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Abstract
In Eukarya, the packaging of DNA into chromatin provides a barrier that allows for regulation of
access to the genome. Chromatin is refractory to processes acting on DNA. ATP-dependent
chromatin remodeling machines and histone-modifying complexes can overcome this barrier (or
strengthen it in silencing processes). Both components of chromatin (DNA and histones) are
subject to postsynthetic covalent modifications, including methylation of lysines (the focus of this
chapter). These lysine marks are generated by a host of histone lysine methyltransferases (writers)
and can be removed by histone lysine demethylases (erasers). Importantly, epigenetic
modifications impact chromatin structure directly or can be read by effector regulatory modules.
Here, we summarize current knowledge on structural and functional properties of various histone
lysine methyltransfereases and demethylases, with emphasis on their importance as druggable
targets.

1 Introduction
Unlike lysine acetylation, methylation of lysines does not alter the effective charge, but the
hydrophobic and steric properties. The degree of lysine methylation can be mono-, di-, or
tri-methylated depending on the specific functional properties of the associated
methyltransferase [1–3]. These different lysine methylation marks serve as the binding site
for different effector proteins with cognate recognition domains specific to different
methylated lysine residues. For example, plant homeodomain (PHD) of bromodomain-PHD-
transcription-factor (BPTF) binds tri- or di-methylated lysine 4 of histone H3 (H3K4me3/
me2) and recruits the nucleosome remodeling factor (NURF) complex to the target gene
leading to gene activation [4,5]. In an opposite mechanism, the chromodomain of
heterochromatin protein 1 (HP1) binds tri-methylated lysine 9 of histone H3 (H3K9me3)
mark, which initiates heterochromatin formation and gene silencing [6,7].

Recent evidences have indicated that specific recognition domains, either present in a
protein complex or in the same polypeptide, combinatorially recognize different histone
modifications through a crosstalk mechanism leading to the propagation of active or
repressive state of the chromatin. One such example includes the polycomb repressive
complex 2 (PRC2) in maintaining and propagating repressive tri-methylated lysine 27 of
histone H3 (H3K27me3) through allosteric interaction between EZH2 and EED subunits [8].
Similar examples also include histone lysine methylating enzymes like mammalian G9a and
G9a-like protein (GLP) (for H3K9me2/me1) and yeast Clr4 (for H3K9me3), containing both
a catalytic SET domain and methyl-lysine recognition module (ankyrin repeats or
chromodomain) within the same polypeptide [9,10]. Therefore, methylation of specific
lysines on histones regulates the recruitment of various downstream DNA processing
proteins onto the chromatin, which in turn regulate a multitude of biological processes
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including heterochromatin formation, X-chromosome inactivation, DNA methylation, and
gene silencing [11,12].

The extensively studied histone lysine methylation marks include lysines 4, 9, 27, 36, and 79
of histone H3 and lysine 20 of histone H4. In general, H3K4, H3K36, and H3K79
methylation have been associated with transcriptionally active euchromatin, whereas H3K9,
H3K27, and H4K20 methylations are associated with transcriptional inactive
heterochromatin [2,11]. Aberrant methylation of histone lysines has been implicated in
various disease etiologies including cancer and X-linked mental retardation [3,12–15].
Therefore, a proper understanding of the structural and functional regulations of the
enzymes responsible for reversible modifications of histone lysines is of immense
importance in developing future therapeutics for many of these diseases. Following is a
summary of our understanding on the structural properties of known enzymes responsible
for catalyzing specific lysine methylation and enzymes responsible for selective removal of
these methylation marks.

2 Histone Lysine (K) Methyltransferases (HKMTs)
With the exception of Dot1 [16–18], all known HKMTs contain an evolutionarily conserved
SET domain comprised of 130 amino acids [19–23]. The SET domain was first identified as
a shared sequence motif in three Drosophila proteins, suppressor of variegation [Su(var)3–
9], enhancer of zeste [E(z)], and homeobox gene regulator trithorax [Trx] [24]. Mammalian
homologues of Drosophila Su(var) 3–9 protein, SUV39H1 in human and Suv39h in mouse,
were the first characterized HKMTs involved in H3K9 methylation [24]. Since then, more
than 50 SET domain-containing proteins with proven or predicted enzymatic role in carrying
out lysine methylation on histone tail have been identified in human [19,25].

With a few exceptions (e.g., Set8), the majority of the SET-containing HKMTs contain at
least one additional protein module in their protein sequence. Based on the sequence
homology within and around the catalytic SET domain, as well as based on other protein
modules and their architectures, SET-containing HKMTs are grouped into six different
subfamilies: SET1, SET2, SUV39, EZH, SMYD, and PRDM [19,20,25]. A number of SET-
containing HKMTs, however, do not fall into the above six subfamilies, due to lacking
sequences (and conservation) flanking their SET domains. Examples of such proteins
include Set8/PR_Set7 (mono-methylates H4K20), SUV4-20H1 and SUV4-20H2 (di- and
tri-methylates H4K20), Set7/9 (mono-methylates H3K4 and many other nonhistone
substrates), as well as MLL5, SetD5 (KIAA1757), and SetD6 (FLJ21148) with currently
unknown role in histone lysine methylation.

3 Structures of SET Domains
Structures of many SET domains from different subfamilies have been solved in various
combinations with bound substrate peptide and methyl donor (S-adenosyl-l-methionine,
AdoMet) or reaction product (S-adenosyl-l-homocysteine, AdoHcy) (Table 1).
Representative structures of the SET-domain are displayed in Fig. 1. The SET domain
adopts a unique structural design formed by a series of β-strands folded into three sheets
surrounding a knot-like structure (Fig. 1). The knot-like structure is formed by the C-
terminal segment of the SET domain, which passes through a loop formed by the preceding
stretch of sequences. Formation of this knot-like structure brings two conserved sequence
motifs of the SET domain, consisting of RFINHxCxPN and ELx(F/Y)DY, in close
proximity to the AdoMet-binding region and peptide-binding channel (Fig. 2a).
Interestingly, biochemical studies performed with F/Y mutants of the conserved ELx(F/
Y)DY motif in DIM-5 (F281Y), G9a (F1205Y), Set8 (Y334F), Set7/9 (Y305F), and Set1
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(Y1052F) suggest that the F/Y switch regulates the product specificity (mono-, di-, or tri-
methylation) of SET-containing HKMTs [26–29].

4 Structural Properties of Pre-SET and Post-SET Modules
Available crystal structures of the SUV39 subfamily (DIM-5, Clr4, GLP/EHMT1, G9a/
EHMT2, and SUV39H2 – all H3K9 HKMTs) show the presence of two closely packed
cysteine rich-modules in the pre-SET and post-SET (before and after the SET domain) (Fig.
1a). These two modules are important in maintaining structural stability (pre-SET) and
forming part of the active site lysine channel (post-SET) [26,30]. The pre-SET module of
SUV39 subfamily contains nine conserved cysteines (Fig. 2b), which coordinate three Zn2+

atoms in a triangular geometry (Fig. 2c). The post-SET module of SUV39 as well as Set1
(Fig. 1b) and Set2 subfamilies contains three conserved cysteines, which along with a
cysteine from the conserved RFINHxCxPN motif of the SET domain tetrahedrally
coordinate one Zn2+ atom near the active site (Fig. 2d). Binding of this Zn2+ at the active
site is essential for the activity of SUV39 subfamily and therefore is a promising site for
drug targeting [26].

The pre-SET and post-SET sequences in Set7/9 do not contain any cysteine-rich region.
Instead, pre-SET in Set7/9 is occupied with a β-sheet structure comprised of 12 antiparallel
β-strands, while the post-SET is occupied with a small α-helix [31] (Fig. 1c). Packing of the
post-SET helix into the catalytic SET domain is important to form the substrate-binding
groove in SET7/9. Similar variations in the sequences flanking the SET domain have also
been observed in other subfamilies of HKMTs and suggest a convergent evolution of SET-
containing HKMTs. This variation may also explain the differences in substrate specificities
among the SET-containing HKMTs.

Structural and biochemical studies suggested that consensus substrate recognition sequences
for G9a and Set7/9 contain only two to three residues: RK (G9a) and (R/K) (S/T)K (Set7/9)
[32,33]. The short recognition sequences enable these two enzymes to methylate many
nonhistone substrates, including Set7/9-mediated methylation of p53 [34], components of
the TBP complex, TAF10 [35] and TAF7 [33], estrogen receptor α [36], DNA
methyltransferase 1 [37], and G9a-mediated methylation of chromodomain Y-like protein
(CDYL1) and widely interspaced zinc finger motifs protein (WIZ) [32], CCAAT/enhancer-
binding protein-β(C/EBPβ) [38], as well as G9a auto-methylation [39]. It appears that the
dynamic lysine methylation of nonhistone proteins is a rapidly developing new field [40].

5 Structure of Inhibitor Bound G9a and GLP SET Domains
Methylation of H3K9 occurs in heterochromatin, which requires trimethylation of histone
H3 at lysine 9 (H3K9me3) by Suv39h [41,42], and in euchromatin, which requires mono-
and di-methylation of H3K9 (H3K9me1/me2) mostly by G9a and GLP [43,44]. H3K9me1/
me2 are the only silencing marks that are lost when tumor suppressor genes, e.g., in
colorectal cancer cells [45] and in breast cancer cells [46], are reactivated following
treatment with 5-aza-2′-deoxycytidine, a DNA demethylation drug [47]. Thus, the enzymes
that produce H3K9me1/me2 are appealing targets for inhibition.

A small molecule, BIX-01294 (a diazepin-quinazolin-amine derivative), was originally
identified as a G9a inhibitor during a chemical library screen of small molecules [48]. The
compound inhibits G9a and GLP activities (IC50 in low μM range) [48,49] and reduces the
methylation levels of H3K9 at several G9a target genes [48,50]. BIX-01294 was used in
combination with genetic factors to improve the efficiency of generation of induced
pluripotent stem cells [51–53]. This is consistent with the observation that repressive H3K9
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methylation by G9a is associated with the inactivation of Oct3/4, one of the four Yamanaka
genetic factors required for included pluripotency [54], during differentiation [55].

BIX-01294 was crystallized with the catalytic SET domain of GLP in the presence of
AdoHcy [49]. The inhibitor is bound in the acidic substrate peptide groove at the location
where the histone H3 residues N-terminal to the target lysine lie. The inhibitor resembles the
bound conformation of histone H3K4 to H3R8 and is positioned by residues specific for
G9a and GLP through specific interactions. Most importantly, the inhibitor-bound SET
domain structure provides avenues for improving the potency of the inhibitor. One of
suggested improvements is by extending the branch of O7-methoxy-CH3 into the target
lysine-binding channel, which should provide additional binding energy by increasing the
surface area of binding [49]. Indeed, a recent report of chemical exploration of BIX-01294
identified a derivative (UNC0224) as a potent and selective G9a inhibitor [56]. UNC0224
contains an extended N-dimethylamino-propoxy arm occupying the target lysine-binding
channel.

6 Histone Lysine Specific Demethylase (LSD1)
The discovery of lysine specific demethylase 1 (LSD1) [57] established that protein lysine
methylation is a reversible posttranslational modification. LSD1 is a flavin-dependent amine
oxidase, which demethylates H3K4me2/me1 [57], H3K9me2/me1 (in an androgen receptor-
mediated pathway) [58], and p53 [59]. The closely related LSD2 demethylates H3K4me2/
me1 [60] and has been linked with imprinting of the maternal genome [61]. Both LSD1 and
LSD2 demethylate methyl-lysine by forming of an imine intermediate, which undergoes
hydrolysis in aqueous buffer (Fig. 3a) to complete the demethylation process. Mechanistic
requirements for a protonated amine in this demethylation pathway do not permit either
LSD1 or LSD2 to demethylate trimethylated lysines [62].

LSD1 is found in histone modification complexes that control cell-specific gene expression
[57]. Within these complexes, REST (RE1-silencing transcription factor) corepressor
CoREST enables LSD1 to demethylate nucleosomes [63,64], while BHC80 (BRAF–HDAC
complex) inhibits LSD1 activity [63]. The LSD1 polypeptide chain can be divided into
several structural/functional regions (Fig. 3b): the N-terminal putative nuclear localization
signal, followed by a SWIRM (Swi3p, Rsc8p, and Moira) domain [65] – found in several
nucleosome-interacting proteins – and a monoamine oxidase domain – capable of
demethylating lysines in a flavin-dependent manner [66]. Thus far, crystal structures of
LSD1 alone [67,68], LSD1 in complex with CoREST [69], and LSD1-CoREST in complex
with H3 peptide [70,71] have been determined. Using a 21-residue peptide bearing a
methionine in place of target methyl-K4 – a 30-fold increase in binding affinity making the
mutant peptide a strong inhibitor and an ideal candidate for structural work – Forneris et al.
(2007) were able to resolve the first 16 residues of the H3 peptide, in perfect agreement with
their previous biochemical data that LSD1 is active on peptide substrates longer than 16
amino acids [66]. This study is the first in which a long, structured histone tail has been
visualized in histone-modifying enzymes and protein domains that recognize (decode)
methyl-lysine signals. In comparison, a similar study of LSD1-histone peptide, using the
approach of covalent tethering of peptide substrate to cofactor FAD, observed the first 7
residues (out of 21 residues used) of H3 peptide [70].

7 Jumonji-Containing Lysine Demethylases
In search of enzymes capable of reversing methylated lysines, Trwick et al. [72]
hypothesized that Jumonji domain containing Fe2+- and α-ketoglutarate-dependent
dioxygenases can reverse lysine methylation via a similar mechanism as followed by
bacterial AlkB family of DNA repair enzymes (Fig. 4a). This hypothesis was quickly
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verified with the discovery of JHDM1 as the Jumonji domain-containing histone
demethylase 1 [73]. Jumonji-containing proteins are members of the cupin superfamily with
functional roles in various biological processes including DNA/RNA repair through the
demethylation of N-methylated nucleic acids (e.g., 3-methylcytosine, 1-methyladenine)
[74,75], hydroxylation of protein and lipid side chains [76], protein lysyl-5-hydroxylation
[77], as well as recently characterized role in oxidizing 5-methylcytosine to 5-
hydroxymethylcytosine [78]. Demethylation reactions catalyzed by Jumonji enzymes follow
a hydroxylation pathway, which can demethylate mono-, di-, or tri-methylated lysines (Fig.
4a) [79,80].

Currently, there are nearly 30 Jumonji-containing proteins identified in human proteome, 20
of which have known function in histone demethylation [2]. The majority of Jumonji-
containing demethylases contains at least one additional structural domain in their sequence.
Based on the phylogenetic relationships and domain architectures, these proteins are divided
into seven subfamilies [2]. Additional structural motifs (other than the Jumonji domain)
present in these proteins are thought to be important in substrate recognition or facilitating
protein–protein interactions. For example, the H3K4 demethylase RBP2 contains a DNA-
binding domain, the AT-rich interaction domain (ARID). ARID binds DNA sequence motif
(CCGCCC) and is required for RBP2 demethylase activity in cells and that DNA
recognition is essential to regulate transcription [81].

Thirteen crystal structures for the Jumonji domain of JMJD2A in various configurations are
currently available (Table 2) [67,82–85]. In addition, one structure is available for JMJD2D,
two for JHDM1A [86], and two for PHF8 Jumonji domain (Table 2). Like in other cupin
family members, the Jumonji domain adopts the conserved double-stranded-β-helix or jelly-
roll structure formed by eight antiparallel β-strands, which harbors the Fe2+ (coordinated by
two histones and one aspartate or glutamate) and α-ketoglutarate in a conserved coordination
environment (Fig. 4b). The co-substrate α-ketoglutarate is coordinated to the Fe2+ center
through C1-carboxylate and C2-keto group. The C5-carboxylate of α-ketoglutarate forms
hydrogen-bonding interactions with Jumonji domain.

8 JMJD2A
JMJD2A contains an N-terminal Jumonji domain and C-terminal PHD and Tudor domains
(Fig. 4c). The JMJD2A Jumonji domain alone is capable of demethylating tri- and di-
methylated H3K9 (H3K9me3/2) and H3K36 (H3K36me3/2), though with a very low
turnover rate [84]. Structural studies revealed that the JMJD2A Jumonji domain
predominantly recognizes the backbone of the histone peptides (unusual for a sequence-
specific enzyme), allowing the enzyme to demethylate both H3K9me3/2 and H3K36me3/2
[83–85]. On the other hand, JMJD2A Tudor domain binds two different histone sequences
(H3K4me3 and H4K20me3) via radically different approaches [87,88]. The functional
connection between the methyl mark reader and eraser in JMJD2A is not clear.

9 PHF8 and KIAA1718
PHF8 and KIAA1718 belong to a small family of Jumonji proteins with three members in
mice and human (PHF2, PHF8, and KIAA1718) [2]. These proteins harbor two domains in
the N-terminal half (Fig. 5a): a PHD domain that binds H3K4me3 and a Jumonji domain
that demethylates H3K9me2, H3K27me2, as well as H3K36me2 [89]. However, the
presence of H3K4me3 on the same peptide as H3K9me2 makes the doubly methylated
peptide a significantly better substrate of PHF8 [90]. In contrast, the presence of H3K4me3
has the opposite effect in that it diminishes the H3K9me2 demethylase activity of
KIAA1718 with no adverse effect on its H3K27me2 activity. Differences in substrate
specificity between the two enzymes are explained by a bent conformation of PHF8,
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allowing each of its domains to engage their respective targets, and an extended
conformation of KIAA1718, which prevents its access to H3K9me2 by its Jumonji domain
when its PHD domain engages H3K4me3 (Fig. 5a). This study concludes that the structural
linkage between the PHD domain binding to H3K4me3 and the placement of the catalytic
Jumonji domains relative to this “on” epigenetic mark determines which repressive marks
are removed in both demethylases. Taken together, we suggest that the PHF8 and
KIAA1718 Jumonji domains on their own are promiscuous enzymes; it is the associated
PHD domains and linker – a determinant for the relative positioning of the two domains –
that are mainly responsible for substrate specificity.

Using domain cooperativity to enhance an enzyme’s activity and its substrate specificity
may be a general mechanism for Jumonji-containing protein lysine demethylases. For
example, JHDM2A-mediated histone H3K9me1/2 demethylation requires a zinc finger N-
terminal to the Jumonji domain for its enzymatic activity [91]. JARID Jumonji family
proteins (including Lid2 in S. pombe) contain a Jumonji domain that demethylates
H3K4me3 surrounded by several PHD domains and at least one of them binds H3K9me3
[92,93] (Fig. 5b). Mutation or deletion of this PHD domain impairs the demethylase activity
on H3K4me3 [92,93]. We speculate that the ideal substrate for JARID family is H3
trimethylated at both K4 and K9, allowing the enzyme to remove any local activating methyl
groups of H3K4me3 by the Jumonji in a repressing environment with H3K9me3 bound by
the PHD (Fig. 5b). We further speculate that a similar situation might occur for JMJD2A
where each of the two demethylase activities (H3K9me3/2 and H3K36me3/2) correlates
with one of the methyl marks (H3K4me3 and H4K20me3) recognized by the Tudor domain
(Fig. 4b).

10 Perspective
The histone code hypothesis suggests that multiple covalent histone modifications can be
read combinatorially through effectors that are recruited to these marks and subsequently act
on the local chromatin structure or transcriptional machinery via crosstalk among histone
modifications [94–97]. Several histone-methylating enzymes contain components (domains)
that both synthesize and bind a specific histone mark, such as mammalian G9a/GLP (for
H3K9me1/me2) [9] and S. pombe Clr4 (for H3K9me3) [10]. They contain modules, within
the same polypeptide, for both making (via the SET domain) and recognizing (via the
ankyrin repeats or chromodomain) a given methyl mark – allowing for a mechanism of
crosstalk to propagate a given methyl mark. PHF8 and KIAA1718 (Fig. 5a), and perhaps
JARID/Lid2 (Fig. 5b) and JMJD2A (Fig. 4b), contain modules, within the same polypeptide,
for both recognizing (via the PHD or Tudor) and removing (via the Jumonji domain) two
opposing methyl marks – a mechanism of crosstalk removes an “off” methyl mark based on
an existing “on” methyl mark. Understanding the function and crosstalk of individual letters
(one methyl mark, two methyl marks, and so on) may allow us eventually decipher the
complex language of the histone code [94,98].

The availability of human and other model research organism genome sequences,
proteomics, and transcriptomics has provided answers to a wide range of questions that in
some cases we did not even previously know to ask. Global analyses of genomic DNA
methylation and histone modifications [99–101] are playing a similar role, yielding powerful
insights into normal development and diseases, such as cancer and diabetes. The
experimental characterization of individual modifying enzymes (writers) and demodifying
enzymes (erasers) of the histone code is providing a growing and convergent picture of the
kinetic mechanisms, binding partners, chromatin recognition, and in some cases structures
of these proteins. However, it is clear that the activities of writers, erasers, and readers of the
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histone code are regulated in multicomponent complexes that have yet to be fully defined
and characterized.
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Fig. 1.
Examples of SET domain structures. Ribbon diagram of (a) Neurospora DIM-5 [26], (b)
human MLL1 [102], (c) human SET7/9 [31], and (d) human SET8 [103] (or PR-SET7
[104])
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Fig. 2.
Structural features of Neurospora DIM-5 [26,30]. (a) Ribbon diagram of the pseudo knot
formed by motifs III and IV. (b) DIM-5 contains four segments: a weakly conserved amino-
terminal region, a pre-SET domain containing nine invariant cysteines, the SET region
containing four signature motifs, and the post-SET domain containing three invariant
cysteines. (c) Illustration of pre-SET Zn3Cys9 triangular zinc cluster and (d) post-SET zinc
center
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Fig. 3.
Demethylation by oxidation. (a) Scheme of the demethylation reaction catalyzed by LSD1.
(b) Schematic representation of human LSD1 domain organization. The oxidase domain
contains an atypical insertion of the Tower domain not found in other oxidases. The solution
NMR structure of the SIWRM domain of LSD1 is shown in red [65]. Crystal structure of
LSD1 (residues 171–836 in blue)-CoREST (residues 308–440 in red ) in complex with H3
peptide (residues 1–16 in green), and the FAD cofactor is shown as a yellow ball-and-stick
[71]
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Fig. 4.
Demethylation by hydroxylation. (a) Mechanisms of demethylation of 3-methylcytosine by
AlkB (top) and of methyl-lysine by Jumonji-domain proteins (bottom). (b) Coordinations of
Fe2+ (sphere), α-ketoglutarate in JMJD2A (in gray), and KIAA1718 (in green). (c)
Schematic representation of JMJD2A domain organization, including the structures of the
N-terminal Jumonji (ribbons) [85] and the C-terminal double Tudor domain (surface
representation) [87]
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Fig. 5.
Crosstalk between Jumonji and PHD within the same polypeptide. (a) Schematic
representations of PHF8 and KIAA1718. Superimposition of PHF8 (colored) and
KIAA1718 (gray) in their respective Jumonji domains indicates that the PHF8 PHD domain
adopts a bent conformation toward the Jumonji domain in the presence of H3 substrate
binding, whereas the PHD and Jumonji domains of KIAA1718 adopt an extended
conformation in its apo-structure [90]. (b) Schematic representation of Lid2 in S. pombe [93]
(SMCX/JARID1C [92])
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Table 1

List of HKMTs with known structures (PDB ID)

Position HKMT PDB ID

H3K4 MLL1 2W5Y, 2W5Z

SET7/9 (including nonhistone substrates) 3CBO, 3CBM, 3CBP, 2F69, 1XQH, 1O9S, 1N6C, 1N6A, 1H3I, 1MUF, 1MT6

H3K9 SUV39H2 2R3A

G9a (EHMT2) 2O8J, 3K5K

GLP (EHMT1) 2RFI, 3FPD, 3HNA, 2IGQ,

RIZ1 (PRDM2) 2JV0, 2QPW

DIM-5 1PEG, 1ML9

Clr4 1MVX, 1MVH

H3K36 SET2 3H6L

H3K79 DOT1L 1NW3, 1U2Z

H4K20 PR-SET7 (SET8) 3F9W, 3F9X, 3F9Y, 3F9Z, 2BQZ, 1ZKK

Others PRDM10 3IHX

PRDM12 3EP0

PRDM1 3DAL

SETMER 3BO5

Prog Drug Res. Author manuscript; available in PMC 2011 March 3.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Upadhyay and Cheng Page 19

Table 2

List of histone lysine demethylases with known structures (PDB ID)

Position HDM PDB ID

H3K4 LSD1 2IW5, 2HKO, 2V1D, 2UXN, 2UXX, 2DW4, 2Z3Y, 2EJR, 2Z5U

H3K9 PHF8 3K3O, 3K3N

JMJD2A 2VD7, 2Q8C, 2Q8D, 2Q8E, 2P5B, 2PXJ, 2OQ6, 2OQ7, 2OS2, 2OT7, 2OXO, 2GP3, 2GP5

JMJD2D 3DXT

H3K36 JHDM1A (FBXL11) 2YU1, 2YU2
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