe, the collision probability is
proportional to the size of the molecule in the direction perpendicular to the field, which is
larger for a longer molecule. Thus, mobility should decrease with increasing size in both
regimes.

We can again use the two-state model to determine the key factor governing the mobility.
Here, it is convenient to invert the dimensionless mobility to clearly separate the two
contributions:

(7)

We found that the translation time and the distance traveled during translation are related by
〈x〉 = [f(Pe)U] 〈tT〉, where f(Pe) accounts for the difference between the mean velocity and
the instantaneous velocity of the molecule as it moves in the non-uniform electric field in the
post array. In the previous CTRW models [5–8], f = 1. Here, we simply assume that this
parameter is independent of molecular weight. For the sizes studied here, linear regression to
the data furnishes f(Pe = 1.14) = 0.89 (R2 = 0.999). A plot of U〈tT〉 versus 〈x〉 is shown in
Supporting Information Fig. A2. Since the translation time and the distance traveled during
translation exhibit a linear relationship, the first term of Eq. (7) is constant with changing
DNA size.

According to the rope-over-pulley model of unhooking dynamics [8,15,32], the hold-up time
scales with the extension of the chain during the collision, L. To leading order, the extension
of the chain depends linearly on the chain size; again using linear regression, we found that
L = 0.33lNb (R2 = 0.999, Supporting Information Fig. A3). We therefore postulate that 〈tH〉
dominates the second term of Eq. (7), and thus U〈tH〉/〈x〉 has a linear dependence on Nb.
With the plausible assumption that 〈tH〉 ~ Nb, we can find an equation for the inverse
mobility using linear regression, then invert the result to obtain

(8)

For Nb =26 beads, the dimensionless mobility from Eq. (8) is 0.794, a 4% difference from
the raw data. The discrepancy between the data and Eq. (8) is due to error in the regression.
The original data, along with a plot of Eq. (8), is shown in Supporting Information Fig. A4.

We find that Eq. (8) provides a better fit to the data than the  scaling for single
DNA-post collisions [20,33]. Thus, at a constant Péclet number the dependence of the
mobility on size is governed by the variable hold-up times of the different chains. While we
certainly expected the mobility to depend on the collisions, our analysis shows that it is the
duration, rather than the frequency, of the collisions that governs the separation. This

Olson et al. Page 6

Electrophoresis. Author manuscript; available in PMC 2012 February 3.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



contrasts with the constant size case, where the variation in the mobility is dominated by the
number of collisions (or, equivalently, the frequency of collisions).

3.3 A van Deemter-like Equation
The general two-state model in § 2.1 suggests a way to isolate the different sources of
dispersion during electrophoresis in a post array. From a conceptual standpoint, our
approach is analogous to the van Deemter equation for chromatography [34]. In the latter,
the contributions to the plate height are apportioned to longitudinal molecular diffusion,
eddy dispersion, and mass transfer. In the case of a post array, the dispersion comes from the
random distance between collisions and the random collision time. The random distance
between collisions takes dispersion and molecular diffusion into account, while the random
collision time is analogous to the mass transfer term in the van Deemter equation.

We recast the two-state CTRW results in terms of the plate height,

(9)

The first term is the contribution due to the fluctuations in the distance between collisions,

(10)

while the second term is the contribution due to the fluctuations in the holdup time,

(11)

In the following, we use H1 and H2 to investigate the various contributions to the plate
height as a function of molecular weight and electric field.

3.3.1 Constant DNA Size—The contributions to the plate height for Nb = 26 are shown
in Fig. 2. The band broadening from state 1 (translation) is due to the random distance
between collisions and the local velocity fluctuations caused by the non-uniform electric
field. We found a piecewise linear relationship between the variance of the distance between
collisions and the variance of the translation time as shown in Supporting Information Fig.
A5:

(12)

Since the variance of the travel time and the variance of the distance between collisions are

linearly related,  is nearly independent of Pe; it depends only on the relation between
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Pe and Pe*. The distance between collisions, rather than the local velocity fluctuations, is
the dominant contributor to H1, with H1 ~ 1/〈x〉 .

The plate height due to the colliding state, H2, is dependent on the hold-up time of the
collision. For a rope-over-pulley collision, the hold-up time is proportional to the extension
of the chain during the collision, L [8,15]. Indeed, we find that this relation is a reasonable
description for the range of Pe studied here; linear regression provides U〈tH〉 = 0.55L +
0.83a (R2 = 0.839, Supporting Information Fig. A6). The average maximum extension of the
26 bead DNA is shown in Fig. 3. At the lowest Pe, L increases rapidly leading to an increase
in H2. At higher Pe, we see a drastic increase in H2 once the extension of the molecule
becomes greater than twice the row spacing. At this high extension, a single arm of the
molecule can interact with multiple rows of posts, leading to an increase in the variance of
the hold-up time, and thus an increase in H2.

The extension of the chain can be estimated from the Marko-Siggia worm-like chain
interpolation formula [8,22,35],

(13)

where A = 53 nm is the persistence length of double-stranded DNA. Alternatively, we can
model the extension of the chain during collision using the stem-flower model [6,7,36],

(14)

where lk is the Kuhn length. Equations (13) and (14) are plotted with the simulation data in
Fig. 3. Both models overestimate the extension of the molecule. Also, they predict multipost
interactions at much lower Pe. As a result, these models only qualitatively capture the
influence of the electric field on the likelihood of multi-post interactions in the array. The
worm-like chain and stem-flower models were originally developed for DNA interactions
with an isolated post. In an array of insulating posts, the non-uniform electric field causes
compressional forces on the molecule based on its location in the array. The posts also act as
physical barriers to chain extension. Thus, we might expect the chain extension in the array
to be smaller than for an isolated tethered chain.

The inset of Fig. 2 shows the contributions to the plate height for Nb = 12. The band
broadening from state 1 follows the same trend as the 26 bead case; H1 increases with
increasing Pe for Pe < Pe*, then decreases above the critical Péclet number. The plate height
from state 2 (unhooking) only follows the trend of the 26 bead case below Pe*. The
difference between the two constant Nb cases for Pe > Pe* is due to L; the average
maximum extension during a collision for the 12 bead DNA is L = 3.79 ± 0.54 μm and
occurs at Pe = 20. Even at this extension, multi-post interactions are not important, and thus
H2 remains relatively constant above Pe*. Indeed, due to the relatively short collision times
for this short DNA, the variance in the distance between collisions is the larger contributor
to the plate height for all Peclet numbers.
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3.3.2 Constant Péclet Number—In the case of a constant Péclet number, the plate
height contribution from the translating state, H1, is still driven by the number of collisions.
We used linear regression to obtain

(15)

The fit of H1 is shown in Fig. 4 along with the simulation data. While DNA-post collisions
cause a decrease in mobility and thus are necessary for separation, they also increase the
band broadening in the array.

Based on the rope-over-pulley model of unhooking [8,15], the hold-up time scales with L,
and thus tH ~ Nb. We found that a good phenomenological fit to the data is

(16)

where bi are constants; this fit is shown in Supporting Information Fig. A7. Using Eq. (16)
we are able to fit the simulation data for 〈x〉 with b1 = 4400, b2 = −0.27 and b3 = 22 (R2 =
0.999). We can then express the plate height due to hold-up as a function of Nb by

combining Eqs. (8, 16), and using ,

(17)

where c1 is the scaling coefficient. Using least squares minimization, we find c1 = 9.3×10−3

(R2 = 0.958). This fit is shown in Fig. 4 along with the simulation data. While Eq. (17) is a
phenomenological model, it allows us to easily identify how the size of the DNA affects the
second contribution (unhooking) to the plate height.

For Pe = 1.14, we found that the extension L remains smaller than the distance between
posts for Nb ≤26. As a result, we might expect this regime to correspond to the dispersion
due to repetitive collisions with isolated posts. However, we found that the dispersivity in
this regime scales like . This result differs from the dispersivity scaling from

simulations of DNA collisions with a single post,  [20]. However, we note that
dispersion calculated from simulations in a random array of posts also exhibited a weaker

dependence on chain length than the  scaling [20], in agreement with our results.

4 Conclusions
Our analysis, based on a two-state model of DNA transport in a post array, allowed us to
decouple the effects of (i) translation between collisions and (ii) hold-up during a collision
on the electrophoretic mobility and the plate height. We found that the mobility of a fixed
DNA size over a range of Pe depends primarily on the number of collisions experienced by
the molecule, and that the number of collisions also predicts the observed mobility
minimum. In this case the hold-up time is of secondary importance because tH ~ 1/E. When
the Péclet number is held constant and the size of the DNA is varied, the change in mobility
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is governed by the hold-up time of the collisions rather than the change in their frequency.
Thus, the state that dominates the change in the electrophoretic mobility depends on whether
we consider mobility as a function of Pe, or mobility as a function of DNA size.

Using a van Deemter-like equation we calculated the plate height due to the different states
of the molecule. The plate height due to translation between collisions scales with the
number of collisions. The plate height due to the variable hold-up time of a collision is well
predicted by the single post rope-over-pulley unhooking model for small molecules and low
Pe. However, large molecules under a strong electric field have such a large extension that
the effects of multiple posts become important. Since these multi-post effects increase the
variance in the hold-up time [19], they increase the plate height.

Our results make clear the usefulness of the two-state model [18], since it allows us to
interpret the various factors contributing to the mean velocity and band broadening. We
should also point out that the mathematics required to produce meaningful results from the
two-state model are trivial compared to those required for the equivalent Scher-Lax
treatment [5]. In the latter approach, one begins with the probability density ψ(x,t) for
moving a distance x in a time t and computes the asymptotes of the first two moments from
the solution to the random walk [26]. In the context of a post array model, the steps include
inverting the microscale model for the holdup time (which can only be done with certain
limiting assumptions [2]) and extensive algebra. In contrast, the two-state model given by
Eqs. (1)–(3) allows a rapid calculation of the mean velocity and dispersivity from the
moments of the microscale processes. Importantly, these moments are obtained without
inverting the holdup time model. Thus, we posit that the two-state model provides the ideal
starting point for any future CTRW studies of DNA electrophoresis in a post array.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Dimensionless mobility (open circles) and mean distance between collisions (closed circles)
as a function of Pe for 26 bead DNA. The inset shows the dimensionless mobility of the 12
bead DNA plotted against Pe. Error bars show the sampling error.
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Figure 2.
Plate height contributions from each state as a function of Pe for Nb = 26. Filled circles are
H1 and open circles are H2. The inset shows the plate height contributions for Nb = 12 as a
function of Pe, where filled triangles are H1 and open triangles are H2.
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Figure 3.
Fractional extension of the molecule in the field direction as a function of Pe for Nb = 26
(filled circles) plotted against the predictions of the stem-flower model [6,7] (blue, dashed
line) and the Marko-Siggia worm-like chain interpolation formula [8] (red, solid line). The
horizontal dotted line is at an extension equal to twice the row spacing for this molecular
weight.
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Figure 4.
Contributions to plate height for changing DNA size. H1 is shown in filled (red) symbols,
and H2 is shown in open (black) symbols. The lines are the model equations for H1 [Eq.
(15)] and H2 [Eq. (17)]. The legend shows the number of beads corresponding to each
symbol.
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