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S   phase is characterized by the replica-
tion of DNA and assembly of chroma-

tin. This requires the synthesis of large 
amounts of histone proteins to pack-
age the newly replicated DNA. Histone 
mRNAs are the only mRNAs that do not 
have polyA tails, ending instead in a con-
served stemloop sequence. The stemloop 
binding protein (SLBP) that binds the 3' 
end of histone mRNA is cell cycle regu-
lated and SLBP is required in all steps of 
histone mRNA metabolism. Activation 
of cyclin E/cdk2 prior to entry into 
S-phase is critical for initiation of DNA 
replication and histone mRNA accu-
mulation. At the end of S phase SLBP 
is rapidly degraded as a result of phos-
phorylation of SLBP by cyclin A/cdk1 
and CK2 effectively shutting off histone 
mRNA biosynthesis. E2F1, which is 
required for expression of many S-phase 
genes, is regulated in parallel with SLBP 
and its degradation also requires a cyclin 
binding site, suggesting that it may also 
be regulated by the same pathway. It is 
likely that activation of cyclin A/cdk1 
helps inhibit both DNA replication and 
histone mRNA accumulation, mark-
ing the end of S phase and entry into 
G

2
-phase.

Progression through the cell cycle is driven 
by sequential activation of a series of pro-
tein kinases, the cyclin/cdks.1 Activation 
of the G

1
 cyclins, cyclin D/cdk4/6 and 

then cyclin E/cdk2 result in the activation 
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of cell growth pathways and then initia-
tion of DNA replication. During S phase, 
cyclin A/cdk2 is essential for ongoing 
DNA replication. Prior to entry into mito-
sis, activation of cyclin B/cdk1 results in 
nuclear envelope breakdown. Completion 
of mitosis requires the inactivation of both 
mitotic cyclins, cyclin B/cdk1 and cyclin 
A/cdk1 by destruction of the cyclin sub-
units by the anaphase-promoting complex 
(APC). It is less clear whether there is a 
specific transition that occurs at the end of 
S phase and entry into G

2
-phase.

Histone protein synthesis is restricted 
to S phase and regulation of histone pro-
tein synthesis is accomplished by regula-
tion of histone mRNA levels. Replication 
histone mRNAs have a unique struc-
ture since they are the only eukaryotic 
mRNAs that are not polyadenylated, 
ending instead in a conserved stemloop. 
A novel RNA-binding protein, stemloop 
binding protein (SLBP), binds the 3' end 
of histone mRNA and participates in 
many aspects of histone mRNA metabo-
lism.2 SLBP is cell cycle-regulated and the 
protein is rapidly degraded at the end of 
S phase.3,4 In a recent study, we demon-
strated that the degradation of SLBP, a 
protein that is limiting for histone mRNA 
accumulation, requires phosphorylation 
by cyclin A/cdk1 which in turn primes 
the phosphorylation of an adjacent threo-
nine by casein kinase 2 (CK2).5 SLBP is 
subsequently degraded by a still-unknown 
ubiquitin ligase. The degradation of SLBP 



3858	 Cell Cycle	 Volume 9 Issue 19

at a reduced rate,28 rapid degradation of 
SLBP at the end of S phase is necessary 
to shut off histone mRNA biosynthesis, 
by preventing histone pre-mRNA pro-
cessing.3 Nuclear extracts from G

1
- or 

G
2
-phase cells do not process histone 

mRNA, but the addition of recombinant 
SLBP restores processing.3 Accumulation 
of SLBP just prior to entry into S phase 
is essential to allow the accumulation of 
histone mRNA necessary for histone pro-
tein synthesis. SLBP degradation is the 
result of phosphorylation of two threonine 
residues (T60 and 61) and also requires a 
putative cyclin binding site.3 Thus regu-
lation of SLBP levels is the critical com-
ponent of postranscriptional regulation of 
histone mRNA levels (Fig. 1).

E2F1 is Regulated in  
Parallel with SLBP

E2F1 has been reported to be a cell cycle 
regulated protein,29 although the elements 
in E2F1 responsible for cell cycle regula-
tion have not been defined. A diagram of 
E2F1 with the domains that have been pre-
viously identified is shown in Figure 2A. 
These include a DNA-binding domain; a 
heterodimerization domain that interacts 
with DP, the E2F1 partner;30 a domain 
that binds Rb and is required for stabiliza-
tion of E2F1 when Rb is overexpressed;31-33 
a domain that binds the F-box protein 
Skp2 that has been proposed to mediate 
E2f1 degradation as part of the cul1 E3 
ligase;29 an Arf binding site also involved 
in E2F degradation34 and a domain that 
contains a cyclin A binding site.35,36

We confirmed that E2F1 is cell cycle 
regulated in HeLa cells and that the lev-
els of E2F1 protein parallel the levels of 
SLBP, increasing as cells enter S phase and 
decreasing at the end of S phase, suggest-
ing that E2F1, specifically, is degraded at 
the end of S phase (Fig. 2B, lanes 5 and 6). 
E2F1 accumulates in parallel with SLBP 
as cells approach the next S phase. Similar 
results were obtained with E2F2 and 
E2F3 (Dong J and Marzluff WF, unpub-
lished). Treatment of mid-S-phase cells 
with MG132 prevented the degradation 
of both SLBP and E2F1 (Fig.  2C, lane 
5). To determine which regions of E2F1 
were required for degradation of E2F1 at 
the end of S phase we made a number of 

cyclin A/cdk1 prevents origin relicensing 
and rereplication.16 In the next G

1
 phase, 

the cell must then license the origins so 
they can be fired again.9

Cyclin/cdks and Histone  
Protein Synthesis

The replication of DNA is accompanied 
by the immediate assembly of the newly 
replicated DNA into chromatin. Thus, 
at the same time that DNA replication 
starts, there must be a rapid increase 
in the rate of histone protein synthe-
sis. When DNA replication is complete, 
histone-protein accumulation must stop 
quickly. The regulation of histone protein 
synthesis is mediated by rapid changes in 
histone mRNA, as well as degradation of 
excess histone protein.17,18 Accumulation 
of histone mRNA is a result of an increase 
in the rate of histone gene transcription 
and the efficiency of histone pre-mRNA 
processing.19 The molecular mechanisms 
that lead to activation of histone mRNA 
expression are not completely under-
stood. However, the activity of cyclin E/
cdk2 is required and an essential cyclin E 
substrate is the protein NPAT,20-22 which 
is found in the Histone Locus bodies. 
These contain factors required for histone 
mRNA biosynthesis and are adjacent to 
the histone genes.23,24 Phosphorylation 
of NPAT by cyclin E/cdk2 is necessary 
for accumulation of histone mRNA.25 
Thus, cyclin E/cdk2 is likely at the top 
of a cascade that results in both initiation 
of DNA replication as a result of phos-
phorylation of cdc6 and accumulation of 
histone mRNAs as a result of phosphory-
lation of NPAT.

At the end of S phase, histone mRNA 
is rapidly degraded and histone mRNA 
biosynthesis is inhibited. The degradation 
of histone mRNA is directly regulated by 
changes in the rate of DNA replication, in 
response to the demand for histone protein 
to package newly replicated DNA.26,27 A 
critical protein for histone mRNA metab-
olism is the SLBP, which binds to the 3' 
end of histone mRNA and participates in 
histone pre-mRNA processing as well as 
histone mRNA degradation. SLBP is cell 
cycle regulated and the protein is present 
only in S-phase cells.4 Since histone gene 
transcription continues outside of S phase 

effectively stops the accumulation of his-
tone mRNA until the next cell cycle.3 
Here we show that a major S-phase tran-
scription factor, E2F1, is regulated in 
parallel with SLBP, raising the possibility 
that the activation of cyclin A/cdk1 at the 
end of S phase may help stop both histone 
synthesis and DNA replication, just as the 
activation of cyclin E/cdk2 in late G

1
 pro-

vides the signal for both DNA replication 
and accumulation of histone mRNA.

Regulation of DNA  
Replication

The initiation of DNA replication in ver-
tebrates has been studied extensively and 
clearly depends on activation of cyclin E/
cdk2, which phosphorylates a number 
of target proteins leading to initiation of 
DNA replication. As in many biochemi-
cal pathways, there are likely cascades of 
kinases which ultimately modify many 
target proteins required for DNA replica-
tion. E2F1 is a critical transcription factor 
that regulates transcription of many genes 
encoding proteins required for DNA 
replication, including enzymes of deoxy-
nucleotide metabolism, members of the 
Mcm and Orc complexes and components 
of the replication apparatus.6 One set of 
cyclin E/cdk2 target proteins are members 
of the pRb family (pRb, p130 and p107).7 
Phosphorylation of these proteins results 
in their release from the transcription fac-
tor E2F1 and upregulation of transcrip-
tion of these genes.

The regulation of initiation DNA rep-
lication has been extensively reviewed.8-10 
Activation of cyclin E/cdk2 is required 
to initiate DNA replication, and a criti-
cal target of cyclin E/cdk2 is Cdc6. 
Phosphorylation of Cdc6 protects it from 
degradation by the APC allowing licens-
ing of origins in late G

1
.11,12 Other direct 

targets of cyclin E/cdk2 include p27, an 
inhibitor of entry into S phase,13 which 
is degraded prior to S-phase entry and 
cyclin E itself,14 each of which are part of 
an autoregulatory loop. During S phase 
cyclin A/cdk2 remains active and is essen-
tial for continued S-phase progression.15 
The completion of DNA replication 
occurs only when every region of DNA 
has been replicated once and only once. 
Continued activity of cyclin A/cdk2 and 



www.landesbioscience.com	 Cell Cycle	 3859

lanes 3 and 4). Most of the phosphoryla-
tion was dependent on the cyclin binding 
site (Fig. 3D, lanes 5 and 6). Mutation of 
the cyclin binding site resulted in convert-
ing E2F1 to two components, one with 
identical migration to the phosphatase-
treated protein and one migrating slightly 
slower, suggesting there is a single phos-
phorylation site that did not depend on 
the cyclin binding site. The deletion of aa 
300–379 gave a similar result to mutat-
ing the cyclin binding site. E2F migrated 
as a doublet, the lower band of which 
migrated identically with phosphatase 
treated E2F1 (Fig. 3D, lanes 7 and 8). We 
conclude that the cyclin binding site is 
required for bulk of the phosphorylation 
of E2F1, which is found on amino acids 
300–379. The bulk phosphorylation pat-
tern of E2F1 is similar in early and late 
S phase, suggesting that there are mul-
tiple cyclin-dependent phosphorylations 
on E2F1. Due to the multiple SP and TP 
sequences in this region, we have not been 
able to identify the specific phosphoryla-
tion sites on E2F1.

Cyclin A/cdk1 is Required  
for the Degradation of SLBP  

at the End of S phase

Our recent study5 demonstrates that the 
critical phosphorylation event for SLBP 
degradation is carried out by cyclin A/
cdk1, a kinase which is activated at late 
S phase.40 Recombinant cyclin A/cdk1 

site to alanines (SLBP-AA). Stable cell 
lines were created expressing each of 
these minigenes. Each of the minigenes 
contained a myc-tag at the N terminus 
and a FLAG-tag at the C terminus. The 
wild-type E2F minigene was degraded 
at the end of S phase (Fig.  3B,  top), 
while the mutant E2F minigene was 
stable throughout S phase and G

2
 phase  

(Fig.  3B,  bottom). Similar results 
were obtained for the SLBP minigenes 
(Fig.  3C) as previously reported.5 Thus 
both SLBP and E2F1 contain a cyclin 
binding site that is required for their deg-
radation at the end of S phase.

The region between aa 300 and 379 of 
E2F1 contains numerous SP and TP sites, 
suggesting that one or more of these sites 
is phosphorylated to trigger degradation 
of E2F1. To demonstrate the phosphory-
lation of E2F1, we treated lysat es with 
lambda protein phosphatase and resolved 
the lysates on a long polyacrylamide gel, 
using anti-E2F1 to detect the endogenous 
protein and anti-HA to detect the exoge-
ous protein. Endogenous E2F1 was quan-
titatively phosphorylated in S-phase cells, 
and was detected as a broad band (Fig. 3D, 
lane 1). Treatment with phosphatase con-
verted E2F1 to single species (Fig. 3D, lane 
2). We analyzed HA-tagged full-length 
E2F1, the mutation of the core cyclin 
binding site and the deletion of amino 
acids 370–379. Similar results to the 
endogenous E2F1 were obtained with the 
HA-tagged full-length protein (Fig.  3D, 

deletions in E2F1 and created cell lines 
expressing the mutant E2F1 containing an 
N-terminal HA tag. We deleted a variety of 
regions previously reported to be involved 
in degradation of E2F1 under a variety of 
conditions. These include the SKP2 bind-
ing site (amino acids 1–42),29 the pRB 
binding site (amino acids 409–426)37,38 
and the ARF binding site (amino acids 
426–437).34 The full-length HA-tagged 
protein was regulated appropriately 
(Fig. 2D, top) and a mutant (aa 42–379) 
that removed the Skp2 binding site, the 
pRb binding site and the Arf binding site 
was also degraded at the same time as SLBP  
(Fig.  2D,  middle). This result indi-
cated that the previously characterized 
regions that affected E2F1 stability in 
different conditions were not required 
for degradation of E2F1 at the end of S 
phase. Further deletion of the amino-
terminus that removed amino acids 1–107 
(108–437) and removed the cyclin A 
binding site resulted in stabilization of 
the E2F1 protein at the end of S phase 
(Fig. 2D, bottom).

Additional deletions of either amino 
acids 109–190 or 191–299 from the cen-
ter of the E2F1 protein had no effect on 
E2F1 degradation at the end of S phase 
(Fig.  2E,  top  and  middle). However, a 
mutant E2F1 with amino acids 300–379 
deleted was not degraded at the end of 
S phase (Fig.  2E, bottom), demonstrat-
ing that there were two regions of E2F1 
required for degradation at the end of S 
phase; a sequence between amino acids 43 
and 108 and the region between amino 
acids 300 and 379 (Fig. 2F).

To demonstrate that these two regions 
were sufficient for degradation of E2F1 
we created a miniE2F1 gene with GST 
substituted for the region between amino 
acids 49–107 and 300–380 (Fig.  3A). 
The region from 67–108 contains the 
previously described cyclin binding 
site,35 with the core of the cyclin binding 
site36,39 at amino acids 89–92 of E2F1. 
We mutated the core region KRRL to 
AAAA in the E2F minigene. As a con-
trol we also used the SLBP mini gene,5 
which contained aa 56–125 fused to 
GST (Fig. 3A). This region contains both 
the cyclin binding site and the SFTTP 
phosphorylation site. We mutated the 
two threonines in the phosphorylation 

Figure 1. Regulation of histone mRNA during the mammalian cell cycle. The changes in levels 
of histone mRNA, SLBP and SLBP mRNA during the cell cycle are shown. Cyclin E/cdk2 activation 
leads to phosphorylation of NPAT and likely translation of SLBP mRNA resulting in activation of 
histone mRNA accumulation. At the end of S phase, cessation of DNA replication results in degra-
dation of histone mRNA, while activation of cyclin A/cdk1 is required for SLBP degradation.



3860	 Cell Cycle	 Volume 9 Issue 19

KRKL sequence. Given the requirement 
of the cyclin A binding site for E2F1 deg-
radation (Fig. 3B) and the timing of the 

40 amino acids after the phosphoryla-
tion sites and phosphorylation of T61 of 
SLBP by cyclin A/cdk1 depends on the 

phosphorylates T61 of SLBP but recombi-
nant cyclin A/cdk2 does not. Degradation 
of SLBP requires a KRKL sequence about 

Figure 2. Definition of a region required for E2F1 degradation at the end of S phase. (A) A schematic of the domains of the E2F1 protein is shown.  
(B and C) HeLa cells were synchronized by double-thymidine block and released into S phase. At the indicated times, lysates were prepared and ana-
lyzed for SLBP and E2F1 levels by western blotting. In (C) MG132 was added 4 hrs after release into S phase and lysates prepared 6 hrs later (lane 5).  
(D and E) HeLa cells stably expressing the E2F1 constructs tagged with HA (shown in F) on the amino terminus were synchronized by double-thymi-
dine block; lysates prepared and analyzed by western blotting for the HA-tagged protein,SLBP and where the tagged protein was resolved from the 
wild-type protein, for endogenous E2F1. In (D), the top part is full-length E2F1, the middle part deletion of amino acids 1–42 and the bottom part, 
deletion of amino acids 1–107. The bottom part was probed with anti-E2F1 and the endogenous and mutant protein were detected. In (E), the top part 
is deletion of amino acids 109–190, the middle part deletion of amino acids 191–299 and the bottom part deletion of amino acids 300–379. This blot 
was probed with both anti-E2F1 and anti-HA. (F) A summary of the effect of the deletions on degradation of E2F1 at the end of S phase is shown.
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is required for DNA replication, and the 
CDP/Cux transcription factor,46,47 which 
is necessary for transcription of the DNA 
polymerase α gene. These results are con-
sistent with the possibility that activation 
of cyclin A/cdk1 at the end of S phase is 
an event that marks the end of S phase. 
Cyclin A/cdk1 may also help prevent pre-
mature activation of the APC during G

2
 

Cyclin A/cdk1  
and DNA Replication

A number of substrates for cyclin A/cdk1 
have been identified recently and many of 
these share a property that phosphoryla-
tion contributes to the inactivation of pro-
teins required for DNA replication. These 
include Orc144 and Fen1,45 each of which 

degradation, it is likely that cyclin A/cdk1 
phosphorylates a critical site on E2F1 
leading to its degradation.

The second kinase required for degra-
dation of SLBP is casein kinase II (CK2). 
CK2 phosphorylates T60 of SLBP, but 
only after T61 has been phosphorylated by 
cyclin A/cdk1.5 CK2 has also been shown 
to be important for proper cell cycle pro-
gression. CK2 activity is required for the 
G

1
/S and G

2
/M transition in yeast41 and 

mammalian cells.42,43 The consensus CK2 
target site requires nearby negative charges 
and often requires priming phosphoryla-
tions by other kinases. Another known 
example of cooperation of CK2 and 
cyclin/cdk1 is in G

2,
 when phosphoryla-

tion of Wee1 by a cyclin/Cdk1 primes 
phosphorylation by CK2 resulting in pro-
duction of a phosphodegron that is nec-
essary for proper Wee1 degradation and 
proper G

2
/M transition.43

Figure 3. Phosphorylation of E2F1 requires 
a cyclin binding site for E2F1 degradation. 
(A) The indicated minigenes for SLBP5 and 
E2F1 are shown. Amino acids 56–125 of SLBP 
are sufficient to direct degradation of the 
protein. The E2F minigene contains the two 
fragments of E2F1 identified in Figure 2, 
67–108 and 300–380 separated by GST. Point 
mutants of the core of the cyclin binding site 
of E2F1 and in the TT which is the target of 
phosphorylation of SLBP were also construct-
ed in the context of the minigene.  
(B and C) Cells stably expressing the E2F1 
minigene and mutant minigene (B) or the 
SLBP minigene or mutant minigene (C) were 
synchronized by double-thymidine block, re-
leased into S phase. Parallel cultures express-
ing the SLBP and E2F minigenes were syn-
chronized and lysates were prepared at the 
indicated times after release and analyzed 
by western blotting for the FLAG-tag on the 
minigene or SLBP antibody to detect endog-
enous SLBP. (D) Cells expressing HA-tagged 
wild-type E2F1, the cyclin binding site mutant 
in the wild-type protein, of the 300–379 
deletion (lanes 3–8) were synchronized by 
double-thymidine block and lysate prepared 
4 hrs after release into S phase. A portion of 
the lysate was treated with lambda protein 
phosphatase. Equal amounts of the treated 
and untreated lysates were analyzed by 
western blotting using the anti-HA antibody 
after resolution of long polyacrylamide gels 
for an extended amount of time to resolve 
phosphorylated forms. The endogenous E2F1 
was analyzed in lanes 1 and 2 using the E2F1 
antibody. Note the difference in mobility of 
the endogenous E2F1 and the tagged-E2F1 is 
due to the HA-tag.
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increase in the activity of cyclin A/cdk1 
at S/G

2
. This occurs prior to the robust 

activation of cyclin B/cdk1, which results 
in nuclear envelope breakdown and entry 
into mitosis. Activation of cyclin A/cdk1 
results in inhibition of histone mRNA 
synthesis due to degradation of SLBP, as 
well as degradation of E2F1-3 and inhi-
bition of several components involved 
in DNA replication. Thus activation of 
cyclin A/cdk1 helps shut down the chro-
mosome replication machinery and plays 
a critical role as the cell transitions from 
S phase into G

2
 phase when it prepares to 

enter mitosis.
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