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Abstract: Obesity is a threat to public health worldwide primarily due to the comorbidities 

related to visceral adiposity, inflammation, and insulin resistance that increase risk for type 2 

diabetes and cardiovascular disease. The translational research portfolio that originally described 

these risk factors was significantly enhanced by imaging techniques, such as dual-energy X-ray 

absorptiometry (DEXA), computed tomography (CT), and magnetic resonance imaging (MRI). 

In this article, we briefly review the important contributions of these techniques to understand 

the role of body composition in the pathogenesis of obesity-related complications. Notably, these 

imaging techniques have contributed greatly to recent findings identifying gender and racial 

differences in body composition and patterns of body composition change during weight loss. 

Although these techniques have the ability to generate good-quality body composition data, each 

possesses limitations. For example, DEXA is unable to differentiate type of fat, CT has better 

resolution but provides greater ionizing radiation exposure, and MRI tends to require longer 

imaging times and specialized equipment for acquisition and analysis. With the serious need for 

efficacious and cost-effective therapies to appropriately identify and treat at-risk obese individu-

als, there is greater need for translational tools that can further elucidate the interplay between 

body composition and the metabolic aberrations associated with obesity. In conclusion, we will 

offer our perspective on the evolution toward an ideal imaging method for body composition 

assessment in obesity and weight loss, and the challenges remaining to achieve this goal.
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Introduction
Obesity is an epidemic affecting at least 70 million people in the United States and 

over 300 million individuals worldwide.1 The public health consequences are enormous 

as obesity confers dramatically elevated risk for devastating comorbidities such as 

hypertension, diabetes, cardiovascular disease, liver disease, gallbladder disease, 

musculoskeletal disorders, and several types of cancer, in all population age groups.2 

However, there is a developing appreciation that not all obese individuals and not all 

types of adiposity confer equivalent risk.3 Further, while the evidence indicates an intri-

cate relationship among genotype, ethnicity, body composition, and cardiometabolic 

risk, current methods to characterize body composition have not kept pace with the 

evolving needs of clinicians and researchers. In this article, we briefly review the 

interplay between body composition, obesity, and cardiometabolic risk, with emphasis 

on the areas in which the evidence base is limited by the methods available, and recent 

advances that are likely to significantly impact the future of obesity investigation.
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Body composition and metabolic risk
Obesity-related cardiometabolic risk is often assessed by 

calculating body mass index (BMI), anthropometric measures 

such as waist and hip circumference, or other surrogate 

indicators of total adiposity.4 Although these techniques are 

useful in clinical practice to screen patients for disease risk 

and in large patient populations to determine associations 

with risk for comorbidities, especially when age and gender 

are considered, significant limitations exist. For example, 

data from the National Health and Nutrition Examination 

Survey III show that waist circumference cutoff values that 

correspond to the BMI range indicating overweight and obe-

sity and risk for cardiovascular disease differ by ethnicity.5 

That is, while the waist circumference values associated 

with overweight and obese BMI categories for Caucasian, 

African American, and Hispanic women appear similar, 

the corresponding waist circumference values are lower 

in African American and Hispanic men when compared to 

Caucasian men. In addition, these techniques are often not 

reliable for estimating an individual’s percentage body fat.6 

Moreover, they are unable to assess the amount, type (ie, 

subcutaneous, visceral, interstitial, or yellow marrow), and 

distribution of adipose tissue. Thus, the available clinical 

tools do not identify which components of body composition 

are the most important targets clinically or scientifically.

Consequently, imaging studies were critical in determining 

that the distribution of adipose tissue to central abdominal 

sites (ie, intra-abdominal or visceral adipose tissue [VAT]) 

is important in promoting risk for the inflammation, 

insulin resistance, and dyslipidemia associated with the 

development of comorbidities,7,8 as well as overall mortal-

ity.9,10 Nevertheless, a number of important questions remain. 

For example, there is scientific interest in a more compre-

hensive understanding of the metabolic, physiological, and 

pathophysiological differences among ethnic and life cycle 

groups, as well as a clearer understanding of the subset 

of overweight/obese individuals who have high BMIs and 

percentage body fat without the other features of the meta-

bolic syndrome, ie, the “metabolically healthy but obese” 

phenotype.11–14 Fortunately, a number of additional body 

composition measurement techniques are being utilized in 

obesity research that promise to improve our understanding of 

existing biological concepts and generate new hypotheses.

The need to advance body  
composition techniques
The need for superior tools that provide direct measure of body 

composition becomes even more apparent when comparing 

differences in body composition and cardiometabolic risk 

by demographic factors like gender, age, and ethnicity. For 

example, in comparing males to females, it is well established 

that women have more total fat (adipose tissue), less total 

muscle (lean tissue), and a larger quantity of total adipose 

tissue in the lower trunk and pelvic region.15 However, when 

matched by BMI, men may have more visceral and hepatic 

adiposity.16,17 Clearly, these disparities in adipose tissue 

distribution confer different disease risks. There also exist 

differences in body composition and metabolic profile within 

genders – an effect that is most pronounced in women for 

whom significant differences occur across the life cycle. 

While women in their twenties and thirties are less likely to 

be obese, women at or beyond menopause have increased 

VAT.18 Moreover, among women of all age groups (adoles-

cent, premenopausal, and postmenopausal), it has been shown 

that those who have a greater proportion of adiposity in the 

upper body have a greater likelihood of being dyslipidemic, 

glucose intolerant, hyperinsulinemic, and insulin resistant 

than those with greater proportion of adiposity in the lower 

body.19 While these risk profiles were determined by dual-

energy X-ray absorptiometry (DEXA), the limitations in this 

technology include an inability to differentiate the type of 

adipose tissue, as will be discussed further.

Additionally, racial and ethnic differences in body 

composition have been identified in males and females. 

In fact, the relationship between abdominal adiposity and 

metabolic risk first came to light from studies using single-

slice computed tomography (CT) scans of lean Japanese 

American males who, despite low BMI, had increased VAT 

and insulin resistance.20 Interestingly, in a study using whole-

body multislice magnetic resonance imaging (MRI), no dif-

ferences were detected in VAT between Asian American and 

Caucasian males after adjustment for age and total body fat. 

In contrast, Asian American females (over 30 years) had a 

higher proportion of VAT compared to Caucasian females.21 

Prior studies also demonstrate puzzling differences in the 

characteristics of adiposity between African Americans and 

Caucasians.5,22–24 For example, African American women 

have less VAT and, therefore, more upper body subcutaneous 

adipose tissue (SAT) than Caucasian women,25,26 but they 

tend to be more insulin resistant.27 In fact, African Americans 

have worse cardiometabolic disease profiles overall: a higher 

incidence of hypertension, twice the prevalence of diabetes, 

and 2- to 3-fold greater incidences of coronary artery disease 

and stroke. Yet, greater upper body obesity is associated 

with mortality in Caucasians but not in African Americans.28 

Hence, racial disparities in obesity and its comorbidities are 
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not solely related to the anatomical location of fat (ie, upper 

vs lower body adiposity) or simply the relative proportion 

of VAT to SAT. This discrepancy has been recognized in the 

adjustments that have recently been made in waist circum-

ference cutoffs to accommodate differences by race and 

ethnicity for cardiovascular risk.29

Overall, synthesis of published findings such as these 

suggest that while a number of potentially important findings 

have been uncovered, an underlying unifying mechanistic 

explanation has yet to emerge. We hypothesize that this gap 

in the evidence base may be related to the relative strengths 

and weaknesses of the body composition techniques that 

populate the literature. Hence, more sensitive methods 

to quantify metabolically active adipose depots promise 

to enhance mechanistic studies and our understanding of 

observed outcomes.

Beyond adipose tissue: ectopic fat
While absolute adipose mass, and perhaps the more 

insulin-resistant VAT, confers significant metabolic risk, the 

accumulation of fat in nonadipose tissues (ie, lipid within 

skeletal muscle and organs such as the liver, pancreas, and 

heart), for which in vivo quantification has been best achieved 

by advanced tools such as MR spectroscopy (MRS), is 

increasingly recognized as a mediator of insulin resistance 

and inflammation.30–34 In fact, in obesity, the association 

between intramyocellular lipid and insulin resistance is 

stronger than with VAT.33 It is also noteworthy that in states 

of reduced adipose tissue mass, eg, lipodystrophy, there is 

increased ectopic fat, insulin resistance, and diabetes.35

In conjunction with the focus on intramyocellular lipid, 

a novel fat depot existing between muscle bundles and 

beneath the muscle fascia, termed intermuscular adipose 

tissue (IMAT), may also reveal signif icant metabolic 

information.36 Interestingly, African Americans, who have 

more skeletal muscle than Caucasians, also appear to have a 

greater amount of IMAT. This disparity in ectopic fat appears 

most pronounced at higher levels of adiposity.36,37 Thus, it is 

conceivable that increased skeletal muscle and IMAT volume 

at least partially account for the observed differences among 

ethnicities in the insulin response to glucose.38 However, 

the extent to which IMAT functions in onset of insulin 

resistance remains to be further investigated. We suggest 

that a full understanding of the role of IMAT in health and 

disease will arise as a consequence of improved methods to 

quantify this lipid depot.

Similarly important, the accumulation of intrahepatic fat 

has serious implications due to its role in the pathogenesis 

of insulin resistance, dyslipidemia, steatosis, steatohepatitis, 

and progression to diabetes, coronary heart disease, and liver 

failure.39 While the current gold standard for diagnosis of 

“fatty liver” is liver biopsy, intensive efforts are underway to 

standardize both CT and MRI methods to quantify liver fat. 

Of course, MRS has also been used to understand liver lipid 

metabolism. Nevertheless, one of the limitations of current 

imaging methodologies, and an important opportunity to 

improve the scientific evidence base, would be the ability to 

incorporate measures of ectopic fat more widely in clinical 

and research settings.

Body composition changes  
during weight loss
Few studies have investigated how weight loss influences body 

composition. A classic model by Forbes40 predicts that during 

voluntary weight loss, the relative proportion of body mass 

loss would be approximately 80% fat and 20% lean tissue 

mass. The composition of body mass loss is likely influenced 

by many factors, including genetics,41 gender, ethnicity, aging, 

degree of energy deficit,42 dietary macronutrient composition 

and substrate utilization,43 hormonal status,44 degree and type 

of physical activity,45 comorbid disease states, and perhaps 

the type of weight loss intervention (dietary, pharmaceuti-

cal, or surgical). For example, it is expected that while males 

would lose proportionately more fat-free mass compared to 

females, they also lose more VAT.46 In response to caloric 

restriction, it has also been observed that Caucasian females 

lose approximately 50% more VAT and less SAT than African 

Americans despite similar total weight loss.47 Intriguingly, 

these authors observed no significant differences between 

Caucasian and African American females with regard to 

improvements in insulin sensitivity and lipid profiles.48 While 

this finding appears to contrast with much other data, it 

suggests that the metabolic benefits of weight loss were not 

directly related to changes in the relative change in VAT and 

SAT, but it should be noted that the women studied were 

overweight, not obese, and premenopausal, and there was 

no assessment of the degree of ectopic fat and its role in the 

measured outcomes.

With involuntary weight loss, ie, that which occurs dur-

ing chronic illness, injury, or malignancy, there is often an 

aberration in the proportional changes in body composition, 

yielding an excessive loss of lean tissue, and sometimes 

preservation of adipose tissue mass. For example, in 

studying overweight head and neck cancer patients treated 

with concomitant chemoradiation, we detected a body mass 

loss that was 72% lean and only 28% fat.49 Further, when 
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negative energy balance is combined with reduced physical 

activity, such as that occurring with bed rest, space flight, or 

sometimes physiological aging, accelerated protein turnover 

results in greater lean tissue loss.50 From a metabolic perspec-

tive, this decrease in lean mass should have the detrimental 

consequence of impaired insulin sensitivity.

In reality, few populations have been prospectively 

studied with respect to the relative changes in fat vs lean 

tissue mass during voluntary or involuntary weight loss, not 

to mention changes in the type, distribution, and location of 

lipid burden. While it is expected that weight loss reduces 

fat and lean mass from various body depots, the mechanistic 

basis for such changes, whether adaptive or maladaptive, 

has not been clarified, and existing studies have utilized 

isotope-labeled tracer techniques that are not applicable 

outside highly sophisticated research settings.51 We suggest 

that the successful design of studies to better understand the 

interactions between body composition and cardiometabolic 

risk, and those capable of wholly assessing the efficacy of 

weight loss interventions, requires advanced techniques that 

measure not only the amount and type of adipose tissue but 

also its anatomical distribution. Moreover, ideal techniques 

must be capable of quantifying ectopic fat.

Current imaging methods
Imaging methods are considered to be the most accurate tools 

for measuring adipose tissue in body tissues and organs in 

clinical research.52,53 Imaging methods provide information 

about the spatial distribution of adipose tissue by exploiting 

differences in the imaging properties of different tissues and 

organs seen as 2-dimensional (2D) projections with DEXA 

scans or 2D multislice and 3-dimensional (3D) anatomical 

datasets with CT and MRI. Thus, regional differences in tissue 

X-ray absorption properties or MRI signal characteristics pro-

vide contrast in images that allow lean and adipose tissue to 

be distinguished and their respective volumes to be calculated. 

The accuracy of distinguishing tissue types depends on the 

degree of tissue contrast and the spatial resolution inherent 

to imaging modalities, which in turn depend primarily on 

the sensitivity and speed of acquiring images. Yet, no single 

method commonly employed accounts for all the factors  

(ie, amount, type, and distribution) that we and others 

hypothesize as highly relevant to outcomes of interest. Fur-

ther, all methods contribute some form of error or bias that 

is usually related to assumptions about body composition 

that may not hold across different population groups and 

clinical  scenarios.54 The pros and cons of the three common 

state-of-the-art imaging techniques for whole body measure-

ment, ie, DEXA, CT, and MRI,55 will be contrasted in the 

following sections, with key characteristics summarized in  

Table 1.

However, before comparing body composition techniques, 

we must first recognize the important construct of categoriz-

ing body composition components into 5 distinct levels, ie, 

atomic level, molecular level, cellular level, tissue-systems 

level, and whole body level. While DEXA estimates body 

composition components at the molecular level (eg, fat 

mass), CT and MRI assess body composition components 

at the tissue-systems level (eg, adipose tissue). As this is 

not the focus of this article, we call the readers’ attention to 

several excellent reviews further describing this fundamental 

concept.66–68

Table 1 Key characteristics of the most common imaging techniques used to quantify body composition

Imaging technology DEXA Quantitative X-ray CT MRI

Year (first applied to body composition) 198156 197957 198458

images acquired Coronal 2D projection 2D single-slice 2D single-slice 
2D multislice 

2D multislice 3D image volumes

Coefficient of variation Total body fat: 2%–3%59 SAT: 0.50%60 Total body fat: 2.90%61

vAT: 2.32%55

vAT: 1.20%60 (multislice acquisition) SAT: 2.25%55

TAT: 1.01%55

Scan time (whole body) 10–20 min Several seconds per slice 10–20 min
Resolution 1 mm × 1 mm62 1.8 mm × 1.8 mm × 5 mm55 2 mm × 2 mm × 8 mm63

Radiation dose 5–7 μSv59 2.7–10 mSv64,65 (whole body) None
Research cost per scan Moderate (∼$135) High (∼$500) High (∼$500)
Availability Moderate Limited Limited

Abbreviations: DeXA, dual-energy X-ray absorptiometry; CT, computed tomography; MRi, magnetic resonance imaging; 2D, 2-dimensional; 3D, 3-dimensional;  
SAT, subcutaneous adipose tissue; vAT, visceral adipose tissue; TAT, total adipose tissue.
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Dual-energy X-ray absorptiometry
Replacing dual-photon absorptiometry (DPA) in 1989, 

DEXA was designed initially to estimate whole body and 

regional bone mineral density. DEXA uses an X-ray tube 

combined with a switch or filter to generate a larger flux of 

photons than DPA, yielding greater precision and shorter 

scan times.62 Typical DEXA scanners are composed of a flat 

table on which the subject lays supine with an X-ray generator 

under the table and a movable X-ray detector above that 

translates in the direction of head to foot. The X-ray source 

moving beneath the subject emits a pencil beam or fan beam 

of X-rays at two energy levels, typically 40/70 or 43/110 keV 

(depending on the manufacturer), which allow algorithms 

for the quantification of two distinct tissue types. While one 

energy level is well absorbed by soft tissue, ie, fat, the other 

is well absorbed by denser tissue, ie, bone. Hence, a tech-

nically well-acquired DEXA scan provides a reasonable 

estimate of total and regional (trunk, legs, and arms) fat and 

fat-free mass using proprietary equations based on tissue 

density and X-ray biophysics. Since total and regional fat 

estimated by DEXA is the sum of all fatty elements of soft 

tissue, a limitation of DEXA is the inability to differentiate 

adipose tissue and, thus, the inability to compare amounts 

or changes in VAT vs SAT.

Additionally, the trunk region determined by DEXA 

typically includes chest, abdomen, pelvis, and, thus, an inabil-

ity to more specifically quantify the types of fat in specific 

body compartments. This can be particularly problematic in 

studying obese women as the determination of trunk fat by 

DEXA includes pelvic and gluteal fat, thereby confounding 

estimation of metabolic risk.69 Although some body composi-

tion researchers delineate the central abdominal region using 

DEXA by manually adjusting the trunk margins to include 

only the area from L2 to L4 vertebrae, this assessment still 

includes SAT.70 Further, defining the region of interest 

determined by DEXA is well-known to be operator depen-

dent. Notably, with manipulation of the region of interest, 

it has been observed that DEXA estimates total abdominal 

adipose tissue better in nonobese (vs obese) persons.71

Nevertheless, percentage trunk fat estimated by DEXA 

has been positively correlated (r = 0.77) with VAT determined 

by CT in a sample of 206 lean and obese women.72 However, 

weaker correlations have been observed, supporting our 

hypothesis that while a number of techniques perform well 

across larger populations, there remains significant intrain-

dividual variability. In another study, DEXA-estimated fat 

was correlated with MRI quantification of adipose tissue, 

but in 877 HIV+ and 260 healthy adults, DEXA significantly 

overestimated total and regional fat mass (P , 0.0001).73 

Importantly, as the amount of body fat mass increased 

(ie, greater adiposity), the DEXA overestimates were 

proportionally larger, which would confound assessment of 

metabolic risk.

Mechanisms explaining some of these limitations of 

DEXA include variation based on the depth of tissue being 

analyzed. It appears that the anteroposterior thickness of 

a subject at #20 cm does not violate the assumption of 

density on which DEXA algorithms are based, and thus, 

at this thickness, overestimate of fat mass was #4% and 

overestimate of fat-free mass was #2%.74 However, at higher 

body thickness, DEXA provides greater error.73 This is an 

important consideration as most obese subjects will have 

anteroposterior thickness .20 cm.

Similarly, determination of lean soft tissue mass by 

DEXA (technically fat-free mass) suffers limitations. As lean 

mass in extremities is mostly muscle, DEXA-derived lean 

mass can predict skeletal muscle mass, although amounts 

are overestimated,75 most likely because DEXA requires the 

potentially inaccurate assumption that there is a fixed propor-

tion of muscle mass in the limbs. Hence, in a heterogeneous 

population of subjects with differing body composition, this 

assumption could confound the accuracy of skeletal muscle 

mass determination. Another fundamental assumption is 

that the soft tissue is normally hydrated (as DEXA does 

not estimate body water content). However, the presence of 

underhydration or overhydration is common in acute and 

chronic disease states, including obesity, and within certain 

life cycle groups, such as young children and older adults. 

It has been estimated that a 5% change in the water content 

of the fat-free mass influences DEXA estimates of body 

fat about 2.5%.76 Even drinking water before scanning can 

increase estimates of total and lean mass.77

Therefore, depending on the manufacturer, hardware, 

software, and operator, different DEXA devices show 

differences in assessment of bone mineral content by ±19%, 

fat mass by ±7%, and lean mass by ±4%.73,78,79 Nevertheless, 

the widespread availability and relative low expense of 

DEXA compared with more sophisticated imaging tools such 

as CT and MRI assure that DEXA will continue to be impor-

tant for assessing body composition in health and disease, 

and therefore, it is scientifically important to understand its 

relative limitations.

More direct anatomical measures of both adipose and 

skeletal tissue include CT and MRI, both of which are able 
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to resolve adipose from nonadipose tissue, although they are 

not typically used to detect the lipid burden within muscle 

unless additional spectroscopic methods are added to the 

procedure. A key advantage of these imaging techniques in 

body composition and obesity research is the ability to assess 

in vivo tissue type and distribution and the future potential 

for determining organ composition.

CT scan
CT systems are typically composed of a cylindrical housing 

unit that contains an X-ray tube source rotating in a plane 

perpendicular to the subject. Individuals enter the system 

on a moving table that travels through the gantry opening. 

The finite diameter of the gantry opening may limit the size 

of subjects that can be scanned. Like DEXA (although at 

much higher radiation doses), the X-ray source produces a 

pencil- or fan-shaped beam that passes through the body. The 

application of CT to body composition was first demonstrated 

in 1979 when the cross-sectional area of mid-arm muscle 

mass was quantified in persons ranging from 60% to 120% 

of ideal body weight.57 During the 1980s, body composition 

research was further advanced when CT was used to quantify 

adipose tissue.80,81 These initial studies used a single-slice 

technique typically at the level of the umbilicus; now mul-

tislice techniques are most often utilized.

CT scans typically generate multiple 2D anatomical 

images that may form noncontiguous or contiguous 3D image 

volumes at a high resolution from which the difference in den-

sity between adipose vs nonadipose tissue can be quantified 

using tissue segmentation image analysis. From a CT image, 

tissue type can be distinguished, or segmented, based on CT 

number, which represents the electron density of the tissue 

within a particular volume element (voxel). CT numbers are 

expressed on a scale using Hounsfield units (HU), where 

HU = 0 for water and HU = −1,000 for air. CT numbers 

for adipose tissue range from −190 to −30 HU, whereas CT 

numbers for lean tissue range from 30 to 100 HU. Thus, CT 

provides both exquisite spatial and tissue-type resolution.64 

Once segmented (manually or automatically), tissue area can 

be calculated using known in-plane dimensions of the CT 

image and tissue volume can be calculated using the slice 

thickness for a single slice, or a volume estimate can be 

made using the average cross-sectional area of two nearby 

slices and the distance between slices. For a contiguous set 

of slices, the volume calculation for each adjacent slice pair 

can be summed to yield a total volume.52 The total adipose 

tissue can then be estimated by using density values avail-

able in the literature, eg, 0.923 kg dm−3.60 Recent studies 

have demonstrated excellent intraobserver and interob-

server reproducibility of CT-based quantification of VAT 

and SAT.

While CT is excellent for segmenting adipose from 

nonadipose tissue, it is incapable of detecting ectopic fat. 

Further, there can be significant errors associated with the 

estimation of tissue and organ margins and reconstruction of 

volumetric data from noncontiguous 2D multislice datasets. 

Although a whole body protocol incorporating 28 slices 

positioned at specific locations has been reported,60 the 

time required for image post processing can be substantial 

for multislice acquisitions, taking up to 3 hours to analyze 

28 slices.55

Most importantly, the amount of radiation exposure from 

CT limits its use in longitudinal data collection where serial 

measures would be necessary, and in vulnerable populations, 

such as growing children and women of child-bearing age. 

Typical protocols have limited the number of image slices to 

minimize radiation exposure. Indeed, the safety of radiation 

exposure from CT has received greater scrutiny from 

scientists recently because of the potential risk for free radical 

damage and cancer from radiation doses, which would vary 

in measuring whole body composition depending on the size 

of the subject and the type of CT equipment used.82 While 

no large epidemiological studies establishing the relative risk 

have been completed yet, recommendations have been made 

that MRI replace CT where possible.

MR imaging
The utility of MRI for assessing adipose tissue has been 

recognized for some time, but the low sensitivity and tech-

nical challenges including long scan duration have limited 

its broader utilization. Hence, early adopters used a small 

number of slices to assess adipose tissue.58,83 This evolved to 

the collection of multiple 2D slices from which whole body 

adipose and lean tissue volumes and masses were estimated 

using linear interpolation across consecutive slices.61,84,85 

The movement from a few slices toward whole body imag-

ing was further advanced with the recognition in 1998 that 

single-slice results from various body depots had significant 

variability in total and VAT across the range of BMI, which 

could not be predicted from determination of SAT or standard 

anthropometry.84

Although the contrast in CT images is generated by 

differences in the X-ray absorption properties of different 

tissues, the contrast in MRI scans depends on tissue-specific 

MR properties, such as proton density (ie, density of 

hydrogen atoms) and longitudinal (T1) and transverse 
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(T2, T2*)  relaxation times. One or more of these proper-

ties can be exploited to generate contrast between lean and 

adipose tissues. For example, differences in the rate at which 

the magnetization of protons in fat and water return to equi-

librium following an MR excitation (differences in fat and 

water T1s) leads to characteristic differences in intensities of 

the MR signal from fat (brighter) and water (darker) tissues 

in the T1-weighted MR images. This contrast in MRI scans 

can be exploited to provide greater discrimination of adipose 

and lean tissues and to provide improved estimates of ectopic 

lipid burden. Recently, measurement of adipose tissue using 

a whole-body T1-weighted imaging protocol was used to 

correlate VAT with insulin sensitivity in subjects at risk for 

type 2 diabetes.85 In this study, T1-weighted 3D whole body 

imaging was reported to have taken 20–25 minutes per sub-

ject. When shorter imaging times are preferred, fewer slices 

may be acquired to cover the entire body – as in a recently 

reported approach in which 10-mm-thick image slices were 

acquired every 40 mm of the whole body, but only 20% of 

the full body data was captured.73

Since MRI does not rely on ionizing radiation, it can be 

used in vulnerable population groups and in longitudinal 

studies requiring serial measures. And, MRI techniques have 

a slightly higher reproducibility than CT scans. For example, 

in healthy adults who had repeat scans during a 4-hour period, 

the coefficient of variation for VAT assessment by MRI was 

10.6% compared with 12.8% with CT.86 Improvements in 

MRI is evident in the more precise assessment of variability 

that has been determined using human cadavers and 

abdominal dissections, which showed tighter coefficient of 

variation ranging from 1% to 10% for SAT and from 6% to 

11% for VAT measurements,87 and from 0.2% to 2.3% for 

appendicular skeletal muscle mass measurement.67

In addition to T1 differences, the different chemical 

environment of protons in water and in triglyceride fatty acid 

chains leads to small but measurable differences in their MRI 

resonance frequencies. The resonance frequency differences 

can be detected directly using MR spectroscopic techniques 

and indirectly with an imaging approach commonly known as 

the Dixon method. The Dixon method, introduced in 1984,88 

uses repeated acquisitions of the evolving MRI signal to 

capture images with echo times when water and fat signals 

are “in phase” (signals add) and “out of phase” (signals 

subtract). The MR signal echo time describes the time delay 

of signal acquisition after exciting the fat and water protons 

with radio frequency pulses. Pure water and fat images can 

theoretically be reconstructed from the sum and difference 

images to yield separated fat and water images, respectively. 

The ratio of the fat to water signals at each point in the image 

is used to classify the tissue at that location as either adipose 

or lean. However, the separation of fat and water signals using 

the Dixon method can be confounded by imperfections in the 

scanner’s static magnetic field (ie, B0 inhomogeneity), which 

causes ambiguities in the classification of MR signal as fat or 

water and error in the estimation of adipose and lean tissue 

volumes. Additionally, in areas with approximately equal 

fat and water signal intensities, the signal cancellation can 

impair estimation of the fat fraction.89

To address this problem, the Dixon method has been 

enhanced by increasing the number and modifying the 

spacing between the individual images acquired at different 

echo times.90 Along with other refinements to the Dixon 

method over the past 2 decades,91 such as using optimized 

asymmetric echo spacing89 and detailed modeling of 

differences in the patterns of MR signal decay of the fat and 

water components, more accurate estimates of adipose tissue 

and water within tissues have been produced.92

Because some protocols do not image the entire body, 

they are subject to various sources of error. First, when 

studying a body depot, such as the abdominal compartment, 

a practical challenge is how best to match slice positions 

across individuals with varying body habitus. Second, once 

a positioning algorithm has been established, there remains 

scan-to-scan variability in precision of slice placement. Third, 

even if slices were perfectly and reproducibly positioned, 

there are significant errors associated with the interpolation 

of volumes in unsampled interslice regions. This could be 

particularly problematic in longitudinal studies, and this 

artifact in interpolating volumes would be particularly acute 

in the visceral compartment where adipose tissue is hetero-

geneously distributed among other visceral organs.93

While using similar biophysical approaches as MRI 

related to chemical shift, MRS separates, characterizes, and 

records chemical signals within a single voxel to provide 

information about the actual composition of chemicals or 

metabolites within the image. The peaks of the metabolites 

are identified by their frequency and expressed as a shift in 

the frequency relative to a standard, typically water, which is 

highly concentrated in human tissues. This so-called chemical 

shift is expressed in parts per million (ppm). Thus, water is 

located at 4.26 ppm, whereas the dominant fat signal (from 

aliphatic protons) is located at approximately 1.25 ppm.95 

Being independent of MR magnetic field strength, it allows 

comparisons of MR spectra obtained from imaging systems 

of different field strengths (eg, 1.5T vs 3T). The MR spectrum 

from a volume of tissue contains peaks at frequencies 
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characteristic of the chemical (eg, water and fat) constituents. 

The relative areas of these peaks, after correction for the 

number of hydrogen atoms per molecule and differences in 

T1, T2, etc, provide the relative concentrations of the different 

chemical species.

In human metabolic studies, MRS can yield greater 

chemical specificity than MRI, particularly in lean tissues 

(such as the liver), but this generally comes at the expense 

of spatial resolution and anatomical coverage. Furthermore, 

MRS is more sensitive to magnetic field inhomogeneities and 

motion (respiratory, visceral, bulk body) artifacts, making 

MRS especially challenging when assessing intra- abdominal 

tissues. For example, in the case of the pancreas, an 

irregularly shaped organ with a small volume, the larger voxel 

size required for MRS can compromise the tissue specificity 

of the MRS measurement.96 Like with MRI, correcting for 

artifacts such as respiratory motion using automated post 

processing is becoming more available. Ultimately, the infor-

mation obtained by MRS is complimentary to that obtained 

by MRI, and as these methods continue to evolve, it will be 

ideal to be able to extract both types of information from a 

single MR dataset.

It is exciting that highly promising conceptual and 

technological advancements involving complete sampling 

of body compartment data, and thus, eliminating the need 

for interpolation, and minimizing the challenges associated 

with positioning have occurred over the past 2 years. In 2009, 

a method for fully automated assessment of total adipose 

tissue was reported, which employed a continuously moving 

table, an optimized multi echo data acquisition sequence (an 

evolution of the Dixon method, termed “fat–water imaging”), 

and a computer algorithm for fully automated analysis of 

the data to yield total, visceral, and SAT measures.63 Such 

automated segmentation of adipose tissue compartments 

is critically important for widespread application of MR 

fat–water imaging. Strategies for segmentation include 

morphological approaches63 and those based on more 

advanced image processing such as fuzzy connectedness.94 

Quantification of adipose tissue volume acquired on a voxel-

by-voxel basis with such techniques are more accurate and 

robust.

Perspective on the promise of imaging  
to obesity, body composition,  
and metabolic disorders
The application of novel methods to enhance imaging 

technology for improved assessment of human body 

composition promises to enhance our understanding of the 

mechanisms, physiology, and pathophysiology of obesity-

related comorbidities. This is especially critical in the current 

health care environment of increased acuity of care combined 

with substantial disparities in access to care and the need to 

contain health care resource use. As the presence of comor-

bidities varies among the obese, it is most important to be 

able to identify and target those obese individuals who are 

at risk for type 2 diabetes and cardiovascular disease. Yet, 

current methods of identifying these individuals have not 

achieved standardization, and thus, there is still no consensus 

on specific criteria to categorize obese phenotypes.

An ideal imaging method that incorporates the charac-

teristics of being noninvasive, rapid, sensitive, and specific 

would have significant utility in addressing the limitations 

of current methodologies discussed earlier and enhance our 

understanding of metabolic risk in various populations. It 

is also critical that such a method be convenient and cost 

effective for use in both clinical and research settings. While 

calculating the costs of DEXA, CT, and MRI solely by the 

actual amount of time spent scanning makes these techniques 

comparable, the total costs remain significantly different 

because of the time and sophistication of methods needed 

to analyze the acquired data (Table 1). Nevertheless, a mov-

ing table fat–water MRI technique that enables acquisition 

of an entire noninterpolated whole body dataset, which is 

readily segmented using automated analysis techniques and 

could be performed on standard 1.5T or 3T body imagers in 

the range of 30 minutes or less, could meet this need, espe-

cially if the dataset acquired could also be used to extract 

the type of functional information provided from MRS of  

ectopic fat.

If the promise of such advances in imaging methodology 

can be met, coupling of these data with measures more 

typically utilized in clinical practice and research, such as 

blood pressure, lipid and liver enzyme profiles, biomarkers 

of inflammation (eg, high sensitivity c-reactive protein and 

PAI-1), and indicators of glucose metabolism and insulin 

sensitivity, would enable the development of more precise 

predictive risk models. Upon standardization, such a method 

could be utilized to distinguish differences among obese 

subjects across the span of gender, age, ethnicity, and BMI 

categories in both adipose and lean tissue amounts, types, 

and distribution in any body depot. Furthermore, and perhaps 

most critically, such methods might offer the potential to 

streamline therapeutic targets and offer critical insights into 

the efficacy of weight loss and other interventions designed 

to reduce metabolic risk, as well as increasing the utilization 

of body composition in obesity research.
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