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A 6.9 million-feature oligonucleotide array of the human transcrip-
tome [Glue Grant human transcriptome (GG-H array)] has been
developed for high-throughput and cost-effective analyses in clin-
ical studies. This array allows comprehensive examination of gene
expression and genome-wide identification of alternative splicing
as well as detection of coding SNPs and noncoding transcripts. The
performance of the array was examined and compared with
mRNA sequencing (RNA-Seq) results over multiple independent
replicates of liver and muscle samples. Compared with RNA-Seq
of 46 million uniquely mappable reads per replicate, the GG-H
array is highly reproducible in estimating gene and exon abun-
dance. Although both platforms detect similar expression changes
at the gene level, the GG-H array is more sensitive at the exon
level. Deeper sequencing is required to adequately cover low-
abundance transcripts. The array has been implemented in a mul-
ticenter clinical program and has generated high-quality, repro-
ducible data. Considering the clinical trial requirements of cost,
sample availability, and throughput, the GG-H array has a wide
range of applications. An emerging approach for large-scale clini-
cal genomic studies is to first use RNA-Seq to the sufficient depth
for the discovery of transcriptome elements relevant to the dis-
ease process followed by high-throughput and reliable screening
of these elements on thousands of patient samples using custom-
designed arrays.
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Developments in genome technologies have expanded the
scope of molecular medicine. To investigate complex and

common diseases, such as inflammation and cancer, a clinical
study typically requires high-quality genomic data from hundreds
or preferably, thousands of patients, often from small quantities
of tissues or blood. High-throughput DNA microarray technol-
ogies (1, 2) have been applied in many clinical investigations to
obtain gene expression profiles of patient samples for disease
predisposition, diagnostics, prognostics, and individualized treat-
ment regimens (3–7).
Although most microarrays for RNA applications measure the

expression level of individual genes, the human transcriptome is
undoubtedly more complex. Alternative splicing, the process by
which individual exons of pre-mRNAs are spliced to produce
different isoforms of mRNA transcripts from the same gene, is
a major source of the diversity of proteins and their functions in
humans and other higher organisms (8–10). Defects in mRNA
splicing are an important cause of diseases such as Alzheimer’s
disease, cystic fibrosis, andmultiple cancers; furthermore, as many
as 50% of disease mutations in exons may impact on splicing
(reviewed in refs. 11–14). It is, therefore, of great importance to
be able to effectively measure levels of exon expression and
identify alternative isoforms in human health and disease.

To date, the investigation of exon-level expression and alter-
native splicing in diseases has been hampered by the availability
of high-throughput, reliable, and cost-effective platforms as well
as appropriate methods for processing limited amounts of RNA
(nanograms) from clinical samples. The Affymetrix Human Exon
1.0 ST Array is the only commercially available microarray for
expression profiling at both gene and exon levels; although it
provides accurate assessments of gene expression (15, 16), only
20% of its probe sets are supported by high-confidence annota-
tions, and each probe set contains only one to four probes. As
a result, the array is susceptible to false positives for analysis of
exons and alternative splicing. An alternative design is to use
probes targeting exon–exon junctions in addition to exons (17,
18), which has been applied to several custom arrays (19–21). In
one example, Castle et al. (21) developed a set of 17 oligonu-
cleotide arrays to survey genome-wide alternative splicing in 48
human tissues using pooled RNA samples. Recently, mRNA
sequencing using deep-sequencing technologies has provided
a new platform for the discovery and quantitation of genes and
isoforms. However, for large clinical studies, further develop-
ments will be required to improve the current limitations on cost
and throughput and the requirement of micrograms of total
RNA for mRNA isolation. A major challenge of clinical studies
is the limited amount of available material, especially from
fine-needle biopsy, enriched cell populations, or laser capture
microdissection, where the RNA yield is typically as low as sin-
gle-digit nanograms. Such challenges have limited the wide-
spread study of alternative splicing in a clinical setting. Thus, we
sought to develop a single array platform for cost-effective and
reproducible analysis of gene and exon expression from nano-
grams of total RNA.
In this article, we report on the design and performance of the

Glue Grant human transcriptome (GG-H) array, a 6.9 million-
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feature oligonucleotide array for comprehensive human tran-
scriptome analysis. The array uses high-density tiling of probes
over a large collection of transcriptome contents well-supported
by experimental evidence to assess gene- and exon-level ex-
pression, detect alternative splicing, and analyze coding SNP and
noncoding transcripts. To be able to routinely process limited
quantities of tissue from clinical studies, we adapted a sample
preparation method that can be used to efficiently process <50
ng total RNA for whole transcriptome analysis.
We validated the GG-H array in a testing experiment of

multiple independent sample preparations and measurements of
high-quality RNA samples from two distinct human tissues, liver
and muscle, and compared the results with those from mRNA
sequencing analysis of the same samples. We show that the array
is highly reproducible in estimating expression at both gene and
exon levels and sensitive in detecting expression changes. In
addition, the majority of alternative splicing events detected on
the array can be verified by mRNA sequencing data. We
implemented the use of this array in a multicenter clinical pro-
gram and have obtained high-quality, reproducible data.

Results
Overall Design of the GG-H Array.We designed a 6.9 million-feature
oligonucleotide array for comprehensive measurement of the
expression of genes and exons and detection of alternative
splicing as well as analysis of additional contents of the human
transcriptome, such as coding SNPs and several collections of
noncoding transcripts (Fig. 1A and Table 1).
A systematic examination of annotated transcripts yielded

a comprehensive collection of unique transcripts from 35,123
transcript clusters (genes). Comparisons of these unique tran-
scripts defined a set of 249,240 exon clusters and 315,137 probe
selection regions (PSRs) for exon analysis. Furthermore, a set of
260,488 unique exon–exon junctions was defined based on the
observed junctions between the adjacent exons on each transcript,
with ∼32% constitutive and ∼68% alternatively spliced junctions.
As an example, the SLK gene has, collectively, 9 unique tran-
scripts, consisting of 19 exon clusters and 23 PSRs, as well as 19
junctions, including 16 constitutive and 3 alternatively spliced
junctions (SI Appendix, Fig. S1). To achieve sensitive and robust
measurement of exon-level quantitation and distinguish gene
paralogs, 10 probes on average were designed for each PSR, and
additional probes were selected for homologous regions and
exons of long length, resulting in 119 unique probes on average
for each gene. Four probes were designed for each exon–exon
junction to aid the identification of alternative splicing.
SNPs in the coding regions or UTRs (86,954) were identi-

fied from National Center for Biotechnology Information
(NCBI) dbSNP, including coding-synonymous (23,825), coding-
nonsynonymous (21,950), and UTR SNPs (41,334). In addition,
2,828 DNA variations from 229 genes of drug-metabolizing
enzymes and transporters (DMET) were also included. Six probes
were designed for each allele of the 89,782 (86,954 + 2,828)
variations, which allows for the study of allele-specific expression.
Noncoding RNAs (ncRNAs) are usually excluded during

mRNA isolation. However, recent evidence suggests that the
majority of the transcripts of human and other mammalian
genomes is likely ncRNAs (8, 22, 23). From ncRNA databases,
we identified 730 curated ncRNA species with known biological
functions (f-ncRNA) (SI Appendix, Table S1A) and 50,783 an-
tisense transcripts that overlap with RefSeq genes. Ten probes
were designed for each of the content. In addition, we identified
as targets 49,957 highly transcribed fragments of unknown
functions (UTUs) (SI Appendix, Table S1B) in cytosol and nu-
clear regions of cells from Affymetrix tiling array data (24).
Further details of the design of the array and software for array
processing and data analysis are available in SI Appendix.

Array Contents Are Well Supported by RNA Sequencing of Multiple
Tissues. Deep mRNA sequencing provides a comprehensive and
objective survey of polyadenylated transcripts. To further eval-

uate the experimental evidence of the array targets, we com-
pared the annotations of the array with publicly available
sequencing data of mRNA from 10 diverse human tissue tran-
scriptomes, where 5.3–20.2 million 32-bp uniquely mappable
reads were acquired for each tissue (9). If a genomic region
targeted by the array has uniquely mapped sequencing reads
from one or more human tissues, it would support the potential
existence of mRNA transcription from the targeted region.
The design of the GG-H array is well-supported by mRNA

sequencing data from the multiple tissues (Fig. 1B). Overall,
94.5% of the uniquely mapped mRNA sequencing reads across
the 10 tissues fell into the targeted regions of the array, including
85% on exons and 7% on junctions. Among the exons designed
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Fig. 1. Design of the GG-H human transcriptome array for comprehensive
examination of gene and exon expression, alternative splicing, and addi-
tional contents of human transcriptome. (A) On a 3′ gene array, such as the
Affymetrix HU-133 Array, 11 probes were designed for the 3′-end exon(s) of
each gene. On an exon array, such as the Affymetrix Human Exon 1.0 ST
Array, there are two to four probes for each exon of the gene. In contrast,
the GG-H array uses, on average, 10 probes for each exon/PSR and 4 probes
for each exon–exon junction; in addition, 6 pairs of probes were designed
for each coding SNP, and 10 probes were designed for each noncoding RNA
transcript. (B) Comparison of the GG-H array contents with mRNA se-
quencing data on multiple tissues. The percentages of exons, junctions,
UTUs, and ncRNAs (y axis) supported by at least a specified number of se-
quencing reads (x axis) are shown.

Table 1. Summary of the contents of the GG-H array

Array components No. of targets No. of probes

Gene exons 315,137 3,292,929
Exon–exon junctions 260,488 1,060,703
Coding SNPs and DMET variations 89,782 982,941
Noncoding functional RNA (f-ncRNA) 730 5,869
Noncoding antisense expression

(as-ncRNA)
50,783 563,097

Unannotated transcribed units (UTUs) 49,957 488,581
Other probes including controls 498,840
Total 6,892,960
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on the array, 81% had at least one uniquely mapped read in
sequencing, and 72% had at least two reads; additionally, 47% of
the exons were supported by 10 or more reads. Similarly, 72% of
the junctions targeted on the array were supported by at least
one unique read; however, the percentage of supported junctions
dropped quickly with the increased number of mapped reads,
with 54% for at least 2 reads and only 18% for more than 10
reads. This is likely because junction regions are typically shorter
than exons. Interestingly, 49% of the previously unannotated
UTUs also had uniquely mapped reads (30% for at least two
reads), although this coverage was lower than that of exons and
junctions. As a comparison, functional noncoding RNAs are
covered by roughly 20% because of their frequent lack of poly-
adenylation.
A fraction of the exon and junction targets designed on the

array did not have reads in the RNA sequencing (RNA-Seq)
data. This is expected, because a percentage of the exons and
junctions can be expressed in other tissues. In addition, deeper
sequencing is generally required for better coverage of low-
abundance transcripts, as suggested by the observed decreasing
coverage of exons and junctions with respect to the number of
mapped reads in the dataset. Finally, although only uniquely
mapped reads were included in the analysis, the sequencing
errors of 1–2% can lead to mismappings; however, the false-
positive rate is estimated to be quite low (no more than 0.1%) (9).

Evaluation of the Reproducibility of the Array. We designed
experiments to test the performance of the array. Using refer-
ence RNA samples of liver and muscle tissues, we processed
each tissue independently four times and hybridized to a total of
eight arrays. To be able to routinely process very limited quan-
tities of RNA in clinical studies, 50 ng total RNA were chosen to
be the amount of material analyzed in each sample. In parallel, 2
μg same liver and muscle samples were used to perform four
independent repeats of mRNA isolation, processing, and se-
quencing. mRNA sequencing reads were mapped over the ge-
nome as well as junction regions and generated 46 million
uniquely mappable reads per sample or a total of 366 million,
among which 94% fall within the target regions of the array,
including 85% on exons and 9% on junctions. For each of the
eight runs, on average, 39 million reads were uniquely mapped to
exons, and 4 million reads were mapped to junctions, which were
included in the further analysis. Overall, 75% of the genes and
62% of the exons detected in a tissue have more than five reads,
whereas 65% and 40%, respectively, have more than 20 reads (SI
Appendix, Fig. S4). The expression level of the genes and exons
was calculated for each sequencing run as reads per kilobase per
1 million mapped reads (RPKM).
The GG-H array uses high-density tiling of probes over tran-

scriptome targets for the robust estimation of expression levels. As
an example, SI Appendix, Fig. S5A shows the reproducibility of the
raw signal of probes for several adjacent exons of the gene SLK,
which was measured by a total of 306 probes on the GG-H array,
including 10 probes targeting each of its 23 exons and 4 probes
targeting each of its 19 junctions. Compared with 11 probes per
gene on the Affymetrix HU133 array or 2–4 probes per exon on
the Affymetrix Exon Array, the GG-H array uses 10 probes tar-
geting one exon to ensure the reproducibility for exon-level ex-
pression similar to the gene-level measurement on the Affymetrix
U133 array, and it provides even more robustness for the ex-
pression estimation of genes with more than 100 probes. In ad-
dition, previous studies had revealed that exon 15 of SLK (chr10:
105,760,564–105,760,656) is alternatively spliced between liver
and muscle (25). In our data (SI Appendix, Fig. S5B), hierarchical
clustering of the probe signals from liver and muscle samples also
classified the SLK probes into two groups inversely correlated
with each other: a tightly clustered smaller group consisting of
mainly probes targeting exon 15 and its adjacent junctions and
a larger group of other probes targeting the remaining exons and
junctions. Here, the larger cluster reflects changes of gene ex-
pression level between the two tissues, and the smaller cluster

indicates alternative splicing. As expected, several probes were
misclassified; these probes had low signal levels indistinguishable
from the background noise and failed to reflect the expression of
their targets. It is important to note that, although these probes
performed poorly, the multiple additional probes from the high-
density tiling ensure the capture of differential gene and exon
expression as well as alternative splicing events.
The reproducibility of GG-H array at the gene and exon levels

was examined and compared with mRNA sequencing results
over the four independent replicates of liver and muscle samples
(Fig. 2A). Pearson correlation coefficients were calculated over
logged expression values. For both array and mRNA sequencing,
the calculation of correlation included the same set of 140,000
exons and 17,000 genes that have nonzero reads in sequencing.
Although quantile normalization across multiple chips was often
used in microarray analysis to improve reproducibility and re-
duce variation (26), here, we chose instead to scale probe in-
tensities of each array by their median value, similar to the
approach of RPKM in mRNA sequencing that normalizes the
expression values with the total number of reads. As shown in
Fig. 2A, the level of exon and gene expression measured by GG-
H array is highly reproducible. Between independent repeats, the
correlation coefficients were >0.99 for genes and 0.99 for exons.
The mRNA sequencing showed gene correlation of 0.99, similar
to the array, whereas the correlation of exon expression was 0.96,
lower than that of the array. The observed lower reproducibility
of exons in sequencing is most obvious with low-abundance
exons in which a difference of one or two reads between repeats
can induce a large variance in the estimation when there is only
one to a few reads for the exon. This effect is less problematic
when estimating gene expression, because on average, a gene
includes 10 exons, thereby producing ten times the amount of
mapped reads.
Similar observations can be made when comparing the co-

efficient of variation (CoV) between the array and sequencing
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Fig. 2. Comparison of the performances of the GG-H array and mRNA se-
quencing. (A) Reproducibility of exon and gene expression measured by
array and sequencing. In each panel, scatter plots of logged expression
values between four independent replicates of a reference muscle sample
are shown in the bottom left corner and in the top right corner, the corre-
sponding Pearson correlation coefficients are shown. (B) Comparison of
differentially expressed exons and genes identified by GG-H array and mRNA
sequencing.
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data. As shown in SI Appendix, Fig. S6A, the gene and exon
expression measured by GG-H array has low variance over
a wide range, and the median CoV of gene and exon expression
is 0.06 and 0.11, respectively. In comparison, mRNA sequencing
data showed median CoV of 0.12 and 0.31 for genes and exons
respectively, and large variances are seen for those genes and
exons covered with a small number of reads. In this experiment,
80% genes and 85% exons show lower CoVs in the array esti-
mation than mRNA-Seq, with 46 million uniquely mapped reads.
Both sample preparation and sequencing step contribute to the
observed variance in the sequencing data, and deeper sequencing
is required to improve its reproducibility (SI Appendix, Fig. S7).

Array Has High Sensitivity and Specificity in Detecting Differential
Expression. We identified genes and exons significantly differen-
tially expressed between liver and muscle tissues using the four
independent array repeats of each tissue and compared the
results with the four sequencing repeats for each of the same
tissues. To avoid potential bias from different parametric mod-
els, we chose to analyze the data using a nonparametric per-
mutation test that assumes no underlying signal distributions.
The method described by Tusher et al. (27) was applied to the
analysis of both array and sequencing data, and differentially
expressed genes and exons were detected with a false discovery
rate (FDR) of <0.005.
A significant percentage of the exons and genes identified by

the GG-H arrays was also identified in the sequencing analysis
(Fig. 2B) (P value < 10–16). Between liver and muscle tissues,
∼14,000 genes and ∼114,000 exons were detected as differen-
tially expressed by the arrays. About 80% of these genes and
exons were covered by more than five sequencing reads in at
least one tissue, among which more than 90% showed the same
direction of expression change in the sequencing data. In ad-
dition, as shown in SI Appendix, Fig. S8, whereas array and
sequencing identified a similar number of significant expression
changes among abundant genes, sequencing identified many
fewer genes among those detected by less than 20 reads.
Deeper sequencing is required to detect the expression of these
genes and exons (∼35% of genes and ∼60% of exons). Overall,
these results show that the GG-H array has high sensitivity
and specificity in measuring differential expression of exons
and genes.

Improved Identification of Alternative Splicing by the Array. Data
from multiple exon and junction probe sets on the array were
used to detect alternative splicing events. Junction probes can
significantly improve the percentage of true-positive detections
in alternative splicing analysis when combined with exon probes.
For example, the two isoforms of SLK distinguish each other by
either skipping or including exon 15. As shown in Fig. 3, changes
of proportions between these two isoforms can be observed from
the changes of signals of the corresponding exon as well as its
neighbor junctions. In liver, the abundant expression of exon 15,
its two connecting junctions, and the bridging junction between
exon 14 and 16 imply that both isoforms are present, whereas in
muscle, the reduced expression of exon 15 and its connecting
junctions accompanied by the increased expression of the
bridging junction reveal the alternative splicing to the isoform
that skips exon 15.
By combining such information on exons and corresponding

junctions, more than 6,600 alternative spliced events were
identified from the array data between liver and muscle. Briefly,
for each exon, its expression level was normalized to the ex-
pression of its corresponding gene, and candidate exons of al-
ternative splicing were identified based on the significant changes
of their normalized expression levels between the conditions.
Similarly, junction probe sets were prescreened to remove those
not significantly above the background across all of the con-
ditions, and candidate junctions were identified based on the
significant changes of their expression levels normalized to gene
expression. To reduce false positives, each alternative spliced

event identified required a candidate exon for alternative splicing
supported by at least one of its connecting junctions. Compared
with data from sequencing, 62% of the exons identified by array
were covered by, on average, more than five sequencing reads in
at least one tissue, among which 56% showed a change of the
same direction by more than twofold, indicating that the array is
a reliable platform to evaluate alternative splicing.

Measuring Noncoding RNA Using the Array. The GG-H array also
measures the expression of less well-studied contents of the
human transcriptome, such as UTUs and ncRNA. In addition,
transcripts lacking polyadenylation are usually excluded during
the mRNA isolation. Our array data revealed that substantial
numbers of these transcripts lacking polyA were well-detected in
liver and muscle (SI Appendix, Fig. S9A). For example, many f-
ncRNAs of diverse functions were highly expressed, including
signal recognition particle RNA 7SLs, small cytoplasmic Alu
RNAs (scAlu), small nuclear RNA 7SKs, spliceosomal RNA U2,
and several small nucleolar RNAs (snoRNAs) and small Cajal
body-specific RNAs (scaRNAs). As expected, none were well-
detected in our mRNA sequencing data. Interestingly, the two
functional families of snoRNAs, the C/D box family that is asso-
ciated with RNA methylation and the H/ACA box family associ-
ated pseudouridylation, were strongly differentially expressed
between the tissues: C/D box snoRNAs were overly expressed in
muscle, whereas H/ACA box snoRNAs were dominant in liver (SI
Appendix, Fig. S9B). Further studies are necessary to understand
the biological implications of these findings.

not assayed

A

B

Fig. 3. Detection of alternative splicing events using exon and junction
probes on the array. Two isoforms of SLK are alternatively spliced between
liver and muscle; the green lines represent an isoform-skipping exon 15
(ENST00000335753), and the blue lines represent another isoform including
exon 15 (ENST00000369755). (A) Changes of the signal of junction and exon
probes. (B) Changes of the calculated expression of exons and junctions.
Exon expression is shown at the diagonal, and junction expression is shown
off the diagonal of two connecting exons.
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Discussion
High-throughput genomic approaches can greatly accelerate our
understanding of the molecular mechanisms of diseases. How-
ever, a clinically useful genomic technique has several important
requirements. First, a disease study typically involves acquiring
genomic data from hundreds to thousands of patient samples
at multiple time points, which demands rapid turnaround and
cost effectiveness. Second, clinical studies are restricted in the
quantity of biological materials that can be sampled from a pa-
tient. Third, patient enrollment is demanding and often costly;
therefore, high sensitivity and specificity are required, and the
power of a study is dependent on the reproducibility of the
analytical measurement.
We have developed a human transcriptome array platform

that meets these requirements. The array uses a high-density
tiling approach for the measurement of gene and exon expres-
sion and genome-wide identification of alternative splicing as
well as analysis for coding SNP detection and noncoding tran-
scripts. Care was taken in probe selection to optimize probe
performance and avoid cross-hybridization. The content de-
signed on the array is well-supported by RNA sequencing data of
multiple tissues. We validated the array using multiple in-
dependent preparations of 50 ng total RNA as the starting ma-
terial and compared the results with RNA sequencing analysis
from 2 μg total RNA. Our results showed that the GG-H array is
highly reproducible in estimating mRNA abundance at the gene
and exon level and is sensitive in detecting changes. In addition,
the exon–exon junction probes of this array were shown to im-
prove the detection of alternative splicing events.
Recent developments in mRNA sequencing provide a com-

prehensive and objective survey of the polyadenylated tran-
scriptome. In addition, the dynamic range of signal of deep se-
quencing can be greater than that of microarrays (SI Appendix,
Fig. S6B). Because the sequencing platform counts a transcript in
an RNA sample according to its abundance, the most-abundant
species can be sampled hundreds of thousands or millions of
times before the less-abundant species are sampled; therefore,
the coverage and reproducibility of low-abundance exons and
genes are critically dependent on the total number of reads. In
our data of 46 M uniquely mapped reads per replicate, 35% of
the genes and 60% of the exons detected in a tissue are covered
by fewer than 20 reads, where large variation is observed and
fewer significant changes are identified by sequencing. Se-
quencing with fewer reads would lead to higher percentages of
genes and exons inadequately covered (SI Appendix, Fig. S4). In
the Glue Grant clinical studies, expression of many immune
mediators, such as IFNs, ILs, and chemokines, is observed at the
lower 35% of the transcriptomes of T cells, monocytes, and
neutrophils. Deeper sequencing, therefore, is required to ade-
quately cover these genes, especially when considering the dollar
cost of patient enrollment and sample collection (tens of thou-

sands dollars per subject in the Glue Grant). Besides, because
mRNA transcripts usually count for only a small percentage of
total cellular RNA, purification of polyA RNA becomes neces-
sary for mRNA sequencing, which at the present time, requires
micrograms of starting material. In contrast, microarrays use
predesigned hybridization probes to allow the detection of
transcriptome targets in the presence of other RNA species and
without prior polyA RNA enrichment. To meet the requirements
for large-scale clinical studies, reduction in both the quantity of
starting materials and cost of each assay as well as sharp re-
duction in run time would be required.
For example, current throughput is considerably different with

the two approaches. With similar initial instrument cost, an av-
erage analytical core laboratory can be equipped with one
Affymetrix 7G scanner and four hybridization stations for arrays
(∼$400,000), one Illumina Genome Analyzer II (∼$600,000), or
one HiSeq 2000 analyzer (∼$750,000). A typical large-scale
clinical study, such as our clinical trial examining the genomic
response to severe injury, performs transcriptome analysis on
about 5,000 clinical samples. Table 2 compares the current
throughput using microarrays and sequencing with the Genome
Analyzer II or anticipated throughput of the HiSeq 2000 as well
as the time required for processing these samples using each of
the three platforms. With current technologies, completing the
analysis of a clinical trial of this size would be challenging with
present mRNA sequencing technologies alone.
However, the information generated by RNA sequencing can

benefit from array design and verification tremendously. In this
study, although 94% of the sequencing reads fell into targeted
regions of the array, the remainders were mapped to other ge-
nomic regions, which provide valuable information to improve
the array design. As an example, we performed de novo identi-
fication of exon–exon junctions from the RNA sequencing data
(28) (SI Appendix, Fig. S10). Although overall GG-H junctions
cover the highly expressed junctions identified by the de novo
method very well, a total of 6,581 additional de novo junctions
supported by more than four reads (∼1 RPKM) were discovered
and will be included in the update of array design. In addition, by
analyzing the array signals across a large number of samples over
multiple tissues and comparing array results with those of se-
quencing, expression estimation of the array can be calibrated,
and nonperforming probes can be detected and removed.
All in all, an approach has emerged to apply RNA sequencing

and arrays in combination to large-scale clinical studies, where
RNA-Seq with sufficient depth is first conducted to discover all
of the transcriptome elements potentially relevant to the disease
of study followed by high-throughput and reliable screening of
these elements on thousands of patient samples using custom-
designed arrays.
We have implemented this array platform within an ongoing

multicenter clinical study to examine the temporal genomic re-

Table 2. Comparison of the throughput of transcriptome analysis

GG-H array RNA-Seq (GA II) RNA-Seq (HiSeq 2000)

Gene
Throughput (samples per week) 200 2 30
Processing time for 5,000 samples (wk) 25 2,500 167

Exon
Throughput (samples per week) 200 1 15
Processing time for 5,000 samples (wk) 25 5,000 333

The number of reads required for RNA sequencing depends on the objectives of the study. To achieve the
same level of reproducibility as the GG-H array, ∼150 million reads for genes and 200 million reads for exons are
likely required (SI Appendix, Fig. S7). To detect differential expression, the array detects about the same number
of genes and about two times the number of exons as RNA-Seq of 46 million uniquely mappable reads, and
deeper sequencing is required for low-abundance genes (SI Appendix, Fig. S8). Here, for the throughput com-
parison, we assumed 46 and 92 million uniquely mappable reads for differential expression analysis of genes and
exons, respectively. The throughput of HiSeq 2000 for RNA sequencing was estimated based on 700 million
uniquely mappable reads per run and two runs per week.
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sponse to severe injury in blood leukocytes, enriched monocytes,
T cells, and neutrophils (29, 30). Using macroscale and micro-
fluidic approaches to isolate these cell populations from <14 mL
blood, we have successfully analyzed more than 1,800 samples of
25–200 ng total RNA obtained from more than 100 patients.
With current technology and a throughput of hundreds of sam-
ples per week in an average core facility at a current cost of
approximately $400/sample, we anticipate that this array plat-
form will have a wide range of applications in high-throughput
clinical studies.

Materials and Methods
Design of the Human Transcriptome Array. Details of the design of the array
and its availability and software for array processing and data analysis are
available in SI Appendix.
Design of exon and junction probes. On average, 10 probes were designed for
each PSR, and 119 unique probes, on average, were designed for each gene;
care was taken in probe selection to optimize probe performance and avoid
cross-hybridization. To design probes for the array, we considered three
important factors: (i) probe performance by thermodynamics calculation, (ii)
sequence uniqueness against the transcribed regions and whenever possible,
whole genome (the sequence of a desirable probe is unique without any
17mer or more off-target perfect matches or up to three base off-target
mismatches, including insertions/deletions), and (iii) spreadness of the se-
lected probes across the PSR. Four probes were designed for each exon–exon
junction at positions −3, −1, +1, and +3.
Various control probes. Quality control is important for microarray studies of
clinical samples (31). In addition to the standard control probes on Affy-
metrix GeneChips, several additional probe sets were included for the pur-
pose of quality control of the assay, background modeling, estimation of
cross-hybridization, and monitoring of the ribosomal RNA signal in the
amplified material.

Sample Processing and Analysis. Sample preparation for GG-H array. Reference
RNA samples of liver and muscle tissues were obtained from Ambion.
The detailed protocol is described in SI Appendix. The array was washed,
stained, and scanned using Affymetrix Fluidics Station FS450 and GeneChip
Scanner 3000 7G.
Sample preparation for Illumina sequencing. Library preparation and sequencing
were performed as described (32). Briefly, starting with 2 μg total human
liver and muscle RNA (Ambion), mRNA extraction was performed using the

Illumina mRNA Seq Sample Prep Kit. Refer to the user guide for the full
protocol through final library generation. The Single Read Cluster Genera-
tion Kit v2 and Sequencing Kit v3 by Illumina were used to sequence the
libraries. Three or four lanes were used for each sample.
GG-H array data processing. Raw signals of the arrays were processed using
Affymetrix Power Tools, including Robust Multiarray Analysis (RMA) for
background correction, median scaling for normalization, and median polish
for summarization (26). Gene and exon expressions were calculated ac-
cording to annotations of the GG-H array. Sense and antisense probe set
signals were combined for UTU expression. Expression of junctions, non-
coding RNAs, and other features was calculated as expression of the corre-
sponding probe sets. For alternative splicing analysis, briefly, Junction and
Exon array Toolkits for Transcriptome Analysis (JETTA) software was used
with the cutoff criteria of Microarray Data Analysis System (MIDAS) (25)
P value < 0.01 and fold change > 2 for the alternatively spliced exon and at
least one of its adjacent junctions. Details of the computational algorithm,
software, and visualization tools are described in SI Appendix. The data have
been deposited in Gene Expression Omnibus (GEO) under the accession
number GSE26072.
mRNA-Seq data processing.mRNA-Seq reads were mapped over the genome as
well as junction regions defined by the GG-H array annotation using 36 bp.
Junction regions were defined to span 27 bp over each side of two connected
exons. SeqMapwas used for themapping, with allowance of 2-bpmismatches
(33). About 67% of the total reads from each run were mapped to one single
location of the genome, resulting in, on average, 13 million uniquely map-
pable reads per lane to the genome sequence, which was comparable with
other published studies (9, 34). Expression indices of the abundance of
genes, exons, and other features were calculated as RPKM (9). The abun-
dances of genes calculated in liver and muscle tissues also agree well with
other published datasets; for example, compared with data on the human
muscle tissue from Wang et al. (9), the Pearson correlation coefficient was
over 0.9. De novo identification of exon–exon junctions was performed us-
ing SpliceMap from mRNA on 120 million 58-bp RNA-Seq data (28). The data
have been deposited to the NCBI short-read archive under the accession
number GSE26109.
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