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We tested whether changing accuracy demands for simple pointing movements leads humans to adjust the feedback control laws that
map sensory signals from the moving hand to motor commands. Subjects made repeated pointing movements in a virtual environment
to touch a button whose shape varied randomly from trial to trial— between squares, rectangles oriented perpendicular to the movement
path, and rectangles oriented parallel to the movement path. Subjects performed the task on a horizontal table but saw the target
configuration and a virtual rendering of their pointing finger through a mirror mounted between a monitor and the table. On one-third
of trials, the position of the virtual finger was perturbed by �1 cm either in the movement direction or perpendicular to the movement
direction when the finger passed behind an occluder. Subjects corrected quickly for the perturbations despite not consciously noticing
them; however, they corrected almost twice as much for perturbations aligned with the narrow dimension of a target than for perturba-
tions aligned with the long dimension. These changes in apparent feedback gain appeared in the kinematic trajectories soon after the time
of the perturbations, indicating that they reflect differences in the feedback control law used throughout the duration of movements. The
results indicate that the brain adjusts its feedback control law for individual movements “on demand” to fit task demands. Simulations
of optimal control laws for a two-joint arm show that accuracy demands alone, coupled with signal-dependent noise, lead to qualitatively
the same behavior.

Introduction
Research has shown that humans use online visual information
about both a target object and the moving hand throughout goal-
directed hand movements to control the movements (Goodale
et al., 1986; Pélisson et al., 1986; Prablanc and Martin, 1992;
Sarlegna et al., 2003; Saunders and Knill, 2003, 2004, 2005). In an
optimal system, both the reliability of sensory and motor signals
and the goals and constraints of the motor task (Todorov and
Jordan, 2002; Li and Todorov, 2007) determine how different
sensory signals influence online control of movements. The first
factor acts via its influence on state estimation—noisy feedback
signals should contribute less to online control than reliable ones
because they have less influence on internal state estimates. Re-
cent studies have shown that humans exhibit this reliability-
based weighting of online visual signals both for visual feedback
signals from the moving hand (Körding and Wolpert, 2004;
Saunders and Knill, 2004, 2005) and for visual signals from a
target that jumps at movement onset (Izawa and Shadmehr,
2008).

Task constraints act by shaping the control law that generates
motor commands. Both subjective (e.g., energy conservation)
and objective (e.g., minimizing endpoint variance) task con-
straints have been used to account for average movement trajec-
tories of ballistic movements (Flash and Hogan, 1985; Uno et al.,

1989; Harris and Wolpert, 1998). Similar constraints also shape
the sensory feedback component of an optimal feedback-driven
controller (Todorov and Jordan, 2002; Todorov and Li, 2004).
The optimal control law for any given task will tend to minimize
variance in task-relevant dimensions at the expense of increasing
variance in irrelevant dimensions—a form of “minimum-
intervention principle.”

A number of recent studies provide evidence that the CNS
adapts its online control law to changing task demands (Liu and
Todorov, 2007; Diedrichsen and Dowling, 2009; Diedrichsen and
Gush, 2009). When performing a pointing task, subjects cor-
rected less for visible shifts in target position when they had to
stop at the target than when they were allowed to hit it (Liu and
Todorov, 2007). Optimal controllers derived for the different
task conditions showed a similar behavior—a pattern that results
from an inherent stability/accuracy trade-off imposed by motor
noise. In a bimanual control task, subjects showed coupled cor-
rections of the left and right hands when both hands controlled
the movement of a single cursor to a target, but decoupled cor-
rections when controlling independent cursors to two different
targets (Diedrichsen and Dowling, 2009; Diedrichsen and Gush,
2009).

Previous studies blocked different task conditions; some ex-
plicitly measured the rate of adaptation to changing task de-
mands. We asked whether the CNS shapes its feedback control
law to the accuracy demands of individual pointing movements
when those demands change from trial to trial (by changing the
shapes of targets). Subjects’ corrective responses to visual pertur-
bations of their fingers changed from trial to trial to match the
accuracy constraints of different shapes. Simulations of optimal
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controllers for the different shapes show that the observed
changes in feedback control result naturally from optimizing a
simple performance constraint—maximizing the probability of
hitting a target. We show that subjects’ corrective responses are
linear—the time course of corrections satisfies the superposition
property— corrections to a visual perturbation that is a weighted
sum of two other perturbations for visual perturbations are linear
superpositions of corrections to those two perturbations.

Materials and Methods
Overview of experimental design
Since we were interested in studying the feedback control law used during
“normal” movements, we used an experimental paradigm in which we
perturbed the visual position of the moving hand without subjects’
awareness of the perturbations. Subjects pointed to targets presented in
a virtual environment that included a visual display of their fingers.
We measured the time course and magnitude of subjects’ corrective
movements in response to small, undetected (consciously) perturba-
tions of the virtual finger’s position. We used small perturbations of
the virtual finger when it disappeared behind an occluder, so that
subjects were never aware of the changes in finger position induced by
a perturbation. We randomly varied the accuracy demands of the
pointing task from trial to trial by changing the shape of the target
[e.g., in experiment 1, we used square, vertical rectangle, horizontal
rectangle targets (Fig. 1)].

The hypothesis that humans shape their feedback control laws anew
for each movement based on the accuracy demands of the movement
makes a clear qualitative prediction—that subjects will correct less for
perturbations of the finger in the “short” dimension of a target button
than in the “long” dimension. Differences in feedback corrections should
appear on a trial-by-trial basis (conditioned on the shape of the target
button presented in each trial) and should appear early in movements.
To study the constraints that might drive such behavior, we derived
different optimal control laws for each different target button shape us-
ing cost functions that include weighted terms for errors in task execu-
tion and for smoothness or energy consumption. In this way, we were
able to determine whether optimizing task performance alone would
predict the changes in feedback control laws that we observed or whether
one also needs to resort to energy minimization as an explanation for the
observed behavior.

Experiment 1 tested the basic predictions of the theory of stochastic
optimal control using square and rectangular target shapes. We found
that subjects did adjust their feedback control laws on a trial-by-trial
basis to match the shape of the target— correcting less for motor errors in
the direction of the long axis of a rectangular target than in the short axis.
Experiment 2 tested the “linearity” of the control law by measuring sub-
jects’ corrective responses to perturbations in multiple directions and by
replacing the square targets used in experiment 1 with targets shaped as
crosses. A linear controller (or a system whose kinematic input– output
mapping is at least approximately linear) would show corrections for
errors in one direction that were a predictable linear sum of the correc-
tions for errors in two other directions. Furthermore, this would limit the
spatial pattern of corrections to a complex shape like a cross to appear
suboptimal, since for such a shape, the error constraints lead to an opti-
mal pattern of corrections in which corrections for errors in diagonal
directions (relative to the arms of the cross) would be larger than correc-
tions for errors in the orthogonal directions of the arms of the cross—a
pattern that cannot arise from a linear system.

Subjects performed a simple pointing task in which they moved their
right index finger from a starting position on the right-hand side of a
tabletop to touch a target button on the left-hand side of the tabletop. As
illustrated in Figure 1, subjects viewed a virtual scene in which starting
positions and target buttons were displayed to be spatially coincident
with the tabletop. A subject’s index finger was displayed within the virtual
environment as a virtual rendering of the finger. In most trials, the virtual
finger was coincident with a subject’s real finger, but on perturbation
trials, the virtual finger was offset by 1 cm from the subject’s real finger when
it went behind an annular occluder that was rendered to appear 10 cm above
the tabletop near the starting position. The occluder served to mask the visual
transients associated with the perturbation. All of the subjects reported being
unaware of the perturbations when questioned after the experiment, even
when told what they would have looked like. By measuring the time course of
subjects’ corrective responses to the perturbations, we obtained data reflect-
ing the control law that subjects used to adjust movements online based on
visual feedback from the finger.

In experiment 1, three different target button shapes were used in the
stimuli, interleaved randomly from trial to trial in each experimental
block—squares, vertical rectangles (oriented perpendicular to the axis
between the starting position and the target), and horizontal rectangles
(oriented to be aligned with the axis between the starting position and the
target). For simplicity, we refer to vertical as the direction perpendicular
to the start-target axis and horizontal as the direction parallel to the axis.
In reality, the orientation of the start-target axis varied randomly around
the horizontal. On two-thirds of the trials in the experiment, the virtual
finger remained coaligned with a subject’s real finger. These trials served
as the basis for measuring baseline aspects of motor performance (e.g.,
changes in mean endpoints and endpoint distributions as a function of
target button shape). On one-third of the trials, the virtual finger was
perturbed by 1 cm in either the vertical or horizontal directions (as
defined above). Positive and negative perturbations were randomly in-
terleaved within an experimental block. These trials served as the basis for
measuring feedback-driven corrections. In experiment 2, the square but-
tons were replaced by crosses and perturbation trials included 1 cm shifts
of the virtual finger position in a diagonal direction relative to the axis
between the starting position and the target.

Subjects
Different sets of eight subjects participated in the two experiments. All
were naive to the purposes of the experiment and were paid to partici-
pate. Subjects were undergraduates at the University of Rochester who
provided informed consent in accordance with guidelines from the Uni-
versity of Rochester Research Subjects Review Board. Our apparatus re-
quired that subjects use their right hand, so only right-handed subjects
were accepted.

Experiment 1
Apparatus and display. Visual displays were presented in stereo on a
computer monitor viewed through a mirror (Fig. 1), using CrystalEyes
shutter glasses to present different stereo views to the left and right eyes.

monitor

mirror

infrared markers
on finger

tabletop aligned to
virtual targets

a

b

c

Figure 1. a, A side view of the experimental apparatus used in the experiments. b, Subjects’
view of the tabletop environment (seen from the top) halfway through a trial. Subjects viewed
the display stereoscopically through LCD stereo glasses with geometrically correct rendering of
the three-dimensional scene. The start position and target rectangle appeared flat in the plane
of the tabletop (approximately coextensive with the virtual image of the monitor). The semi-
circular occluder appeared 10 cm above the tabletop, so that subjects’ fingers disappeared as
they passed behind the occluder. c, A schematic rendering of a perturbation trial, in which the
position of the virtual finger was shifted up by 1 cm (in the plane of the tabletop) relative to the
true finger position.
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The mirror was half-silvered to allow subjects to view both rendered
stimuli and real objects (e.g., a subject’s finger) during calibration. The
left and right eye views were accurate perspective renderings of the sim-
ulated environment. Displays had a resolution of 1024 � 768 pixels and
a refresh rate of 120 Hz (60 Hz for each eye’s view). The stimuli and
feedback were all drawn in red to take advantage of the comparatively
faster red phosphor of the monitor and prevent interocular cross talk.
During the experiment, a matte black occluder was positioned behind the
mirror to prevent view of a subject’s hand. Visual feedback about hand
position was instead provided by a virtual finger that moved in real time
along with the subject’s actual finger. The virtual finger was represented
as a cylinder with a rounded, hemispherical tip. It had a 1 cm radius and
was 5 cm long from base to tip.

A starting position was rendered as a cross on the right-hand side of the
display (Fig. 1). Targets for subjects’ movements were squares (1 � 1
cm), vertical rectangles (1 � 6 cm), or horizontal rectangles (6 � 1 cm),
positioned 30 cm away from the starting position. Vertical rectangles
were oriented perpendicular to the axis between starting and target po-
sitions. Horizontal rectangles were oriented parallel to this axis. The
target shapes were rendered to appear aligned with an unseen tabletop
(�55 cm from the eyes), which provided consistent haptic feedback
when a subject’s finger touched a target. The positions of the starting
cross and the target rectangle were symmetric around the center of the
virtual tabletop. On each trial, a start-target axis orientation was ran-
domly chosen between 10° above and 10° below the horizontal. The start
cross was displayed 15 cm to the right of center and the target 15 cm to the
left of center along this axis.

In addition to the start position, target button, and the virtual finger-
tip, displays included a planar annular-shaped occluder, rendered to
appear 10 cm above the tabletop. At this height, the virtual finger passed
behind the occluder on normal movements. The center of the target
served as the center for the arc defining the annular occluder. The oc-
cluder was 6 cm wide with the outer boundary positioned 6 cm from the
start position and the inner boundary positioned 12 cm from the start
position. The configuration insured that, regardless of the start and target
positions, the finger always emerged from behind the occluder when it
was 18 cm away from the target and at approximately the same time
during the movement.

An Optotrak 3020 system recorded the time-varying position of a
subject’s finger at 240 Hz. The data were used to dynamically update the
position of the virtual fingertip. Subjects wore a finger splint on their
right index finger, which had a triad of active infrared markers. The
position of a subject’s fingertip within the splint was computed from the
position of the three markers attached to the splint. The optical measure-
ments had very small latencies (�2 ms), but the speed of the graphical
rendering loop imposed a significant additional latency on visual feed-
back, �25 ms. We measured this by rendering a small red spot in the
middle of the monitor and alternating the color between dark and light
every four times through the graphics loop. A light-sensitive diode mea-
sured the brightness of the dot. At the time that we refreshed the video
buffer (at the end of the display loop, timed to be just before the drawing
of a new frame), we sent a signal to the serial port that covaried with the
brightness of the spot. We measured the phase shift between the signal
from the light-sensitive diode and the serial port on an oscilloscope. This
provided an estimate of the delay between software draws and the ap-
pearance of a stimulus on the midline of the screen. The shift was consis-
tently 25 ms (one and one-half video frames), reflecting a one video frame
delay in the monitor (the extra one-half frame results from the time to scan
to the midpoint of the monitor). Finger position on the screen varied over
time and between trials, causing some variance in the display delay. We
estimated the mean and SD in the display delay from subjects’ finger
positions. The SD computed across all subjects in experiment 1 was 3.2
ms, with no subject having a SD �3.7 ms.

When computing the rendered position of the virtual fingertip, we
compensated for the delay by linearly extrapolating the “current” posi-
tion and orientation of the finger from the latest marker positions, using
the positions from previous frames to estimate velocity. Linear extrapo-
lation contributed a small bias in the x position of the virtual finger
because of acceleration of the hand, varying between approximately �0.3

cm at the point of peak acceleration to 0.3 cm at peak deceleration. Biases
in the y direction caused by extrapolation were comparatively small,
ranging between approximately �0.02 cm. Extrapolation also had the
effect of amplifying the intrinsic noise in Optotrak measurements; how-
ever, even after amplification, this noise remained small (root mean
square error, 0.016 cm after extrapolation).

Spatial calibration of the virtual environment required computing the
coordinate transformation from the reference frame of the Optotrak to
the reference frame of the computer monitor, and the location of a sub-
ject’s eyes relative to the monitor. These parameters were measured at the
start of each experimental session using an optical matching procedure.
The backing of the half-silvered mirror was temporarily removed, so that
subjects could see their hand and the monitor simultaneously, and sub-
jects aligned an Optotrak marker to a sequence of visually cued locations.
Cues were presented monocularly, and matches were performed in sep-
arate sequences for left and right eyes. Thirteen positions on the monitor
were cued, and each position was matched twice in different depth
planes. The combined responses for both eyes were used to determine a
globally optimal combination of three-dimensional reference frame and
eye position. After the calibration procedure, a rough test was performed
in which subjects moved a marker viewed through the half-silvered mir-
ror and checked that the position of a rendered dot was perceptually
coincident with the marker. Calibration was deemed acceptable if devi-
ations appeared �1–2 mm. Otherwise, the calibration procedure was
repeated.

The transformation from the Optotrak measurements of marker po-
sition on the finger to the fingertip was computed in two steps. First, a
subject placed her finger in a metal disk resting on the tabletop with a slot
cut into it to hold the finger. This assured that, during the initial step of
calibration, a subject’s finger was rigid and parallel to the tabletop. The
virtual finger was displayed so as to appear at the center of the virtual
screen, oriented parallel to the tabletop pointing “up” in screen coordi-
nates and positioned at a height above the virtual screen (and hence the
tabletop) matching the height of the finger slot. The subject positioned
his or her finger so as to visually align it with the rendered finger and hit
a mouse button when satisfied that the two overlapped. This allowed us
to compute the transformation from the three-dimensional coordinate
frame defined by the three infrared markers on the finger flag and the
rendered finger. To calibrate the position of a subject’s fingertip (the part
of the finger that a subject actually makes contact with the table when
touching a target), we had subjects touch 10 small square buttons dis-
played at random positions on the tabletop at what they perceived to be
the centers of the squares. We then calculated the average vector (in a
finger-centered coordinate frame) between the center of the finger coor-
dinate frame (the center of the three markers) and the centers of the
squares. This represented the position of the fingertip for purposes of
data analysis.

Procedure. At the beginning of each trial, the display refreshed, and the
start cross, the target, and the annular occluder appeared in the virtual
workspace. The subject was instructed to touch the center of the cross
with the tip of his or her index finger and to hold that position until
hearing a beep. At 500 ms after detecting that a subject’s finger was
touching the start cross, the system emitted a beep signaling subjects to
point to touch the target. If the fingertip was within 2.5 mm of the
boundary of the visible target region when it touched the tabletop, the
trial was recorded as a success and the target visibly exploded; otherwise,
nothing happened (the 2.5 mm “slop” was used to accommodate a suc-
cessful touch anywhere on the finger pad). Two seconds after the begin-
ning of the trial (the time the subject touched the start cross), the display
was cleared and a 300 ms intertrial interval ensued before the display for
the next trial was presented. Pointing movements were constrained to be
�600 ms, and the entire duration of each trial, from the time at which the
subject touched the start position to the time they completed the point-
ing movement, was constrained to be �2 s. If a subject moved before the
beep or completed the movement outside the time constraints, an
appropriate message was displayed and the trial condition was ran-
domly placed into the stack of remaining trials and a new trial was
begun. Subjects found movements within the allotted time window
quite natural.
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Before the main experiment blocks, subjects were allowed 20 – 40 prac-
tice trials to familiarize themselves with the task and the timing con-
straints. Subjects were instructed that touching the target buttons
anywhere along their entire extent would lead to a success (blowing up
the target). Importantly, subjects were instructed during the practice
trials to “test” their calibration by touching the target buttons in different
locations to make sure they exploded no matter where they touched. This
was used to reinforce the constraint that success derived from touching a
button anywhere along its entire extent.

Subjects participated in four experimental sessions on separate days.
Each began with calibration of the virtual environment, followed by
practice trials to familiarize themselves with the task, and then six blocks
of experimental trials separated by a brief break. Subjects performed 72
trials in each experimental block for a total of 432 trials per session. The
experiment contained 15 different conditions, corresponding to three
different target button shapes—square, vertical rectangles, and horizon-
tal rectangles—and five different finger perturbation conditions—1 cm
perturbation forward along the start-target axis, 1 cm back along the axis,
1 cm up perpendicular to the axis, 1 cm down perpendicular to the axis,
and no perturbation. The no-perturbation condition served as a baseline
condition for analyzing movement kinematics. Forty-eight of the 72 tri-
als (16 per target shape) were no-perturbation conditions and 24 were
perturbation conditions (2 per target shape/perturbation direction/per-
turbation sign).

Data analysis. We analyzed three features of subjects’ movements—
the endpoints of movements on baseline trials, the endpoints of move-
ments on perturbation trials, and the time course of online corrections.
To measure changes in subjects’ planned movements for different target
shapes, we calculated the average and covariance (in table coordinates) of
endpoint fingertip positions for no-perturbation trials in each of the
different target shape conditions. To obtain a summary measure of the
contribution of visual feedback to the pointing movements, we com-
puted the average corrections for positive and negative perturbations for
perturbations along the start-target axis and perturbations perpendicular
to the start-target axis. This was given by the following:

�xvert �
1

2
(xvert

� � xvert
	 ) (1)

and

�xhoriz �
1

2
(xhoriz

� � xhoriz
	 ), (2)

where xvert
� and xvert

	 represent the average endpoints for negative and
positive perturbations perpendicular to the start-target axis and xhoriz

� and
xhoriz

	 represent the average endpoints for negative and positive perturba-
tions along the start-target axis The vectors are represented in a coordi-
nate frame aligned with the start-target axis, so a positive vertical
perturbation is represented by the vector [0,1]T and a negative vertical
perturbation by the vector [0,�1]T. Corresponding vectors for hori-
zontal perturbations are [1,0]T and [�1,0]T. The order of the terms in
the difference equation derives from the fact that the proper correc-
tion for a perturbation of the visual finger is in the opposite direction
of the perturbation.

To derive a sensitive measure of the temporal evolution of subjects’
corrective responses, we fit the following linear model to the movement
kinematics at each time point (Saunders and Knill, 2002) as follows:

x
t� � w1
t� x
t � 1� � w2
t� x
t � 2� � ··· � wn
t� x
t � n�

� wpert
t��pert, (3)

y
t� � v1
t� y
t � 1� � v2
t� y
t � 2� � ··· � vn
t� y
t � n�

� �pert
t��pert, (4)

where x(t) is the position of the finger along the start-target axis at time t,
y(t) is the position of the finger perpendicular to the start-target axis at
time t, and �pert is the perturbation in the virtual finger (�1 cm on
perturbations trials and 0 on no-perturbation trials). The weights wi(t)

and vi(t) capture the strong correlations between fingertip positions at
successive points in time, as reflected in the smoothness of finger trajec-
tories. The weights wpert(t) and vpert(t) represent the residual trajectory
data (after accounting for autocorrelations) that can be attributed to
corrections for the perturbations. We refer to these as perturbation in-
fluence functions; they show the temporal evolution of subjects’ correc-
tions to perturbations. Since wpert(t) and vpert(t) are subtracted from the
finger coordinates positions predicted by the previous history of posi-
tions, they should be positive during epochs in which subjects generate
corrections for the perturbations. We set n � 6 for the analysis but found
that the results were insensitive to the exact value for n � 6.

To group each subject’s data for analysis, their trajectories were lined
up at the time at which the finger first reappeared from behind the
occluder. We recorded the rendered position of the fingertip at the time
of the call to the software draw—this was the fingertip extrapolated in
time by 25 ms to account for the delay in the draw cycle rather than the
true fingertip position at that time. Since the fingertip appears on the
monitor at this position �25 ms later, we used the time in software at
which the rendered fingertip position passed the edge of the occluder
plus 25 ms as the time the fingertip reappeared to subjects. We refer to
this as the perturbation time, because it is the first time at which the visual
effects of a perturbation appeared to an observer. The time variable t in
the regression Equations 3 and 4 was set to 0 at the perturbation time.

We smoothed the influence functions using a causal exponential filter
with a time constant of four frames (33.33 ms). The time constant was
chosen using a random subsampling cross-validation technique to find
the smoothing kernel that best fit the data. For each subject and condi-
tion, we repeatedly and randomly split trials into two equal-sized sub-
samples (training and validation). We fit perturbation influence
functions to the training subsamples, smoothed them by an exponential
filter with a specified time constant, and measured the mean-squared
error between the smoothed influence functions and the training sub-
samples. The time constant that gave the smallest mean-squared error for
predicting the validation subsample (averaged across random splits of
the data) was chosen as the best-fitting filter constant. This varied be-
tween subjects and conditions. A time constant of four frames was the
smallest best-fitting parameter across all subjects and conditions.

Experiment 2
Experiment 2 was equivalent to experiment 1 in every way with two
exceptions. First, the square buttons were replaced by crosses. The
crosses were 6 cm tall by 6 cm wide, with the arms of the crosses 1 cm wide
(equivalent to overlaying the horizontal and vertical rectangles used in
experiment 1). Second, perturbation trials included �1 cm shifts in the
position of the virtual finger in three rather than two directions—verti-
cal, horizontal, and diagonal (45° from the axis between the start position
and the target). This resulted in a total of 84 trials per block— 48 baseline,
unperturbed trials and 36 perturbed trials (2 per target shape/perturba-
tion direction/perturbation sign) and 504 trials per session.

The model
Rather than modeling a full, three-joint arm moving in three dimensions,
the optimization of which would be very difficult if not intractable, we
simulated a simplified model of a two-joint arm performing a planar
pointing task that was in all other respects the same as the task performed
by subjects. The model captures the principal nonlinearities of the arm as
they affect the pointing task, in particular, the mapping of torques in joint
space to movements in Euclidean space (in which the accuracy demands
are specified). Figure 2 shows the arm model. The arm is modeled as a
second-order nonlinear system (Hollerbach and Flash, 1982) as follows:

� � M
� ��̈ � C
�,�̇� � B�̇, (5)

where � is a two-dimensional vector of joint torques (shoulder and el-
bow), �, �̇, and �̈ are two-dimensional vectors of joint angles, angular
velocities, and angular accelerations, respectively, M(�) is an inertial ma-
trix, C
�,�̇� is a vector of coriolis forces, and B is a joint friction matrix.
Using these equations, the forward dynamics are given by the following:

�̈ � M
� ��1
� � C
�,�̇� � B�̇�; (6)
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M, C, and B are given by the following:

M
� � � � a1 � 2a2 cos�2 a3 � a2 cos�2

a3 � a2 cos�2 a3
� (7)

C
�,�̇� � �� �̇2
2�̇1 � �̇2�
�̇1

2 �a2 sin�2 (8)

B
� � � � b11 b12

b21 b22
� (9)

a1 � I1 � I2 � m2l1
2 (10)

a2 � m2l1s2 (11)

a3 � I2,

where b11 � b22 � 0.05 kgm 2s �1, b12 � b21 � 0.025 kgm 2s �1, m1 and m2

are the masses of the two links in the arm model (the upper arm and the
forearm), set to 1.4 and 1 kg, respectively, li is the length of link i (30, 33
cm), si is the distance from the center of mass for link i to the joint center
for the link (11, 16 cm), and Ii is the moment of inertia for link i (0.025,
0.045 kgm 2). These are the same model parameters used by Li and
Todorov (2004).

We discretized the forward dynamics given in Equation 6 to obtain the
following:

�̇ t	1 � �̇ t � �M
�t�
�1
�t � C
�t,�̇ t� � B�̇ t�, (12)

where � is the time step for the discretization (10 ms in our simulations).
The position, xt, and velocity, vt, of the finger are given by the

following:

xt	1 � xt � �vt (13)

vt � g
�t,�̇t�, (14)

where the mapping from joint space to velocities in Euclidean coordi-
nates is given by the following:

vt � g
�t,�̇t� � � � l1�̇1 sin�1 � l2
�̇1 � �̇2� sin
�1 � �2�
l1�̇1 cos�1 � l2
�̇1 � �̇2� cos
�1 � �2�

�.

(15)

Joint angles and velocities can be expressed as functions of position
and velocity in Euclidean space, �t � h(xt), �̇ t � q
xt,vt�. Inserting

these into Equations 12–14 gives a nonlinear state update equation as
follows:

� xt	1

vt	1
� � � I2�2 �

0 02�2
�� xt	1

vt	1
� � � 0

f
xt,vt,�t�
�, (16)

where �t is a two-dimensional vector of torques.
The control signal that generates torques at the joints was modeled as

the sum of planned and feedback components,

ut � lt � Lt�x̂t,v̂t

T, (17)

where �x̂t,v̂t

T is the estimate of the system of the position and velocity

of the finger, and Lt is a feedback gain matrix. To simulate motor
delays and low-pass filtering of the motor signal, we augmented the
state vector to incorporate a one-step delay (10 ms) and to implement
a second-order recursive filter using a set of coupled update equations
as follows:

ut 	 1
(1) � ut � �t, (18)

ut 	 1
(2) � ut

(1), (19)

�t	1

1� � �1 �

�

kmotor
��t


1� �
�

kmotor
ut

(2), (20)

�t	1 � �1 �
�

kmotor
��t �

�

kmotor
�t


1�, (21)

where �t is a signal-dependent Gaussian noise source, kmotor is the time
constant of the low-pass filter (set to 40 ms), and �t is the torque applied
to the joints.

We similarly modeled the visual sensory signal as a low-pass-filtered
copy of the state of the hand, delayed by two time steps (20 ms) and
corrupted by additive, state-dependent Gaussian noise. The update
equations for the augmented portion of the state matrix were given by the
following:

� xt	1

1�

vt	1

1� � � � xt

vt
� � �t, (22)

� xt	1

2�

vt	1

2� � � � xt

vt
�, (23)

� xt	1

3�

vt	1

3� � � �1 �

�

ksense
�� xt


3�

vt

3� � �

�

ksense
� xt


2�

vt

2� �, (24)

� xt	1

s�

vt	1

s� � � �1 �

�

ksense
�� xt


s�

vt

s� � �

�

ksense
� xt


3�

vt

3� �, (25)

where �t is a state-dependent Gaussian noise source, and ksense is the
time constant of the low-pass filter (set to 40 ms). Because of the
discretization of the dynamics, the model had an effective sensorimo-
tor delay of eight time steps (80 ms). The motor and sensory delays
were chosen based on simulations of the model to match the delayed
temporal response of human subjects (for details, see Results,
Modeling).

The augmented system is represented by the state vector,
Xt � �xt, vt, ut

(1), ut
(2), �t

(1), �t, xt
(1), vt


1�, xt
(2), vt

(2), xt
(3), vt

(3), xt
(s), vt

(s)]T. The
nonlinear state update equation is given by the following:

Xt	1 � AXt � �02, f(xt, vt, �t�, 024]T � lt � Lt
X̂t � X� t� � �t,

(26)

where f
xt,vt,�t) is the nonlinear function mapping the current position
and velocity of the finger and the joint torques to the velocity at the next
time step. The state noise is given by a vector containing both motor and
sensory noise terms, �t � �04,�t,06,�t,012


T(0n is an n-dimensional
vector of zeroes). Because of the augmentation of the state vector, lt is a
28-dimensional vector that is zero everywhere except in the fifth and
sixth elements, and the feedback gain matrix Lt is a 28 � 28 matrix that is

l 1

l
2

θ1

θ2

τ 1

τ 2

Figure 2. A schematic view of the two-joint arm model used for the simulations.
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zero everywhere except for the 2 � 4 submatrix L5:6,1:4. The matrix A is
given by the following:

A � � D 0 0
0 M 0
S1 0 S2

�, (27)

where D is the matrix form of Equation 16 and is given by the following:

D � � I2�2 �I2�2

02�2 02�2
� , (28)

where In � n is the n � n identity matrix and 0n � n is an n � n matrix of
zeros. M captures the motor delay and filtering and is given by the
following:

M � �
02�2 02�2 02�2 02�2

I2�2 02�2 02�2 02�2

02�2

�

kmotor
I2�2 �1 �

�

kmotor
�I2�2 02�2

02�2 02�2

�

kmotor
I2�2 �1 �

�

kmotor
�I2�2

�,

(29)

S1 and S2 implement the fixed sensory delay and the sensory filter, re-
spectively, and are given by the following:

S1 � �
I4�4

04�4

04�4

04�4

� ,

S2 � �
04�4 04�4 04�4 04�4

I4�4 04�4 04�4 04�4

04�4

�

ksense
I4�4 �1 �

�

ksense
�I4�4 04�4

04�4 04�4

�

ksense
I4�4 �1 �

�

ksense
�I4�4

�.

(30)

The observation model simply peels off the last four elements of the
augmented state vector (the low-pass-filtered, noisy visual estimates of
position and velocity),

yt � HXt, (31)

where H is a 4 � 28 matrix as follows:

H � � 04�24 I4�4 
. (32)

No noise is added to yt because the sensory noise has been incorporated
into the augmented state update model.

For a given control law, one can compute the mean trajectory using
the nonlinear update equation (Eq. 26) and linearize the system dy-
namics around the mean trajectory to derive a Kalman filter to esti-
mate the state of the hand. The linearized dynamics are given by the
following:

Xt	1 � X� t	1 � Jt
Xt � X� t� � lt � Lt
X̂t � X� t� � �t (33)

yt � HXt, (34)

where the state transition matrix Jt is given by the following:

Jt � � D1 D2 0
0 M 0
S1 0 S2

� . (35)

D1 and D2 represent the linearized dynamics and are given by the
following:

D1 � �
I2�2 �I2�2

�
	f

	xt
�
Xt�X� t

�
	f

	vt
�
vt�v� t

�, D2 � �
02�6 02�2

02�6
�

	f

	�t
�
�t��� t

�,

(36)

where
	f

	xt
is the Jacobian of f() with respect to the position of the finger,

	f

	vt
is the Jacobian of f() with respect to the velocity of the finger, and

	f

	�t

is the Jacobian of f() with respect to the torque applied to the joints, all
evaluated at the mean values for the relevant parameters at time t.

The optimal estimate of the finger state is given by the following:

X̂t	1 � X� t	1 � Jt
X̂t � X� t� � lt � Lt
X̂t � X� t� � Kt
yt � HX̂t�,

(37)

where Kt is the Kalman gain. This is given by the following:

Kt � Jt�t
eHT
H�t

eHT��1, (38)

where �t
e is the error covariance of the estimator (�t

e � E�
X̂t � Xt�

X̂t � Xt�

T]). This is given by the following:

�t	1
e � (Jt � KtH)�t

e(Jt � KtH)T � �t
�, (39)

where �t
� represents the covariance of the system noise, which is a com-

posite of the motor noise and the sensory noise,

�t
� � �

04�4 04�2 04�6 04�4 04�12

02�4 �t
� 02�6 02�6 02�12

06�4 06�2 06�6 06�4 06�12

04�4 04�2 04�6 �t
� 04�12

012�12 012�2 012�6 012�4 012�12

� , (40)

The motor noise was assumed to be proportional to the control signal, so
the covariance is given by the following:

�t
� � �i�1

2 Ci
ItIt
T � LtX� tX� t

TLt
T � Lt�t

X̂Lt
T�Ci

T, (41)

where

C1 � �
04�4 04�1 04�1 04�22

01�4 c 0 01�22

01�4 0 0 01�22

022�4 022�1 022�1 022�22

� ,

C2 � �
04�4 04�1 04�1 04�22

01�4 0 0 01�22

01�4 0 c 01�22

022�4 022�1 022�1 022�22

� . (42)

We set c � 0.06 based on a coarse search to find a value that gave endpoint
errors for the optimal controllers with approximately the same scatter as
those of subjects.

We used published psychophysical data on spatial localization and
motion acuity to parameterize the sensory noise model. Positional acuity
is inversely proportional to eccentricity; thus, it is well modeled by a noise
source with SD proportional to the radial position of the hand in retinal
coordinates (Levi et al., 1988; Burbeck and Yap, 1990; Whitaker and
Latham, 1997). Similarly, motion acuity, in both speed and direction,
varies with target speed. Motion discrimination thresholds are well fit by
a model in which the velocity components in both the direction of mo-
tion and the perpendicular direction are corrupted by a mixture of pro-
portional noise, whose SD is proportional to the speed of the motion, and
a constant noise component (Orban et al., 1985; De Bruyn and Orban,
1988).

For a given control law, we approximated the effects of state-
dependent noise by using the average fingertip position and motion at
each time to calculate the sensory noise covariance. We used results from
two-point interval discrimination studies to set the parameters for visual
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noise on position estimates (Burbeck, 1987; Burbeck and Yap, 1990;
Whitaker and Latham, 1997). The data from these studies are consistent
with a Weber fraction of 0.05 on position estimates beyond several de-
grees away from the fovea. This value is invariant to a large number of
properties of the target (Burbeck, 1987; Toet and Koenderink, 1988). The
resulting SDs (in meters) are given by the following:


t
x � 
t

y � 
0.0005 � 0.05	xt
2 � yt

2�. (43)

The constant additive term models a minimum SD in position estimates of
3� arc in the center of the fovea, which, for the viewing distance used in the
experiment equates to �0.5 mm (we used a small angle approximation in
treating position in tabletop coordinates as proportional to visual angle). We
multiplied the SD in Equation 43 by a factor of 0.25/�t so that it gives the
correct SD for an optimal estimator viewing a stimulus for 250 ms, the
display time used in the experiments measuring localization acuity (this
renders the noise model invariant to the particular time discretization used).

Results from speed and direction discrimination studies show a some-
what more complicated behavior than position perception. Up to speeds
of 64°/s (close to the peak velocity measured in our experiments), Weber
fractions for speed decrease to a minimum of 0.08 for viewing durations
of 500 ms (Mateeff et al., 2000). These results are consistent across a
number of studies and types of stimuli (Orban et al., 1985; De Bruyn and
Orban, 1988). Subjects’ threshold curves are well fit by a mixed constant
and proportional noise model in which the SD of visual estimates of
speed is given by the following:


t
v�

� 2�/s � 0.08vt
�. (44)

Using a small angle approximation to convert this to units of distance
along the tabletop (assuming an average viewing distance of 52 cm) gives
the following:


t
v�

� 1.8 cm/s 	 0.08vt
�. (45)

Direction discrimination thresholds behave in a qualitatively similar fashion
to speed discrimination thresholds, but when converted into units of speed
in a direction perpendicular to the path of motion, thresholds are lower by
more than a factor of 8. For the SD of velocity estimates perpendicular to the
direction of motion, therefore, we have the following:


t
v�

� 0.25�/s 	 0.01vt
�. (46)

Converting this to tabletop coordinates and adjusting for perspective
foreshortening, we have for the SD the following:


t
v�

� 0.35 cm/s 	 0.014vt
�. (47)

We scaled the parameters by a constant factor of 0.50/�t so that an
optimal estimator viewing a constant velocity stimulus for 500 ms would
give velocity estimates with SDs listed above. Using Equations 45 and 47,
we can compute the covariance of velocity estimates in Euclidean coor-
dinates as follows:

�t
v � � cos�t � sin�t

sin�t cos�t
�� 

t

v�

�2 0
0 

t

v�

�2 �� cos�t sin�t

� sin�t cos�t
�,

(48)

where �t is the angle between the direction of finger motion at time t

(�t � tan�1
vt

y

vt
x) and the x-axis. These expressions determine the sensory

noise covariance �t
�� for a given mean trajectory.

We used an iterative, conjugate gradient descent procedure to find the
control law that minimized the performance cost as follows:

ϒ
l●, L●� � �miss 	 �stop E�vT
2�. (49)

�miss is the probability that the fingertip will miss the target button (land
outside the bounds of the button at the end of the movement � time T ).
E�
vT
2
 is the expected squared velocity of the fingertip at the end of
the movement. It captures a constraint to stop at the end of the

movement. Strictly speaking, subjects did not have to decrease their
velocity just before hitting the target, since they pressed their fingers to
the table; however, subjects’ trajectories showed that their velocity in x
and y dropped to near 0 just before making contact with the table. In the
simulations reported here, we set the coefficient for the stopping velocity
cost to 0.5.

We can rewrite Equation 49 in terms of the means and covariances of
the finger position and velocity, xt and vt (the first four elements of the
augmented state vector), as follows:

ϒ
l●, L●� � �miss��
target

N(x� t,�T
x )dxdy � �stop(
v�T
2 � �T

v ), (50)

where the means and covariances are implicitly functions of l● and
L●N
x� t,�T

x ). is the multivariate Gaussian with mean x� t and covariance �T
x .

The first integral is simply the probability of the finger endpoint falling
within the target region. This is the only term in the objective function
that depends on target shape. The optimal control law is given by the
following:

�l●
opt, L●

opt] � arg min[ϒ(l●, L●�]. (51)

To calculate the expected cost of a given control law, �I●,L●�, one needs to
calculate x�T, v�T, �T

x , and �T
v . To compute x�T, v�T, we ran the nonlinear state

update equation in Equation 26 forward in time with the noise term, �t

set to 0. In the noiseless case, the error term, X̂t � X� t, is 0, and the
forward model becomes the following:

X� t	1 � AX� t � �02, f
x� t, v� t, �� t�, 024

T � lt, (52)

with x�0 � [0, 50]T, v�0 � [0, 0]T, ��0 � �0,0]T (in centimeters). To sim-
plify the computation of f
•�, we converted finger position and velocity
into joint space at each time step and used Equation 12 to update the joint
angular velocities before converting back to finger velocity. The resulting
mean trajectories were used to calculate the sensory noise covariance �t

�

at each time step.
The full state covariance matrix, �●

x , was computed using the linear-
ized form of the system update. The update equation is given by the
following:

�t	1
X � E�
Xt	1 � X� t	1�
Xt	1 � X� t	1�

T


� Jt�t
XJt

T � Lt�t
X̂Lt

T � Jt
�t
X̂ � �t

eX̂)Lt
T � Lt
�t

X̂ 	 �t
X̂e)Jt

T � �t
�,

(53)

where the covariance matrices for the state estimate and the estimation
error are given by the following:

�t	1
X̂ �(Jt � Lt)�t

X̂(Jt � Lt)
T � Kt�t

eKt
T � 
 Jt � Lt��t

X̂eKt
T

� Kt�t
X̂e(Jt � Lt)

T (54)

�t	1
X̂e ��t	1

eX̂ T � 
 Jt � Lt��t
X̂(Jt � KtH)T � KtH�t

e(Jt � KtH)T

(55)

�t	1
e � (Jt � KtH)�t

e(Jt � KtH)T � �t
�. (56)

Iterating Equations 53–56 forward in time gives �●
X, from which we

extracted �T
x and �T

v (the top left 4 � 4 submatrix of �T
x ). The expected

cost associated with the control law was computed by inserting x�T, v�T, �T
x ,

and �T
v into Equation 50. For each condition of the experiment, we used

a coordinate, conjugate gradient descent algorithm to solve for the opti-
mal control law associated with the target button shape in which we
iteratively performed conjugate gradient descent on l● and L●. We iter-
ated the descent algorithm until the expected cost reached an asymptote
(the expected cost remained constant to within a proportional tolerance
of 0.00001 between the line search steps of the conjugate gradient descent
algorithm).
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In the simulations reported in this paper, we assumed that subjects’
fixated the average endpoints of the trajectories. Finger position was
expressed in retinal coordinates with the origin at the fixation point. We
initialized the covariance matrices to the following:

�t
X � �t

e � � 0.42 I2�2 02�26

026�2 026�26
� (57)

to reflect an initial 4 mm scatter in starting positions around the start
point. The simulated start position of the finger was at [0,50]T and the
targets were assumed to be centered around [�30,50]T (all units in cen-
timeters)— expressed in shoulder coordinates. Note that these initial
conditions effectively assume that the subject begins with an initial esti-
mate of the finger at the start position, but with the true position of the
finger scattered around the start with a SD of 4 mm.

We simulated the performance of the optimal controllers in both
noiseless and noisy conditions (with sensory and motor noise set to the
levels specified by the model parameters)—the former to compute aver-
age endpoints and feedback corrections in different experimental condi-
tions and the latter to compute measures of the temporal responses of the
controllers to perturbations comparable with those of subjects (i.e., per-
turbation influence functions). Data from the noisy simulations were
also used to cross-check the covariance matrices computed using the
linear approximation to the forward dynamics. In all conditions, the
average endpoints, corrections, and endpoint covariances estimated
from repeated runs of noisy simulations were almost exactly equal to
those estimated by iterating the update equations of the linearized system
forward in time.

To compute the average endpoints on unperturbed trials, we iterated
the nonlinear state update equation in Equation 26 forward in time from
the initial position with the noise term, �t set to 0, as described above for
computing X� t. To compute the average endpoints for perturbed trials,
the model was run forward in time and the sensory noise term was set to
�t � 0 for t � tpert and to �t � [�1,0,0,0]T or �t � [0,�1,0,0]T for t 

tpert, where tpert is the time at which the finger first reappears from behind
the occluder (in its perturbed position), as calculated from the mean
trajectory. X̂t was computed using the Kalman update equation given in
Equation 37 and the Kalman gains, Kt

opt, associated with the optimal
control law.

Simulations of noisy movements were run by adding independent
motor and sensory noise to the state at each time step drawn from zero-
mean, normal distributions with noise covariances given by �t

� and �t
�

computed from the mean positions and velocities of the model finger and
running the Kalman filter and state update equations forward in time.
Measurement noise in the Optotrak was simulated by adding indepen-
dent, zero-mean Gaussian noise with a SD of 0.025 mm to the sample
trajectories derived from the noisy simulations. The resulting “mea-
sured” trajectories were subjected to the same analysis as subjects’ data to
derive performance metrics. Since the means and covariances of move-
ment endpoints derived from the noisy simulations were within �1% of
those computed by propagating the system update equations in the
noiseless simulations, the latter are reported in the modeling section. The
trajectories generated in the noisy simulations were used to compute
perturbation influence functions for the optimal controllers to compare
the temporal responses of the controllers with those of subjects.

To model variability in movement duration, we computed optimal
controllers for movement times ranging from 680 to 800 ms in steps of 20
ms. We simulated the performance of these controllers and report the
average performance metrics (e.g., correction magnitudes) across the
seven simulated movement times. For the noisy simulations, we gener-
ated 1000 sample trajectories per movement duration and target shape
(200 each for the no-perturbation and the four perturbation conditions)
and used these to estimate perturbation influence functions for the op-
timal controllers.

Results
Experiment 1
Subjects’ mean reaction time from the start signal to the initiation
of movement was 244.9 � 12.7 (SE) ms. Movement times aver-

aged 733.1 � 4.7 (SE) ms. The average SD of subjects’ movement
times was 63 � 1. 0 (SE) ms. The distributions of finger endpoints
on unperturbed trials and subjects’ corrective responses to per-
turbations in the position of the virtual finger both provide in-
formation about subjects’ sensorimotor control strategies. Figure
3a shows scatterplots of a representative subject’s fingertip end-
points on unperturbed trials for the three target buttons used in
experiment 1. The patterns revealed in the scatterplots were con-
sistent across all eight subjects. Table 1 summarizes the average
distributions of endpoints across the eight subjects: the average of
subjects’ mean endpoint positions, the average of subjects’ SDs of
endpoints in the horizontal and vertical directions (defined rela-
tive to the start-target axis), and the average correlation coeffi-
cients between the x and y endpoint positions of the fingertip. As
shown in Figure 3, the mean endpoints differed for the three
target shapes. The mean endpoint was near the center for the
square button, but shifted downward for vertical rectangles and
to the right (toward the starting position) for horizontal rectan-
gles. The scatter of endpoints also differed for the three different
targets, being elongated in the long dimensions of the rectangular
targets. Both of these effects appear in the average data, as shown
in Table 1. The mean endpoint was 0.657 cm lower for the vertical
rectangle than for the square (T(7) � 3.52; p � 0.01) and was 1 cm
closer to the starting position for the horizontal rectangle than for
the square (T(7) � 4.97; p � 0.002). The SD of endpoint scatter in
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Figure 3. a, The scatter of endpoints on unperturbed trials for a representative subject in
experiment 1 for each of the three targets. The coordinate frame is aligned with the axis be-
tween starting and target positions. Ellipses represent twice the SD of endpoint positions. b,
Average magnitudes of corrections to 1 cm perturbations of the virtual finger for the three
button shapes. Corrections shown are in the direction of the perturbation. Perturbations parallel
to the axis between the start position and the target button are shown as horizontal arrows;
perturbations perpendicular to that axis are shown as horizontal arrows. Error bars indicate
SEMs.
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the vertical dimension for the vertical rectangle was approxi-
mately twice that for the square (T(7) � 4.3; p � 0.005). Similarly,
the endpoint scatter in the horizontal dimension for the horizon-
tal rectangle was approximately twice that for the square (T(7) �
8.9; p � 0.00005). No other differences were significant; that is,
mean endpoint positions and SDs were not significantly different
between rectangles and squares along the dimensions in which
the figures were the same size (e.g., the vertical dimension for
horizontal rectangles and squares).

The difference in mean endpoints would seem to reflect a
shape-dependent difference in the ballistic component of sub-
jects’ motor plans, that is, the points to which they effectively
aimed. Moving to a nearer endpoint position for the horizontal
rectangular target shortens the total movement distance and
hence is energetically less costly, without causing significantly
more misses. The lower endpoint for the vertical rectangular tar-
gets may result from a similar principle, as subjects’ movement
trajectories did curve toward the observer and then back up again
(when projected onto the table), so that a lower endpoint may be
less energetically costly. We will take up these points again in the
modeling section, where we show that an optimal controller
shows qualitatively similar behavior.

The difference in endpoint scatter could result from two
causes. First, as hypothesized here, subjects may have applied less
feedback control in dimensions in which endpoint errors are less
costly. This would have led to increased variance in endpoints in
those dimensions. Alternatively, they may have allowed more
noise in endpoint planning, so the shaping of endpoint scatter
does not unambiguously support the hypothesis that humans
shape their feedback control laws to the spatial accuracy con-
straints of a task. The stronger prediction of the adaptive feedback
control hypothesis is that subjects would have corrected less for
perturbations in the visual position of the finger along the spatial
dimension in which the rectangular targets are elongated.

Table 2 summarizes the full two-dimensional correction vec-
tors for each of the perturbations and target shapes, as given by
Equations 1 and 2. An easy way to visualize the vectors is as
subjects’ average correction vector to a negative perturbation (a
vertical perturbation “down” or a horizontal perturbation to the
“left” toward the target). Flipping the sign of the vector would
give the average correction for a positive perturbation. As ex-
pected, by far the largest component of the correction vectors is in
the direction of the perturbation. Figure 3b shows a summary
plot of subjects’ endpoint corrections in the direction of the per-
turbations for the three different target shapes.

The only significant differences between subjects’ corrections
for perturbations with the rectangular targets and those with the
square targets are in the long directions of the rectangular targets.
Subjects corrected less for vertical perturbations of the finger
when the target is a vertical rectangular than when the target is
square (T(7) � 6.98; p � 0.0005). Corrections to horizontal per-
turbations for the two targets do not differ significantly. By con-
trast, subjects corrected less for horizontal perturbations of the
finger when the target was a horizontal rectangle than when it was

square (T(7) � 6.76; p � 0.0005). Corrections to vertical pertur-
bations did not differ significantly. Similarly, subjects’ correc-
tions to perturbations in the direction of the long axis of the
rectangles were significantly different from their corrections to per-
turbations in the direction of the short axis (for vertical rectangles,
T(7) � 7.11, p � 0.0005; and for horizontal rectangles, T(7) � 5.73,
p � 0.001). No other differences were significant. Treating these
values as a measure of the overall feedback gain of the system, we find
that subjects’ reduced the feedback gain in the direction of lowered
accuracy demands by �40% relative to the feedback gain in the
direction of higher accuracy demands (the short axis of the
rectangles).

The results so far reflect the overall effect of subjects’ changes
in feedback control strategies as reflected by the endpoints of
their movements. They do not indicate whether subjects adjusted
their feedback control laws for different shapes throughout their
movements or simply at the end, where the corrections were most
prominent. Figure 4 shows example kinematic data for two sub-
jects in the square target/horizontal perturbation condition. Fig-
ure 4, a and b, shows the two subjects’ velocities measured in the
principal direction of movement—parallel to the line between
the start and target positions (the same direction as the perturba-
tions)—for each of the no-perturbation, positive-perturbation,
and negative-perturbation conditions. Little significant effect of
the perturbations can be discerned from this data. Velocity pro-
files perpendicular to the main movement direction for vertical
perturbation conditions appear to be more reliable indicators of
subjects’ responses to the perturbations (Fig. 5).

Using kinematic data like that shown in Figures 4 and 5 to
analyze the temporal dynamics of subjects’ responses to pertur-
bations in the main direction of movement has a number of
significant problems. First, even mean velocity profiles show a
significant amount of scatter across conditions, because of the
small numbers of trials per condition, the large variance across
trials in individual subjects’ movement kinematics, and signifi-
cant differences in timing created by variance in movement
duration and variance in when the start of a movement was
triggered. These effects are particularly deleterious to the ve-
locity profiles parallel to the path between the start and the
target positions. Making the timing analysis more difficult is
that perturbations were not initiated at fixed times relative to
movement start, but rather became visible to subjects at a fixed
distance from the target—the timing of which varied from
trial to trial.

Table 1. Means and average covariances of subjects’ endpoints on unperturbed trials for the three targets in experiment 1

(�x, �y) � SE (cm) (
x, 
y) � SE (cm) � � SE

Square (0.167, �0.177) � (0.027, 0.076) (0.309, 0.306) � (0.029, 0.031) �0.180 � 0.040
Vertical (0.070, �0.834) � (0.042, 0.241) (0.315, 0.611) � (0.024, 0.083) �0.026 � 0.017
Horizontal (1.167, �0.206) � (0.205, 0.054) (0.627, 0.305) � (0.034, 0.019) �0.011 � 0.014

SDs and correlation coefficients are averages across subjects. x is taken to be in the direction of this axis, and y is taken to be perpendicular to the axis. Significant differences between subjects’ endpoint distributions for cross targets and
subjects’ endpoint distributions for vertical and horizontal buttons (means and SDs) are highlighted in bold.

Table 2. Mean corrections to perturbations for the three different target buttons

Horizontal perturbations
(��x, ��y) � SE (cm)

Vertical perturbations
(��x, ��y) � SE (cm)

Square (0.795, 0.099) � (0.029, 0.007) (0.026, 0.782) � (0.015, 0.025)
Vertical (0.777, 0.147) � (0.027, 0.026) (0.009, 0.463) � (0.007, 0.054)
Horizontal (0.487, 0.031) � (0.043, 0.012) (0.056, 0.731) � (0.020, 0.029)

Horizontal perturbations refer to perturbations parallel to the axis between the starting position and the target
position; vertical perturbations refer to perturbations perpendicular to this axis. x is taken to be in the direction of this
axis, and y is taken to be perpendicular to the axis. Significant differences between the corrections for rectangular
targets and the square targets are highlighted in bold.
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To avoid the problems involved in av-
eraging subjects’ kinematics over trials, we
developed a more sensitive method for
analyzing the temporal dynamics of sub-
jects’ corrective responses to perturba-
tions in the visual stimulus (Saunders and
Knill, 2004). The fundamental observa-
tion behind the method is that the strong
temporal correlations in subject’s move-
ments allow one to linearly predict the
position of the finger from previous posi-
tions. Because the predictive filter is rela-
tively invariant to small shifts in time and
small changes in temporal scale, one can
derive an accurate predictive filter from a
collection of movements that may be time
shifted (e.g., because of variance in esti-
mates of start time) or scaled (e.g., be-
cause of variance in overall speed of
movements) in unknown ways relative to
one another. Moreover, the predictive fil-
ter works well on movements with very
different overall trajectories—it predicts
positions to within the accuracy limits of
the Optotrak. To analyze subjects’ correc-
tive responses to perturbations, we first
temporally shifted a subject’s trajectories
so that they lined up in time at the time at
which the finger first appears from behind
the occluder. This ends up shifting trajec-
tories by �3 Optotrak frames (25 ms SD).
We then derived the best linear predictive
filter from trials containing no perturba-
tions. Beginning with the time at which
subjects’ fingers appear from behind the occluder, we applied the
predictive filter to trajectories on perturbation trials and correlate the
residual errors in the predictions at each time step with the pertur-
bations on those trials. The result is what we refer to as a “perturba-
tion influence function” (for details, see Materials and Methods).

Figure 6 shows perturbation influence functions calculated from
individual subjects’ kinematic data shown in Figures 4 and 5. Partic-
ularly for the horizontal perturbations, the influence functions pro-
vide a much more sensitive measure of the subjects’ responses to the
perturbations. Figure 7 shows functions for all six experimental con-
ditions averaged across subjects. The shapes of the influence func-
tions for rectangles and squares are remarkably similar for
perturbations in the direction of the short axis of the rectangle, which
is equal to the width of the square. They differ, however, for pertur-
bations in the direction of the long axis of rectangles (Fig. 7a, red
curve; b, green curve). This reflects the smaller corrections made to
those perturbations. Visual inspection suggests that the differences
between corrective responses to rectangles and squares shows up
early in the response for perturbations perpendicular to the axis of
movement and later for perturbations parallel to the axis of move-
ment. Figure 7, c and d, shows subjects’ average influence func-
tions for the two different rectangle targets with SE bars, and
Figure 7, e and f, shows the average differences between the
two influence functions with SE bars.

We estimated subjects’ response times to correct for pertur-
bations from the grouped set of influence functions in each of the
six target shape/perturbation direction conditions. We marked
the response time as the time at which the average perturbation
influence function exceeded 0 by 2 SEMs and stayed above that

threshold. Figure 8a shows response times estimated for each of
the conditions in the experiment. Response times varied from
117 ms for vertical perturbations and square targets to 192 ms for
vertical perturbations and vertical targets. We applied the same
analysis to the differences in influence functions for vertical and
horizontal rectangular targets to find the time at which subjects’
corrective responses diverged for the two targets. Figure 8b shows
the results—167 ms for vertical perturbations and 283 ms for
horizontal perturbations. Both the reaction time of subjects’ re-
sponses to perturbations and the time at which differences in
corrections appear are necessarily conservative estimates, in part
because of the low slope of the initial response relative to the noise
and partly because reaction times are relative to the time at which
the very tip of the finger first appears from behind the occluder,
when visual information form the emerging finger is likely to be
masked by the occluder. The results show that for vertical pertur-
bations, subjects adjusted their feedback control strategies for a
majority of the movement duration to match the accuracy de-
mands imposed by differently shaped targets. For the vertical
perturbations, the earliest significant corrective responses (for
square targets) appear �352 ms after movement initiation, less
than halfway in time through the movement (the finger re-
emerges from behind the occluder 240 ms after movement onset,
on average, and subjects’ average movement time was 750 ms).
Moreover, the time at which subjects’ corrective responses to
vertical perturbations for horizontal and vertical rectangles be-
gins to diverge significantly is only 8 ms after the earliest time
that the responses themselves become significant. Subjects’
average influence functions diverge much later for horizontal
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Figure 4. Example velocity profiles for two subjects pointing to the square target. a and c show subjects’ average fingertip
velocities for three perturbation conditions—no perturbation; positive 1 cm perturbation in the principal direction of movement,
parallel to the path between the start position and the target; and negative 1 cm perturbation in the same direction. Velocities
shown are the velocity components parallel to the path. b and d show the average differences in velocities for positive and negative
perturbations. The gray area represents the SEM difference. The transparent gray rectangles represent the time that subjects’
fingers were behind the occluder for the average trajectory. The true occlusion times varied from trial to trial.
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perturbations (�110 ms after the initial corrections became
significant).

To test the hypothesis that differences in subjects’ corrections
appear soon after subjects begin correcting for perturbations, we
compared the average values of subjects’ perturbation influence
functions between 150 and 200 ms after its reappearance across
different target shapes. Figure 9 shows the results for both vertical
perturbations (Fig. 9a) and horizontal perturbations (Fig. 9b). A
one-way repeated-measures ANOVA showed a significant effect
of target shape on the average values of the influence functions for
vertical perturbations (F(2,7) � 9.444; p � 0.0025) but not for
horizontal perturbations (F(2,7) � 2.492; p � 0.119).

Experiment 2
The second experiment was designed to test whether or not the
feedback control law used by the CNS to control pointing move-
ments is approximately linear. A linear feedback controller cou-
pled to linear dynamics give rise to endpoint corrections to
perturbations in visual feedback in one direction that are express-
ible as a predictable linear combination of the corrections to
perturbations in other directions. Although dynamics of the arm
are not linear—the state of the fingertip is a nonlinear function of
the muscle commands (in our simplified model, it is a nonlinear
function of torque commands sent to the joints), a feedback con-
troller that linearly maps feedback error signals to corrective mo-
tor commands will appear approximately linear in the
corrections evidenced in the fingertip kinematics. This is because
the corrections that appear in response to perturbations are small
changes overlaid on the underlying feedforward control signal

(or on the average control signal) and the
forward dynamics of the arm are smooth
enough to be treated as locally linearly.
Thus, the hypothesis that the feedback
control law is linear leads to the following
behavioral prediction. If we know the av-
erage corrections to perturbations in di-
rections e1 and e2, average corrections to a
perturbation in a direction, e3 � w1e1 	
w2e2, a linear controller will lead to cor-
rections �I with the linear relationship, �3 �
w1�1 	 w2�2. Furthermore, this rela-
tionship should hold for the perturba-
tion influence functions (which are
linear functions of the fingertip kine-
matics and the perturbations).

Based on the results of experiment 1
and of the modeling, humans optimize
their feedback controller so as to decrease
the feedback gain in directions that ac-
commodate larger endpoint errors. For
the cross target, one could, in theory, de-
sign a nonlinear feedback control law that
applies small corrections in the vertical
and horizontal directions (where correc-
tions are less needed), but large ones in the
two diagonal directions. This would be
impossible with a linear control law. The
results of experiment 2 indicate that sub-
jects did not use such a complex adaptive
control law strategy, but rather are approxi-
mately linear, both for cases in which a lin-
ear control law may be optimal and the case
(the cross target) when it is not.

Figure 10a shows subjects’ corrections to the three different
finger perturbations for each of the three targets. The figure only
shows the component of the two-dimensional correction vector
along the axis of the perturbation. Table 3 summarizes the full
two-dimensional correction vectors. Notably, corrections to all
three perturbations are high for the cross, although the horizontal
component of subjects’ corrections to horizontal perturbations is
significantly smaller than the diagonal component of their cor-
rections to diagonal perturbations (T(7) � 6.517; p � 0.0005).
The vertical component of subjects’ corrections to vertical
perturbations were not significantly different from the diago-
nal component of their corrections to diagonal perturbations
(T(7) � 2.310; p � 0.05). The horizontal component of sub-
jects’ corrections to horizontal perturbations for horizontally ori-
ented rectangles was significantly less than for crosses (T(7) � 6.070;
p�0.001). Similarly, the vertical component of subjects’ corrections
to vertical perturbations for vertically oriented rectangles was sig-
nificantly less than for crosses (T(7) � 8.116; p � 0.0001). This
mimics the differences found between rectangles and squares
in experiment 1.

The overall picture that emerges is that subjects shaped their
control laws for the rectangles as they did in experiment 1— de-
creasing the feedback gain in the direction of least required accu-
racy. For the cross targets, they appear to have shaped the control
law to correct slightly less in the horizontal direction than the
vertical direction—almost treating the cross as a slightly elon-
gated, horizontal rectangle. Looking at projections of subjects’
corrections onto the axes of perturbation, however, does not give
a full picture of their corrective behavior. By looking at the full
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Figure 5. Example velocity profiles for two subjects pointing to the square target. a and c show subjects’ average fingertip
velocities for three perturbation conditions—no perturbation, positive 1 cm perturbation perpendicular to the path between the
start position and the target, and negative 1 cm perturbation perpendicular to the path. Velocities are in the direction perpendic-
ular to the path. b and d show the average differences in perpendicular velocities for positive and negative perturbations. The gray
area represents the SEM difference. The transparent gray rectangles represent the time that subjects’ fingers were behind the
occluder for the average trajectory. The true occlusion times varied from trial to trial.
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two-dimensional correction vectors, we
can better see whether corrections to per-
turbations in the diagonal direction re-
flect linear superpositions of corrections
to the component perturbations in the x
and y directions.

Figure 10b shows plots of subjects’ av-
erage correction vectors as measured for
the diagonal perturbations for all three
target shapes (Table 3 summarizes sub-
jects’ average corrections for the different
target shapes and perturbation direc-
tions). Since the diagonal perturbations
were in the direction (0.707, 0.707) and
(�0.707, �0.707), a linear control law
would predict that the two-dimensional
correction vector obtained from Equation
1 for the diagonal perturbations would be
related to the correction vectors for verti-
cal and horizontal perturbations by the
relationship, �xdiag � 0.707�xhoriz 	
0.707�xvert. Superimposed on the graph
are plots of the predicted correction vec-
tors. The figure clearly shows no signifi-
cant difference in the measured and
predicted corrections. It also shows that
corrections to diagonal perturbations are
not all concentrated along the 45° diago-
nal of the perturbation axis. In particular,
subjects’ average correction vectors for
horizontally oriented rectangles and
crosses are rotated toward the vertical rel-
ative to the average correction vectors for
vertically oriented targets. This follows from the apparent linear-
ity of the control law—subjects corrected more for the horizontal
component of the diagonal perturbations than for the vertical
component for vertically oriented rectangles. Similarly, for hori-
zontally oriented rectangles and crosses, subjects corrected more
for the vertical component of the perturbations.

Subjects’ behavior as reflected by their overall corrections
measured at the end of their movements was reflected in their
online behavior as well. Figure 11, a and b, shows perturbation
influence functions computed in the x and y directions for the
horizontal and vertical perturbations, respectively (as shown in
Table 3, very small proportional corrections appear in the or-
thogonal directions for these perturbations—these are not shown
here). The perturbation influence functions are qualitatively sim-
ilar to those in experiment 1, with subjects responses to pertur-
bations for the cross appearing similar to their responses to
perturbations for the square in experiment 1. The one difference,
reflecting the pattern in the endpoints, is that subjects corrected
somewhat less online for horizontal perturbations for the cross
than for the vertical rectangle. Similarly, the linearity in the end-
point corrections appears to hold for the whole pattern of online
corrections. Figure 11, c and d, shows subjects perturbation in-
fluence functions computed from their corrections in the x and y
directions for diagonal perturbations along with the influence
functions predicted from a linear sum of the influence functions
derived from the horizontal and vertical perturbations.

The scatter of subjects’ endpoints on unperturbed trials re-
flects a pattern that would appear from effectively treating the
crosses as slightly elongated horizontal rectangles. Figure 12
shows a representative example of one subjects’ endpoint scatter

for the three target buttons. Table 4 shows the average endpoints
and SDs of subjects’ scatter in the x and y dimensions. Of partic-
ular note is that the scatter is elongated horizontally for the hor-
izontal rectangle (as in experiment 1), similarly, but less so for the
cross, and vertically for the vertical rectangle. The differences in
endpoint scatter that were significantly different from the cross
are shown in bold in Table 4. Although the average horizontal
scatter appears somewhat larger for the cross than the vertical
rectangle, the difference did not reach significance. This raises the
possibility that the CNS could potentially use a nonlinear control
law of the type that would be optimal for the cross—if sufficiently
pressed to do so— but subjects’ are unable or simply choose not
to optimize a complex cost function shaped to the accuracy de-
mands of the cross. In the context of the current experiment, it
may be that, although the CNS can efficiently adapt to different
target shapes on a trial-by-trial basis by linearly combining sim-
ple control laws, the task demands preclude computing and using
a more complex control law matched to the crosses. Given the
low motor variability demonstrated by subjects (relative to target
size), the associated reduction in cost would likely be minimal.

Modeling
To understand how task demands shape feedback control strate-
gies in the experimental task, we simulated the performance of
optimal controllers derived for the different target shapes used in
experiment 1 for a simplified model of the human arm. Optimal
controllers are defined as those that minimize the expected (av-
erage) value of a cost function. The cost function coupled with
the dynamical system model and the noise assumptions for the
system determine the form of the optimal controller for a task
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Figure 6. Perturbation influence functions calculated for the same subjects and conditions whose kinematics are shown in
Figures 5 and 6. SEs shown in gray were calculated by bootstrap. We resampled the trials used to compute each influence function
and calculated the SD of the resulting bootstrapped estimates of the influence functions. a, b, Influence functions calculated for
horizontal perturbations and square targets from the kinematic data shown in Figure 5. c, d, Influence functions calculated for
vertical perturbations and square targets from the kinematic data shown in Figure 6.
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(Todorov and Jordan, 2002). In our simulations, we asked
whether a simple performance cost (maximizing the probability
of hitting a target) was enough to account for the qualitative
behavior shown by subjects; in particular, whether optimal con-
trollers derived for each target shape show the measured shape-
dependent differences in feedback gain.

Although most motor control models based on optimal con-
trol theory impose some form of energy or smoothness constraint
(Flash and Hogan, 1985; Uno et al., 1989) (no. 3220), perfor-
mance costs alone may be enough to shape control laws to match
those found in humans (Harris and Wolpert, 1998). Feedback
control can, in theory, induce both kinds of cost. First, in a noisy
system, feedback corrections necessarily make individual move-
ments less smooth and add to the force output or energy expen-
diture of the system. Thus, high feedback gains will add to the
subjective cost of a controller. Less obvious are possible deleteri-
ous effects created by the proportional noise that accompanies
corrective signals. The added noise is generally overweighed by
the fact that feedback corrects for the effects of noise in the sys-

tem; however, in a nonlinear plant, noise
created by the signals generated to correct
for errors in one dimension can leak into
the movement in other dimensions. Be-
cause hand movements are generated by
torques created at rotary joints by mus-
cles, noise created by corrective signals for
errors in one spatial dimension will affect
the movement of the end-effector in both
dimensions. When a task requires greater
accuracy in one dimension than another,
this nonlinear effect can theoretically cre-
ate a situation in which feedback correc-
tions for errors that do not need to be
corrected (e.g., in the vertical direction for
the vertically oriented targets in the exper-
iment) can lead to greater variance in the
dimension in which high accuracy is
needed (e.g., the horizontal direction for
the same targets). The end result is that a
controller with high feedback gain for
sensory signals of errors in the spatial di-
mension demanding less accuracy may
lead to worse average performance than
one with lower feedback gain for those
signals.

We derived optimal controllers for
each of the targets used in experiment 1
using a cost function that only contained
objective performance terms, that is, that
penalized misses and high endpoint veloc-
ities, but not the force output of the con-
troller. The only free parameters of the
model that we adjusted to match human
performance were the sensory and motor
delays, the coefficient of the proportional
motor noise and the coefficient, �stop, that
determined the relative contribution of
endpoint accuracy and stopping velocity
to the cost. We included a 10 ms motor
delay and a 20 ms sensory delay in the
models (see Materials and Methods) to
match the temporal profile of subjects’
performance (discussed in more detail

below). We set the coefficient of proportional motor noise to 0.06
to approximately match the variance of subjects’ endpoints for
the square targets and we set �stop � 0.5. Although somewhat
arbitrary, this value gave average endpoint corrections qualita-
tively similar to subjects. Changing this value has a somewhat
complex effect on the models’ performance, although the quali-
tative pattern of endpoint corrections remains the same for a
large range of values (e.g., setting �stop � 0.1 leads to slightly
greater corrections for square targets and slightly less correc-
tions for rectangular targets).

To capture the variability in movement duration shown by
subjects, we computed and simulated the performance of seven
optimal controllers for movement durations ranging from 680 to
800 ms in steps of 20 ms (approximately the mean of subjects’
movement times � 1 SD). All performance metrics are averages
of those derived from controllers derived for the different move-
ment durations.

Figure 13 shows the main performance features of the control-
lers derived for each of the three target shapes. The proportional
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Figure 7. Perturbation influence functions averaged across the eight subjects for the three button shapes. a, Vertical pertur-
bations (perturbations perpendicular to the axis between the start and target positions). b, Horizontal perturbations (perturba-
tions parallel to the axis between the start and target positions). c, d, Same plots for horizontal and vertical rectangle conditions
with error bars (SEs of the between subjects’ means) plotted in gray. e, f, Average within subject differences in the influence
functions shown in c and d with error bars in gray.
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magnitude of each controller’s corrections to vertical and hori-
zontal corrections shows the same qualitative pattern as subjects
in experiment 1 (Fig. 3). The optimal controller for the vertical
rectangles corrects significantly less for vertical perturbations in
sensory feedback than does the optimal controller for horizontal
or square targets. Similarly, the optimal controller for horizontal
rectangles corrects significantly less for horizontal perturbations
of visual feedback than does the optimal controller for vertical or
square targets. These changes in feedback gain lead to changes in
the error covariance of the models’ endpoints that qualitatively
mimic those of subjects. The SDs of endpoints in the long dimen-
sions of rectangular targets are approximately twice the SDs of
endpoints in the same dimensions for the square targets.

We earlier argued that noise considerations for a system with
a nonlinear mapping of motor commands to endpoint position
like the human arm could drive the system to decrease the feed-

back control gain for sensory error signals in stimulus dimen-
sions that did not require high accuracy. This is based on the
intuition that proportional noise in torque commands generated
to correct for errors in one dimension will leak into the other
dimension. To test whether this in fact occurs, we compared the
endpoint covariance for the optimal controller derived for the
square target (which maximizes feedback gain in both vertical
and horizontal dimensions) with the endpoint covariance of the
optimal controllers derived for the horizontal and vertical targets,
respectively. Table 5 shows the SDs of endpoints for the three. As
predicted, the SDs of endpoints in the direction of the short di-
mensions of rectangular targets is larger for the optimal control-
ler derived for the square target than it is for the optimal
controllers derived for the rectangular target shapes. More gen-
erally, as shown in Figure 13a, the optimal controllers shape the
error covariances of the endpoints to match the shapes of the
targets; that is, the optimal controllers for rectangular targets
trade off variance in the constrained dimension for variance in
the unconstrained dimension.

To compare the temporal response properties of the model
with that of human observers, we simulated running the optimal

1 2 3 5 6 7
0

50

100

150

200

250
 R

es
p

o
n

se
 t

im
e 

(m
se

c.
)

 Condition

Condition

1 2
0

50

100

150

200

250

300

350

 D
iv

er
g

en
ce

 t
im

e 
(m

se
c.

)

 Condition comparison- -
Condition comparison

a

b

Figure 8. a, Response times estimated the collection of all subjects’ influence functions for
the six target shape and perturbation direction combinations. Response times were estimated
as the point at which the average influence functions exceeded 0 by �2 SEs and remained
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perturbation directions using the same criterion (see Fig. 5e,f ). Error bars show SEs estimated
from a bootstrap procedure in which response times were estimated using the above procedure
for 1000 random draws, with replacement, of the eight influence functions derived for each
subject.
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Figure 9. The average magnitude of subjects’ perturbation influence functions between 150
and 200 ms after the finger reappeared from behind the occluder. a, Results for vertical pertur-
bations. b, Results for horizontal perturbations. Error bars indicate SE.
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controllers in the conditions of experiment 1 by running the
controllers with motor and sensory noise and “measured” trajec-
tories by adding simulated Optotrak measurement noise to the
resulting finger trajectories, as described in Materials and Meth-
ods. A total of 1000 trials was run for each target shape and at each
of the seven durations simulated (200 for each of the no-
perturbation condition and the four perturbation conditions).
The resulting trajectories were analyzed in the same way as sub-
jects’ trajectories to compute perturbation influence functions
for each perturbation and each target shape. Figure 14 shows the
resulting influence functions. They replicate subjects’ perfor-
mance (compare with Fig. 7) in several important respects. First,
they show the same delays that appear in subjects’ influence func-
tions; second, differences in the influence functions appear early
in movements; third, the perturbation influence functions for
perturbations in the principal direction of movement increase
more slowly early in the response than do the influence functions

derived for perturbations perpendicular to the principal direc-
tion. This replicates similar behavior found previously (Saunders
and Knill, 2005) and occurs despite the fact that the controller
contains no structural distinction between control in one direc-
tion or another—it arises from the dynamics and statistics of the
movements and of the sensory feedback.

Although the optimal controllers show a clear decrease in
variance in one spatial dimension as a result of reducing feedback
gain in the other, this is not well reflected in subjects’ data. Sub-
jects show no significant change in endpoint variance along the
constrained dimension when they reduce feedback gain in the
other, unconstrained dimension. Thus, they achieved no net per-
formance improvement from the change in feedback policies
across shapes. Given the uncertainty in our estimates of endpoint
variance (see Table 1), the small changes predicted by the optimal
controllers is within or near the limits of uncertainty in our esti-
mates of endpoint variability; thus, it is difficult to say much
about this difference in effects. Any small effects present would be
further masked by other sources of constant noise in subjects’
performance, variance attributable to variance in finger pose and
placement of the finger pad at time of contact. Still, the lack of
significant effects of the kind predicted provides weak evidence
that the CNS is not shaping its feedback control law based on
accuracy demands.

The performance metrics of the optimal controllers differ
from that of subjects in several other regards. First, the optimal
controllers for the square target correct somewhat more for per-
turbations than do subjects, whereas the optimal controller for
the horizontal rectangles corrects less for horizontal perturba-
tions than do subjects. Although such differences are potentially
interesting, we should note that the absolute magnitude of cor-
rections is greatly influenced by a number of model parameters
about which we have limited information. Increasing sensory
noise, for example, decreases the corrections of the models. In-
creasing the initial uncertainty about the position of the finger
and increasing the motor noise have the opposite effect—leading
to increased correction magnitudes. All of these effects arise nat-
urally from the behavior of the Kalman filter that estimates finger
state from sensory information—it gives more weight to incom-
ing sensory information as the uncertainty of the sensory infor-
mation decreases or the uncertainty of the internal estimate of
hand state increases. Izawa and Shadmehr (2008) showed that
humans are sensitive to these kinds of changes—subjects correct
less for online shifts in target position when the uncertainty in the
sensory information about the final target location is high than
when it is low (the effect of online sensory uncertainty) and more
for online shifts in target position when the uncertainty in the
sensory information about the initial target location is high than
when it is low (the effect of initial estimation uncertainty).

Another pattern that appears in human behavior that is stron-
ger in the optimal controllers is the shift in mean endpoints away
from the center for the rectangular targets. The optimal control-
lers shift their mean endpoints for horizontal targets toward the
starting position more than subjects did. This results from the
stopping cost term, as shorter movements lead to lower endpoint
velocity variances. Although we can in theory search for the pa-
rameter settings that quantitatively match subjects’ data, it would
seem premature given the range of possible accounts for the dif-
ference (e.g., subjects may effectively incorporate a tighter error
bound on endpoints than the actual sizes of the targets). A more
striking difference is that the optimal controllers for vertical tar-
gets shift their mean endpoints away from the simulated subject,
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Figure 10. a, Average endpoint corrections for perturbations in experiment 2, expressed as
a proportion of the perturbation. Corrections shown here are projections of the two-
dimensional correction vectors onto the axis of the perturbation. Error bars indicate SE. b,
Two-dimensional plot of subjects’ average correction vectors in response to diagonal perturba-
tions as calculated from Equation 1. This should be read as subjects’ corrections to a perturbation
of the finger by [�0.707, �0.707] (in centimeters). Since responses to positive and negative
perturbations are averaged, the negative of these vectors would reflect subjects’ average cor-
rections to perturbations of the finger of [0.707, 0.707]. The solid lines show the measured
correction vectors. The dashed lines show the corrections vectors predicted by a linear sum of
the corrections to vertical and horizontal perturbations. Ellipses centered at the ends of the
vectors are SE covariance ellipses.
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whereas subjects show a small shift in the
opposite direction. One possible account
for this is that subjects incorporate an en-
ergy cost, which our simulations show
leads to a shift in same direction as sub-
jects; however, other accounts are possi-
ble. When we optimized subjects’ eye
fixation positions along with the control
law, we found that the optimal fixation is
significantly shifted in the same direction
as those shown in subjects’ finger end-
points (e.g., toward the starting location
in the horizontal target condition). This is
correlated with a similar shift in average
endpoints for the controllers—an effect
that derives from maximizing the acuity
of the visual information available about
the relative position of the finger and the
target. Although an interesting prediction
of optimal control, we do not have eye-
tracking data to confirm or disconfirm the
hypothesis. We should emphasize, how-
ever, that when we constrain the mean
endpoints to different locations in the ver-
tical target (by incorporating an appropri-
ate term in the cost function), one finds
very little difference in the accuracy or
stopping costs for the different endpoints
(until they approach the target borders);
thus, any one of a number of other con-
straints may be in operation driving sub-
jects to aim below the centers of the
vertical targets.

Finally, the behavior of the models re-
flects a trade-off between the accuracy
cost and the stopping cost (Liu and Todorov, 2007). For the
nonquadratic cost function used here (probability of a miss), the
trade-off is complex—when we explored changing the weight on
the stopping cost, it led to changes in both the mean endpoint and
feedback gain. These were coupled by the cost function—when
we explored reducing the weight to the stopping cost, the optimal
controllers for the square targets increased their feedback gain,
but the optimal controllers for the rectangular targets decreased
their feedback gains in the long dimensions of the target. This
resulted from a shift of the mean endpoint toward the middle of
the target—a behavior that increased the variance of endpoint
velocity but improved accuracy, while reducing the need to cor-
rect for errors in the long dimensions of the targets. Although we
could in theory adjust the magnitudes of the models’ corrective
responses by varying parameters like these, and indeed might be
able to do so to better fit subjects quantitative data, what does not
vary across such changes is the qualitative differences in feedback
gain in a particular direction across different shapes.

Discussion
The experimental results show that humans adjust how they use
visual feedback from the hand on a trial-by-trial basis to fit the
accuracy demands of individual movements. The variability of
subjects’ endpoints was in qualitative agreement with these re-
sults— endpoint variability was higher in spatial dimensions re-
quiring less accuracy and with lower feedback gain. This kind of
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Figure 11. Perturbation influence functions for the three button shapes. a, Influence functions computed from the y compo-
nent of subjects’ trajectories in trials with vertical perturbations. b, Influence functions computed from the x component of
subjects’ trajectories in trials with horizontal perturbations. c, d, Perturbation influence functions derived from the y and x com-
ponents, respectively, of subjects’ trajectories computed from trials containing diagonal perturbations. The dashed curves show
the perturbations influence functions predicted from a linear superposition of the perturbation influence functions computed from
the trials with vertical and horizontal perturbations (a, b).

Figure 12. The scatter of endpoints on unperturbed trials for a representative subject in
experiment 2 for each of the three targets. The coordinate frame is aligned with the axis be-
tween starting and target positions.

Table 3. Mean corrections to perturbations for the three different target buttons used in experiment 2

Horizontal perturbations (��x, ��y) � SE (cm) Vertical perturbations (��x, ��y) � SE (cm) Diagonal perturbations (��x, ��y) � SE (cm)

Cross (0.641, 0.070) � (0.036, 0.014) (0.050, 0.670) � (0.025, 0.049) (0.473, 0.561) � (0.028, 0.027)
Vertical (0.722, 0.074) � (0.024, 0.031) (0.023, 0.489) � (0.019, 0.059) (0.521, 0.433) � (0.026, 0.033)
Horizontal (0.473, 0.067) � (0.037, 0.015) (0.133, 0.727) � (0.041, 0.040) (0.429, 0.581) � (0.023, 0.021)

Horizontal perturbations refer to perturbations parallel to the axis between the starting position and the target position; vertical perturbations refer to perturbations perpendicular to this axis. x is taken to be in the direction of this axis, and
y is taken to be perpendicular to the axis. Significant differences between the corrections for rectangular targets and the cross targets are highlighted in bold.
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variance pattern, in which variance is highest in kinematic di-
mensions less relevant to a task, has been shown before (Scholz
and Schöner, 1999; Domkin et al., 2002); however, in previous
studies, one could not discount the possibility that changes in
feedforward rather than feedback control shaped subjects’ motor
variability. The simulations of the optimal controller for the
task described here show clearly that significant differences in
endpoint variability result from differences in the feedback
control law.

Although it would seem natural that changes in feedback gain
should lead to concomitant changes in variance, the data of the
current experiments cannot clearly distinguish between variance
attributable to motor planning and online control. More direct
evidence that changes in feedback policies reflect themselves in
the variance structure of movements comes from studies of task-
dependent changes in feedback control policies for bimanual

control. Diedrichsen (2007) showed that differences in feedback
coordination between left and right hands for coordinated and
independent control tasks cooccur with changes in the covari-
ance of left and right hand movement directions. These differ-
ences appear early in movements after a delay of a �200 ms,
consistent with the hypothesis that the differences were created
by differences in the online control policies across tasks.

Automaticity of control function
Subjects’ fast reaction times to the perturbations (typically �160
ms) argue that they result from automatic online corrections to
errors signaled by sensory information in what has been de-
scribed as the “autopilot” mechanism in human motor control.
These response times are in qualitative accord with many others
reported in the literature, reflecting automatic corrections to vi-
sual shifts in target position (Prablanc and Martin, 1992; Brenner
and Smeets, 2003; Izawa and Shadmehr, 2008), hand position
(Saunders and Knill, 2003, 2004, 2005; Franklin and Wolpert,
2008), cursor position on a screen (Brenner and Smeets, 2003), or
background motion (Saijo et al., 2005). The current results show
that the magnitude of these corrections is mediated by the accu-
racy demands of different targets. For visual perturbations per-

Table 4. Means and average covariances of subjects end-points on unperturbed trials for the three targets in experiment 2

(�x, �y) � SE (cm) (
x, 
y) � SE (cm) � � SE

Cross (0.224, �0.234) � (0.079, 0.033) (0.414, 0.319) � (0.037, 0.012) �0.240 � 0.062
Vertical (0.065, �0.524) � (0.065, 0.079) (0.304, 0.450) � (0.020, 0.034) �0.020 � 0.034
Horizontal (1.077, �0.117) � (0.234, 0.054) (0.578, 0.278) � (0.055, 0.014) �0.036 � 0.043

SDs and correlation coefficients are averages across subjects. x is taken to be in the direction of this axis, and y is taken to be perpendicular to the axis. Significant differences between subjects’ endpoint distributions for cross targets and
subjects’ endpoint distributions for vertical and horizontal buttons (means and SDs) are highlighted in bold.
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Figure 13. a, Endpoint covariance ellipses for optimal controllers derived for each of the
three target shapes individually. Ellipses represent twice the SD of endpoint positions. b, The
average magnitude of correction for 1 cm perturbations in horizontal and vertical directions for
each of the three controllers (the controller is indexed by the target shape shown on the x-axis).

Table 5. Performance of three different controllers (each row) shown as the
endpoint SDs in x and y

Controller 
x (cm) 
y (cm)

Square 0.30 0.34
Vertical 0.28 0.87
Horizontal 0.44 0.27
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Figure 14. Perturbation influence functions computed for the optimal controllers derived
for each shape. a, Results for vertical perturbations. b, Results for horizontal perturbations.
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pendicular to the principal motion direction, the differences in
subjects’ responses appeared very soon after the onset of correc-
tive responses, suggesting that they result from differences in the
system mediating automatic online control of movements.
Moreover, the linearity of subjects’ responses suggests a common
mechanism subserving all of the responses.

Several other factors argue that a single automatic control
mechanism is responsible for the behavior shown here. First, the
perturbations were not accompanied by visual transients
(masked by the occluder) that might trigger a discrete change
detection system. Second, the small magnitudes of the perturba-
tions (1 cm) were within the variance of subjects’ finger positions
at the point when the finger emerged from the occluder and were
little greater than subjects’ localization acuity at the eccentricity
of the occluder (�1.3 cm in tabletop coordinates at an eccentric-
ity of 17° of visual angle). They were therefore within the variabil-
ity that the automatic feedback controller presumably deals with
in normal, unperturbed movements. Finally, not only did sub-
jects not detect the perturbations, but their reaction times to
correct for the perturbations were smaller than those found for
voluntary changes in movements (�200 ms) (Day and Lyon,
2000; Saijo et al., 2005; Franklin and Wolpert, 2008). It is there-
fore unlikely that the brain system mediating voluntary changes
in movements was engaged in this task.

What brain systems are involved in using visual feedback spe-
cifically from the moving hand to control hand movements? It is
often assumed that a common system is involved in correcting for
target changes that occur during movements and correcting for
visually signaled errors in hand movements (Desmurget et al.,
1999). A strong candidate for this area is the posterior parietal
cortex—a brain region thought to be involved in integrating sen-
sory signals with feedforward information from internal models
(Desmurget et al., 1999; Desmurget and Grafton, 2000; Shadmehr
and Krakauer, 2008) and shown to be involved in fast online
corrections to target shifts (Desmurget et al., 1999; Tunik et al.,
2005). It remains an open question as to whether sensory feed-
back from the hand and sensory signals about a target engage
common corrective mechanisms.

Task demands shape feedback control
Several other groups have recently reported task-dependent
changes in online control of hand movements. Liu and Todorov
(2007) showed that endpoint stability constraints can lead to
changes in how much subjects correct for target perturbations.
Subjects correct more when they are allowed to hit a target than
when they have to stop at the target (a constraint varied by chang-
ing the impedance on a robot arm holding the target). Diedrich-
son and colleagues have shown that the coupling of sensory
feedback from individual hands to control both hands in bimanual
tasks depends on the coupling required by the task (Diedrichsen,
2007; Diedrichsen and Gush, 2009). As found here for correc-
tions in different spatial dimensions, bimanual control appears to
be linear in the sense that subjects’ corrective responses to force
perturbations of the two hands are linear superpositions of the
corrections to perturbations to each hand individually (Diedrichsen
and Dowling, 2009). Finally, Franklin and Wolpert (2008) have
shown that subjects can learn to disregard transient visual perturba-
tions of a cursor moved by the hand when the perturbations do not
affect endpoint accuracy.

Whereas most previous work manipulated the nature of the
task performed (e.g., touching vs hitting or independent biman-
ual control of multiple cursors vs common control of one cur-
sor), the current task remained constant across conditions. Only

the accuracy demands changed. Subjects could have performed
well in the pointing task using a common control strategy (one
designed to minimize errors in all directions). Nevertheless, sub-
jects varied their online control policies to fit the accuracy de-
mands of each target. Perhaps the most important feature of the
current study, however, is that target shapes changed randomly
from trial to trial. In all of the previous experiments, task de-
mands were blocked. The current results, therefore, show a re-
markable degree of flexibility in the online control policies of the
CNS, as they vary from trial to trial as a result of changing accu-
racy demands. This suggests that similar trial-to-trial flexibility
would be shown when the nature of the task changes, since in
many of those cases the costs of not changing control policies is
quite a bit higher than here.

Optimal control models
The principal purpose of deriving and simulating an optimal
control model was to address the question of whether accuracy
demands by themselves would, in principle, drive changes in op-
timal control policies. The answer to this question is clearly
yes—a result of the fact that feedback control signals in torque
space generate noise that is distributed across different spatial
dimensions. This does not necessarily imply that energy con-
straints do not also shape online control strategies. In the context
of the current task, both accuracy and energy costs lead to a
diminution of feedback gain and so are difficult to disentangle
experimentally. O’Sullivan et al. (2009), in a very different task
setting, have found that subjects give a greater weight to minimiz-
ing effort than to minimizing variability. This supports the com-
mon assumption that the CNS takes into account energy when
planning and executing movements. It remains to be seen how
much such subjective, “effort” costs vary across different tasks, in
which the costs of motor variability change.

The two-dimensional arm model is constrained in ways that
subjects were not, but it contains the major feature of the arm
movement plant that creates the spreading of control noise to
multiple dimensions in Euclidean space. The modeling results
provide a “proof of concept” that accuracy constraints alone can
drive changes in feedback gains that arise from changes in accu-
racy demands; however, one should take care in drawing infer-
ences from fine quantitative matches (or mismatches) between
model and human performance. For this reason, we hesitate to
make overly much out of some of the finer detailed comparisons
of human and model performance.

Conclusion
We have shown that subjects adjust their feedback control strat-
egies in a fast, flexible, “on-demand” way to match the task con-
straints imposed by the shapes of target objects in a pointing task.
Moreover, the changes shown by subjects mimic those that would
be required to optimize accuracy in the pointing task. The results
raise an important challenge for computational models— how
does the CNS adjust its feedback control strategies so quickly to
match the changing task demands of individual movements?
Clearly, it does not perform the kind of optimization required to
derive optimal controllers for each target on each trial. One pos-
sibility is that, over the course of development, the CNS has
learned a library of basis control laws that it combines in a flexible
way to match the task demands of individual movements. How
this might work is a subject of future theoretical work in optimal
control.
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