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Identifying Epitopes

Antibodies are immunoglobulin proteins that interact with 
specific areas on the surface of antigen proteins. These areas 
are referred to as B-cell epitopes. Identifying B-cell epitopes 
in order to induce a specific antibody response constitutes the 
unresolved core of immunology. Practically, the identification 
of epitopes in proteins is the fundamental, preliminary step in 
designing effective immunotherapy for cancer and infectious 
diseases as well as autoimmune pathologies.1-3 As a logical con-
sequence, recent decades have seen determined efforts aimed 
at identifying and defining antigen epitopes. To understand 
the molecular determinants characterizing epitopic structures, 
immunology has used the self/nonself concept.4-6 For decades, 
immunologists have based their studies, reasoning, experiments 
and clinical treatments on the idea that the immune system 
works by distinguishing between self and nonself.4,5 However, 
theoretical and experimental considerations lead to the recog-
nition that there are no known molecular mechanisms that 
can explain how peptides of self-origin can be discriminated 
qualitatively from peptides of nonself-origin.6 So, for example, 
how can the hexapeptide VLDVGG, which occurs in two dif-
ferent human proteins, be discriminated from the hexapeptide 
VLDVGG, which occurs in 380 bacterial, viral, protozoan and 
other organism proteins? How can the heptapeptide PPPPPPP, 
which occurs in 625 human proteins, be catalogued as self or 
nonself and distinguished from the heptapeptide PPPPPPP, 
which occurs in 12,883 bacterial, viral, protozoan and other 
organism proteins?
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Epitopes: A Problem of Numbers

To answer questions on immunology helpful to immunotherapy, 
numerous predictive programs and algorithms have been devel-
oped for exact epitope identification. Different epitope qualities 
have been proposed and investigated, including protein hydro-
phobicity7-9 protein hydrophilicity,10 the protrusion index,11 
protein flexibility,12 and protein secondary structure and confor-
mational parameters.13,14 However, the results of these studies are 
inconsistent and very little progress in B-cell epitope prediction 
has been made.15,16

Generally, the lack of success in B-cell epitope definition is 
due, mainly, to the difficulties associated with the task. The opti-
mal amino acid (aa) length of a B-cell epitope is five aa,17 but 
longer epitopes have been described. In general, linear B-cell epi-
topes have been described as varying in length, with up to 16 resi-
dues reported.18,19 Considering the 20 naturally occurring amino 
acids, the potential epitope repertoire ranges from 3,200,000 
different linear 5-mers to 655,360,000,000,000 different linear 
16-mers. In addition, epitopic amino acid sequences may origi-
nate from conformational folding: antigen proteins are long 
amino acid chains folded into an enormous number of shapes. 
Searching through all possible foldings to evaluate the working 
structure-function of an epitopic sequence is a practically impos-
sible task. Finally, epitopic sequences can be derived from post-
translational modifications; they can also be site-switched by 
the epitope spreading phenomena, and can exist as cryptic epit-
opes. Again, this makes the possible determinant configurations 
numerically infinite.

Defining self and nonself is the most compelling challenge in science today, at the basis of the numerous questions 
that remain unanswered in the immunology-pathology-therapy debate. The generation of the antibody repertoire, 
the complicated scenario offered by tolerance and autoimmunity, natural auto-antibodies and their relationship to 
autoimmune diseases, and positive and negative selection are only a few examples of the unresolved immunological 
questions. In this context, we proposed that sequence similarity to the host proteome modulates antigen peptide 
recognition and immunogenicity. Using the available proteome assemblies of viruses, bacteria and higher vertebrates, 
and applying the low-similarity criterion, we are systematically defining the proteomic similarity of B-cell epitopes 
already validated experimentally. Here, we report further data documenting that a low similarity to the host proteome is 
the common property that defines the immunological “nonself” nature of antigenic sequences in cancer, autoimmunity, 
infectious diseases and allergy.
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experimentally validated epitopes, regardless of whether they 
are linear, discontinuous or mimic, independently of their being 
from microbial antigens, tumor-associated proteins or allergens.

Perspectives: Scientific and Clinical Applications

Here, we analyze a robust set of recent experimental reports sug-
gesting that a low level of sequence similarity to the host pro-
teome defines the B-cell epitope pool in the humoral immune 
response. The data add to and support experimental results from 
our laboratory21-27,31 and reported meta-analyses.28-30

Theoretically, proteomic similarity analyses might elucidate 
the regulatory mechanisms/factors that dictate peptide immu-
nogenicity assessment. From a clinical perspective, low-similarity 
peptides may have strong repercussions affecting the rational 
development of peptide-based treatments in cancer, infection 
and autoimmunity. De facto, the most attractive feature of the 
similarity concept is that it appears to guarantee the highest 
specificity and lowest cross-reactivity when designing effective, 
safe and theoretically infallible immunotherapeutic tools. The 
Ehrlichian idea of therapeutic agents equipped with high affinity 
to the causative agent, and efficacy at concentrations harmless to 
the patient, appears feasible.

Scientifically, the solution to what has been called the top-
ranking mystery in science appears to be at hand, i.e., the mecha-
nism of self versus nonself recognition in the immune system.53 
In fact, the low-similarity hypothesis might represent a quantum 
leap forward in our understanding of the rules dictating the 
immunological antigen-antibody epitope-paratope interaction at 
the peptide level.

The Proteome-Guided Definition of the Immune 
Object

The proteomic era has provided comprehensive proteome data-
bases for numerous (micro)organism types that can now be 
analyzed in detail using large-scale proteomics scanning. Using 
the available proteome repertoire, we advanced and explored 
the hypothesis that the immunogenicity of peptide sequences is 
modulated by low similarity to the host’s proteome. During the 
past decade, a series of experimental models involving different 
disease-associated proteins20-31 have substantiated and supported 
the low-similarity hypothesis.

Experimental data from our laboratory have been confirmed 
by numerous reports in the epitope mapping literature. A sys-
tematic analysis of epitopic peptide sequences in cancer, autoim-
munity, allergy and infectious diseases indicates that the epitopic 
boundaries of an amino acid sequence are dictated by the low-
similarity hypothesis.28-30 Only peptide motifs with no/low simi-
larity to the host proteome are epitopic targets in the humoral 
immune response. Additionally, only amino acid sequences that 
are scarce (or absent) in host proteins appear to participate in 
antigen-antibody interactions. In this way, we have validated 
hundreds of epitopes as low-similarity amino acid sequences.28-30

This structured survey adds to the tabulation of low-similarity 
epitopes obtained through proteomic scanning. As a pragmatic 
example of proteome-guided epitope definition, Table 1 pro-
vides a sequence similarity analysis of the most recent data in 
epitope mapping of disease-associated antigens. The Table shows 
that amino acid fragment(s) endowed with a low level of simi-
larity to the host proteome represent the common signature of 
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Table 1. B-cell epitopes are (or contain) sequences with zero/low-similarity to the host proteome
Antigen Aa position Epitope sequencea Matchesb Proteomec Ref.

Prostate specific antigen 27–31 GGWEC 0 M 31
Melanin-concentrating hormone receptor 1 254–265 lYWFTLy 0 H 32

Osteopontin 31–37 qlYNKYP 0 M 33
Coagulation factor VIII Mimotope npveNMMDRdsq 1 H 34

Mimotope qspWQTWFtral 1 H 34
Adenosine A2a receptor 172–178 lfEDVVP 4 M 35

Collagen type IV, α3chain 24–38 FTRHSqttANPSCpe 0 R 36
Receptor tyr kinase-like 518–525 reEFRHEa 1, 2 M 37

CXCR1 chemokine Mimotope SFIWDf 3 M 38

Mimotope SAMWDf 0 M 38

Mimotope TNMWDf 0 M 38

Mimotope iTMWDF 1 M 38

Mimotope SDWWDf 0 M 38

CXCR2 chemokine Mimotope FWDDFw 1 M 38

Mimotope LWDDFw 2 M 38

Mimotope mWNDFW 0 M 38

Mimotope FWLDFw 0 M 38

DNA Mimotope DWEYSvwlsn 0 M 39

Bla g 4 allergen 118–152 cpaaanGHVIYvqlrltWRRFHpklgdkeMIQHYT 2, 2, 0 H 40

Blo t 12 isoallergen 30–49 htepddHHEKPtTQCTHeet 0, 0 H 41

73–92 teeTHHSDdlivHEGGKtyh 0, 2 H 41

111–130 iicsksgslWYITVmPCSIG 0, 1 H 41

HIV-1 envelope gp41 633–639 iWNNMTw 0 H 42

0 M 42

HIV-1 envelope gp41 633–642 iwnnMTWMQw 0 H 42

0 M 42

HIV-1 gp41 675–681 elDKWAS 1 M 43

HIV envelope gp41 670–677 wNWFDItn 0 M 44

Porcine reproductive-respi ratory syndrome virus gp5 152–156 rLYRWR 0 M 45

169–178 eGHLIDlkrv 4 M 45

196–200 QWGRL 1 M 45

196–200 QWGRP 0 M 45

Rabies virus glycoprotein Mimotope kRDSTW 2 H 46

Mimotope kYLWSK 0 H 46

Mimotope kYWLSR 2 H 46

Mimotope kYWWSK 0 H 46

Mimotope kYAWSR 0 H 46

Mimotope kYSMSK 0 H 46

Japanese encephalitis virus NS1 protein 146–150 EHARW 1 M 47

Influenza A H5N1 HA 193–199 qNPTTYi 1 M 48

Influenza A H5N1 HA 121/164d sWS/YNN 0 H 49

Influenza A fusion peptide HA2 glycopolypeptide glfgAIAGF 1 M 50

K. pneumoniae adhesin Mimotope qktlakSTYMSa 0 M 51

Meningococcal factor H-binding protein 25/57d DHK/YGn 1 M 52

The analysis was restricted to reports published in 2009 in PubMed. aLow similarity 5-mer given in capital letters. Based on the minimum length 
of an immune unit of 5–6 amino acids,17 each epitope has been dissected into pentapeptide sequences. The pentapeptides overlapped by four 
residues, i.e., were shifted by one amino acid. Then, each pentapeptide was analyzed for the number of occurrences in the host proteome using 
described methodologies.20-31 Any occurrence is called a match. A pentapeptide with up to five perfect matches to the host proteome was considered 
a low-similarity sequence. bThe number of matches refers to the low-similarity 5-mer in capital letters. cHost proteome: H, human; M, murine; R, rat. 
dDiscontinuous.
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