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It has recently been noted that empirical food webs are signifi-
cantly compartmentalized; that is, subsets of species exist that
interact more frequently among themselves than with other
species in the community. Although the dynamic implications of
compartmentalization have been debated for at least four decades,
a general answer has remained elusive. Here, we unambiguously
demonstrate that compartmentalization acts to increase the per-
sistence of multitrophic food webs. We then identify the mecha-
nisms behind this result. Compartments in foodwebs act directly to
buffer the propagation of extinctions throughout the community
and augment the long-term persistence of its constituent species.
This contribution to persistence is greater the more complex the
food web, which helps to reconcile the simultaneous complexity
and stability of natural communities.
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For decades, ecologists have sought to understand what leads
to stable and persistent ecosystems (1–7). Recently, it was

demonstrated that empirical food webs are significantly more
compartmentalized than would be expected at random; that is,
they tend to be organized in subsets of species that interact more
frequently among themselves than with other members of the
ecosystem (8–12). The natural next step was to understand the
resulting consequences for species dynamics.
Intriguingly, the potential implications of compartmentaliza-

tion were speculated upon far earlier by Robert May who ex-
plicitly proposed that, for a given level of connectance and
interaction strength, the probability of stability would be increased
if species were arranged in compartments (3). In contrast, later
studies concluded the very opposite and argued that food webs
should not be arranged in tight compartments (13, 14). These
studies relied on an interpretation of compartmentalization within
which interaction strengths build weakly and strongly connected
sets of species (15–17). Following this approach, it was later ob-
served that compartmentalization tends to enhance species per-
sistence in small, model food webs (18). The explanation provided
was that the compartments can act to stabilize chaotic dynamics by
promoting dynamic asynchrony between compartments (19).
These earlier studies, however, used simple models for species

dynamics or unrealistically structured food webs, calling into
question their applicability to the larger and more complex food
webs observed in nature (20). A more recent study attempted to
address this concern and concluded that bipartite, plant–herbivore
food webs are indeed more persistent and stable as a consequence
of increased compartmentalization (21). Nevertheless, two crucial
questions remain: (i) How general are the results to multitrophic
food webs and (ii) what are the mechanisms behind this process
(Fig. 1)?
Here, we rigorously examine the relationship between the de-

gree of compartmentalization of food webs and their dynamic
behavior. Specifically, we answer the question of how and why the
long-term persistence of a food web is related to whether it is
more or less compartmentalized. We find that greater compart-
mentalization appears to imply greater community persistence
because of containment of perturbations within compartments.
We also find that the compartmentalization and complexity of
communities are directly linked such that the architecture of real
food webs works to directly increase their long-term persistence.

To understand how compartmentalization affects a food web’s
resilience to perturbation, we combine a leading model for food-
web structure (22–25) as the skeleton of the food web and a bio-
energetic consumer-resource model (26, 27) that defines the
population dynamics on such a food web. We run two parallel
simulations: In the first, the food web starts fully intact, whereas in
the second, we remove one randomly selected species (Materials
and Methods). Food-web persistence is measured as proportional
persistence—the number of species that remain at the end of
a simulation divided by the initial species richness (Materials and
Methods). By later examining the number and identities of the
species that go extinct, we can directly assess the role of com-
partmentalization on the community’s resilience to perturbations.
For any given food-web structure, we can measure the degree

of compartmentalization with a quality function called modu-
larity (28, 29), which depends on who interacts with whom and
not the strength of these interactions. Strictly speaking, modu-
larity measures the degree to which species tend to be organized
in subsets of species that interact more frequently among
themselves than with other members of the web. The value of
modularity M quantifies the “goodness” of any particular parti-
tioning of species into groups; for a random partition of a food
web M ∼ 0, whereas the modularity for a meaningful partition is
positive. All other things being equal (e.g., the food web’s size),
the larger the value of modularity is, the more compartmental-
ized a food web is. The modularity M of a food web is influenced
by the web’s connectance. For this reason, we account for con-
nectance in our analysis to control for this potentially important
factor (Materials and Methods).

Results and Discussion
We find that, for a large ensemble of model-generated food
webs, the greater the compartmentalization is, the higher the
persistence (Fig. 2). Importantly, this benefit of modularity is
over and above any influence imparted by the connectance of the
food web (SI Materials and Methods, Section S2). This effect
appears to saturate at large values of compartmentalization,
potentially explaining why earlier studies suggested the existence
of a point beyond which compartmentalization provides no ad-
ditional benefit to the community or may even be detrimental
(13). Whereas the majority of real food webs would be expected
to experience a 5–15% increase in persistence as a result of their
compartmentalization, our results suggest that this increase
could reach up to 25% in the most compartmentalized empirical
food webs. Despite the subtlety of empirical food-web com-
partments (8–12), we observe strong, nontrivial effects of com-
partments on interspecies dynamics.
Now that we have shown that compartmentalization increases

food-web persistence, we turn to the specific mechanism behind
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the observed effect. To do this, we measure the degree to which
the extinction of the intentionally removed species is felt beyond
that species’ compartment (Materials and Methods). First, we
observe that the subsequent species that go extinct as a result of
the induced extinction have a higher probability of belonging to

the same compartment as the removed species than would be
expected at random (Fig. 3A). Second, we find that these species
go extinct sooner than would be expected at random (Fig. 3B).
The direct elimination of a species in our simulations therefore
sets off a cascade of rapid, local extinctions.
Up to now, we have focused on the effect of direct species

removals. In an ecological community, however, the extinction of
any species—intentional or otherwise—represents the most fun-
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Fig. 1. Potential effects of compartmentalization. (A) A hypothetical compartmentalized food web made up of three compartments. We explore here the
possible consequences of a single species extinction. Suppose that the species highlighted in red and indicated by the arrow goes extinct. (B) Upon the
extinction of this species, it is hypothesized that compartmentalization will predominantly restrict the effects of perturbations to within the same com-
partment as opposed to other compartments. We would then expect that secondary extinctions (the enlarged species highlighted in the color of their re-
spective compartment) are more probable within the same compartment. (C) Everything else being equal, the effects of extinction of a species will be felt
throughout the community, independent of where the initial extinction occurs, if compartmentalization had no influence.
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Fig. 2. Effect of compartmentalization on food-web persistence. (A) Mean
contribution of compartmentalization—quantified by modularity—to the
long-term persistence of species in the community. The greater the com-
partmentalization of a food web is, the greater the persistence of its con-
stituent species. The SEs of the reported averages are shown as error bars
but are small. (B) The range of compartmentalization observed in 15 em-
pirical food webs (see SI Materials and Methods, Section S1 for a list of
the empirical webs). The middle line marks the median, the box covers the
25th–75th percentiles, and the maximum length of each whisker is 1.5 times
the interquartile range. Points outside this range show up as outliers.
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Fig. 3. Community response to manipulated species extinctions. (A) Mean
relative number of extinctions that occur in the same compartment as an
eliminated species, as a function of the web’s modularity. Values greater
than zero imply that the subsequent species that go extinct as a conse-
quence of the original extinction have a higher probability of belonging to
the same compartment. (B) Mean relative time to extinctions that occur in
the same compartment as the eliminated species, as a function of the web’s
modularity. Values less than zero imply that these species tend to go extinct
earlier, as a consequence of the original extinction. The SEs of the reported
averages are shown as error bars.
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damental type of ecological perturbation encountered. In the
absence of dynamic data, it has historically been assumed that the
species most impacted by an extinction are those that are directly
connected, in particular their predators (30). In fact, recent re-
search on the dynamics of entire communities has also demon-
strated that the closer—in terms of trophic distance—a species is
to an extinction, the more likely it is to be strongly impacted (31).
Here, we find that this effect of distance shows an important

dependence on the degree of connectivity of the community (Fig.
4A). When a species goes extinct during a simulation, it is indeed
expected that the next species to go extinct is directly connected,
either as predator or as prey. This tendency, however, decreases
as the connectance of the community increases up to a point at
which directly connected and nondirectly connected species have
the same tendency to follow a previous extinction. Therefore,
although trophic distance plays an important role (31), the
magnitude of this effect is tempered at high connectance by
additional food-web attributes.
Here, we show that this relationship between connectance and

the importance of trophic distance can be better understood
through a closer examination of compartmentalization. When
a species goes extinct in our simulations, we find that it is likely
that the next species to go extinct is found within the same com-
partment (Fig. 4A). As the connectance of the food web increases,
the tendency for the next extinction to occur within the same
compartment increases as well. Surprisingly, this increasing in-
fluence of compartmentalization is driven by an increasing prob-
ability of the subsequent extinction of nondirectly connected
species within the same compartment (Fig. 4B). Furthermore,

greater compartmentalization allows us to specify the extinctions
of directly connected species that are least expected, namely those
that occur across compartment boundaries.
We observe that there is a range of connectance for which

perturbations, in the form of species extinctions, preferentially
propagate along trophic interactions (Fig. 4A). In this region,
trophic distance plays a clear and important role. At least half of
empirical food webs, however, exhibit connectance in the range
for which perturbations more preferentially propagate within
compartments (Fig. 4C). In this region, indirect effects play
a critical role, leading to the unexpected, although highly prob-
able, extinction of nondirectly connected species.

Conclusions
Empirical food webs tend to be strongly compartmentalized (12)
and this compartmentalization has been claimed to arise from
subhabitats within the environment (9) or because of phyloge-
netic patterns within the community (11). Here, we demonstrate
that, regardless of its origin, being compartmentalized is directly
to a community’s advantage because compartments act to buffer
the propagation of extinctions. Intriguingly, the observed archi-
tecture of empirical food webs acts to significantly increase both
their persistence and resilience against perturbation.
In addition, our rigorous quantification of food-web compart-

mentalization provides a manner in which to estimate potentially
large indirect effects within ecosystems, particularly those leading
to secondary species extinctions. As measuring indirect inter-
actions between species is exceptionally difficult, compartmen-
talization provides valuable insight into community dynamics on
the basis of community structure alone. Importantly, without
considering the perspective of the community as a whole, this
realization simply would not be possible. Moreover, recent simi-
larities observed between ecosystems and the financial sector lead
us to suspect that our conclusion may be far more general and
insightful in additional fields for which assessing systemic risk has
become a priority (32).

Materials and Methods
Model-Generated Food Webs. We consider model-generated food webs with
size S = 50 and average directed connectance C ∈ [0.04, 0.26] at intervals of 0.02.
These values of connectance cover the values typically observed empirically (20).
We generate 250 different food-web structures at every value of connectance
C, and we do so with the niche model (22), a leading static food-web model
that explains a large number of empirical food-web properties (23–25).

Using these structures as the backbone, we then randomly assign species’
body sizes and interaction strengths to emulate the empirically observed
distributions (33). Both predator–prey body-size ratios (27) and interaction
strengths (16, 19) are known to influence food-web stability. By combining
the same structure of who-eats-whom with a large number of replicates that
vary body sizes and interaction strengths, we are able to control for and
eliminate the potential influence of these two factors on our final results.

Once we have the structure, body sizes, and interaction strengths, we run
two parallel simulations from the exact same initial conditions: (i) a standard
dynamic simulation and (ii) a simulation in which we remove a random
species before calculating the dynamic evolution of the species’ populations.
Overall, we analyzed 55,545 simulations without intentional species extinc-
tions and the same number of simulations but with an intentional species
extinction, corresponding to an average of 4,628 parallel simulations at
every value of connectance.

Dynamic Simulations. To simulate species’ dynamics, we use the bioenergetic
consumer-resourcemodel of ref. 26, which defines dynamics of species biomass
over time, as parameterized in previous studies of food-web dynamics (27, 33,
34). Specifically,we simulate thedynamics of speciesbiomass over timeandflow
of energy through the food web with a multispecies consumer-resource model
(26). The change in biomass density B of species i is described by

dBi

dt
¼ riGiBi − xiBi þ xiBi ∑

j∈fprey of ig
yiFij − ∑

k∈fpredators of ig

xkykBkFki
eki

; [1]
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Fig. 4. Propagation of extinctions within food webs. (A) We compare the
ability of different factors to predict the next species to go extinct after the
earlier extinction of a species in a food web. As the connectance of the food
web increases, the tendency to observe consecutive extinctions of directly
connected species decreases (white triangles). For species within the same
compartment, the same tendency increases with increasing connectance (red
circles). Values close to zero imply that this tendency is close to the random
expectation. (B) We separate within-compartment extinctions into those
that occur between (i) directly connected species (gray squares) and (ii)
nondirectly connected species (blue diamonds). We find that the probability
of consecutive extinctions between two nondirectly connected species shows
a strong increase with increasing connectance. The SEs of the reported
averages are shown as error bars but are small. (C) The range of connectance
observed in 15 empirical food webs, as in Fig. 2.
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where ri is the mass-specific maximum growth rate, Gi is normalized growth
rate of the basal species, Fij is a type II functional response, xi is the mass-
specific metabolic rate, yi is a species’ maximum consumption rate relative to
its metabolic rate, and eij is the fraction of the biomass of species j lost due to
consumption by species i that is actually metabolized. Note that xi = 0 for
basal species and Gi = 0 for consumer species.

All simulations start with random initial biomass densities Bi selected from
a uniform distribution in the range [0.05, 1]. During the course of the sim-
ulations, species are considered to go extinct if their biomass B ≤ 10─30. All
simulations are run to 10,000 model time steps.

For the basal species’ growth rates, we use a neutrally stable Lotka–
Volterra competition model defined as

Gi ¼ 1− ∑
j∈fproducersg

Bj

K
; [2]

where K is the carrying capacity and the sum is over all such species. Addi-
tional simulations demonstrate that the results presented here are qualita-
tively identical for alternative growth rate models (SI Materials and
Methods, Section S4).

A type II functional response is defined as

Fij ¼
wijBj

B0 þ ∑
k∈fprey of ig

wikBk
; [3]

where wij is the relative inverse attack rate in a type II functional response,
which can also be considered as the interaction strength of i consuming j,
and B0 is the half-saturation density. Whereas we use a type II functional
response, additional simulations demonstrate that the results presented
here are qualitatively identical for a more complicated type III functional
response (SI Materials and Methods, Section S4).

The timescale of the system is defined by normalizing the mass-specific
growth rate of basal species to unity. We similarly normalize xi and yi by the
metabolic rates, giving

ri ¼ 1 [4]

xi ¼ ax
ar

�
mi

mb

�−1=4

[5]

yi ¼ ay
ax

; [6]

where ar, ax, and ay are allometric constants and mb is the body size of basal
species (35). The allometric scaling of each of these rates allows us to simplify
the system and avoid an overabundance of parameters (27, 34). We use the
following set of parameters: eij = 0.85, K = 1, mb = 1, ar = 1, ax = 0.2227, and
ay = 1.7816 (all consumers are simulated as invertebrate carnivores). For the
numerical integration, we use Hindmarsh’s ordinary differential equation
(ODE) solver LSODE.

Compartment Identification.We identify the compartments within food webs
by optimizing a quality function called modularity that provides a measure
for the density of interactions within compartments compared with
that between compartments (28). Modularity optimization has been shown
to be a very successful approach to the search of compartments (also called
communities or modules) in a wide variety of complex networks (29).

ThemodularityM (ℙ) of a partition ℙ of a network is defined as the fraction
of interactions within compartments minus the expected fraction of such
interactions (28). The expected fraction of interactions within compartments
is evaluated assuming that the probability that species i and j are connected is
kikj/2L, where ki is the number of interactions of node i and L is the total
number of interactions in the network. Therefore, the modularity (28) is

MðℙÞ ¼ 1
2L

∑
ij

�
Aij −

kikj
2L

�
δmi ;mj ; [7]

where A is the adjacency matrix of the network (that is, Aij = 1 if there is an
interaction between i and j and Aij = 0 otherwise), mi is the compartment of
species i, and δ is Kronecker’s delta (δa,b = 1 if a = b and δa,b = 0 otherwise).

Modularity is high for “meaningful” partitions of a network into com-
partments and zero for random (typical) partitions (28). Although this
modularity function does not explicitly take into account the directionality
of trophic interactions, it has been recently used to successfully identify
ecologically relevant compartments in food webs (11) and mutualistic
networks (36).

Measuring Correlation Between Compartmentalization and Whole Food-Web
Persistence. To measure the relationship between compartmentalization and
whole food-web persistence, we perform a multivariate linear regression to
simultaneously control for the compartmentalization and connectance of the
model food webs. There are thus two explanatory variables in our analysis,
the connectance C and compartmentalization, measured by modularity M.

The multivariate model takes the form

P ¼ αþ βC þ γM þ ε; [8]

where P is the fractional persistence of the food web in the dynamic sim-
ulation, α is a constant, ε is the residual error, and the slopes β and γmeasure
the influence of connectance and compartmentalization, respectively.

One can assess the importance, in terms of predicting power, of a par-
ticular explanatory variable by examining the partial residuals of the model
controlling for all other explanatory variables (37). If the residuals r of the
model are given by

r ¼ P −
�
α̂þ β̂C þ γ̂M

�
; [9]

where α̂, β̂, and γ̂ are the least-squares estimates from Eq. 8, the partial
residuals r∗M corresponding to modularity M are defined as

r∗M ¼ r þ γ̂M: [10]

In our case, the partial residuals r∗M can be understood as the contribution of
compartmentalization to overall persistence as they capture the component
not explained by either baseline persistence or connectance. To visualize the
magnitude and direction of the effect of modularity M on overall persis-
tence P, we therefore plot the partial residuals r∗M against the modularity in
Fig. 2. The same can be seen for connectance C in SI Materials and Methods,
Section S2.

Quantifying the Within-Compartment Response to Species Eliminations. We
wish to determine whether the effects of the intentional extinction of a
species tend to be transmitted locally or distantly within a food web and
whether the potentially cascading effects occur more or less rapidly. We
quantify these aspects in two different fashions: the number of within-
compartment extinctions and the time at which those within-compartment
extinctions occur.

Number of Within-Compartment Extinctions. We can count the number of
extinctions cW∗

that occur within the same compartment as an eliminated
species i in the manipulated simulation (i.e., the simulation in which i was
intentionally eliminated). We compare this value to that expected given
a random null hypothesis with the same total number of extinctions (i.e.,
irrespective of whether they occur in the same compartment or not), the
same number of compartments, and the same compartment sizes as ob-
served (see SI Materials and Methods, Section S3 and Fig. S2 for more details
of this randomization procedure and a schematic figure).

We then calculate the z -score

zbW ¼
cW∗

− <cW >
σbW ; [11]

where <cW > is the average number in an ensemble of randomizations and
σW is the SD of the same quantity. To provide a baseline, we then count the
number of extinctions W* in the unmanipulated simulation (i.e., the simu-
lation in which species iwas not intentionally eliminated). We calculate zW in
the same manner. To quantify the overall effect of compartmentalization,
we compute ΔzW ¼ zbW − zW . The value Δzw can be thought of as the relative
number of extinctions in the manipulated simulation compared with the
unmanipulated simulation. If Δzw > 0, extinctions that occur as a result of
the species elimination have a greater tendency to occur in the same com-
partment as the eliminated species.

Time of Within-Compartment Extinctions. We conduct the same analysis as
above but, instead of the number of extinctions W*, we calculate the av-
erage time of extinction bT∗

and T* for extinctions that occur in the same
compartment as the eliminated species for the unmanipulated and manip-
ulated simulations, respectively. We then compute ΔzT ¼ zbT − zT , where zbT
and zT are defined as above. The value ΔzT can be thought of as the relative
time to extinction of extinctions in the manipulated simulation compared
with those in the unmanipulated simulation. If ΔzT < 0, extinctions that
occur in the same compartment as the eliminated species have a greater
tendency to occur more rapidly.
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Quantifying the Location of Cascading Extinctions. To estimate how com-
partmentalization helps us understand which species extinctions are likely to
occur after a previous extinction, we perform the following analysis, similar to
that outlined above. We wish to determine if the effects of an initial species
extinction tend to be transmitted locally or distantly within a food web. We
quantify this effect with the number of consecutive extinction events that
occur within the same compartment.

To calculate the number of consecutive extinctions within compartments,
we first sort species according to the time of their extinction in the dynamic
simulation. We then count the number ~E

∗
of consecutive extinctions in which

both species are from the same compartment.
We define the tendency of consecutive, within-compartment extinctions

z~E as

z~E ¼
~E
∗
− < ~E>
σ~E

; [12]

where < ~E> is the average number of consecutive extinctions within com-
partments in an ensemble of randomizations and σ~E is the SD of the same

quantity. The value z~E quantifies the relative extinction tendency of species
in the same compartment after a species i that has gone extinct.

We repeat this analysis but with other such observables. These include the
number of consecutive extinctions between (i) directly connected species,D*;
(ii) directly connected species within the same compartment, ~D

∗
; and (iii)

nondirectly connected species within the same compartment, ~N
∗
. Note that

for any given simulation ~E ¼ ~Dþ ~N.
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