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Abstract
The roundworm Caenorhabditis elegans is an effective model system for biological processes
such as immunity, behavior, and metabolism. Robotic sample preparation together with automated
microscopy and image analysis has recently enabled high-throughput screening experiments using
C. elegans. So far, such experiments have been limited to per-image measurements due to the
tendency of the worms to cluster, which prevents extracting features from individual animals.

We present a novel approach for the extraction of individual C. elegans from clusters of worms in
high-throughput microscopy images. The key ideas are the construction of a low-dimensional
shape-descriptor space and the definition of a probability measure on it. Promising segmentation
results are shown.
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1. INTRODUCTION
Using automated sample preparation and microscopy, high-throughput screens (HTS) in
Caenorhabditis elegans are now being used to test tens of thousands of chemical or genetic
perturbations to identify promising drug compounds and regulators of disease [1,2,3].
Unfortunately, except for very simple assay readouts, image analysis algorithms have not
been available to automatically analyze HTS samples. Instead, researchers must typically
inspect each of the hundreds of thousands of microscopy images collected for a screen, a
tedious, non-quantitative, subjective, and error-prone process.

The main challenge in analyzing images from high-throughput C. elegans experiments is
that the density of worms in each well of the microplates used for such experiments causes
the worms to touch or cross over each other. While the outcome of some simple assays can
be determined by measuring a property of the foreground in the overall image (e.g., overall
fluorescently-stained area in the image [4]), most assays require identifying and measuring a
property of each individual worm in the population, most commonly each worm's shape or
fluorescent pattern. Image analysis algorithms for tracking one or a few worms over time
were developed [5,6]. However, these methods exploit motion cues to disambiguate
touching worms and cannot be used in still images of high-throughput screens. Other
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advanced methods based on high-resolution analysis and time-resolved 3-D worm images
[7,8] are also not suitable for the comparatively low spatial resolution of HTS experiments.

Meticulous analysis of C. elegans images reveals that while the edges of overlapping worms
are not sufficient to separate them, the morphological deformations between the worms'
appearances are nearly isometric. This implies that the variability between the worms'
appearances can be captured via a low-dimensional feature space, much in the spirit of the
commonly used active shape model (ASM) [9,10]. Just as Leventon et al. [11], we assume
that these features are normally distributed, and we validated the assumption experimentally
for a comprehensive set of training worms (data not shown). We can therefore define the
concept of a probable worm shape and use it to partition a given worm cluster such that the
sum of the posterior worm probabilities of the resulting segments is maximized. We
demonstrate our method for several HTS samples.

2. THE WORM MODEL
The suggested method consists of two phases. In the training phase a comprehensive set of
training worms are used to learn the feature space of the worms' deformations and the
probability distribution defined on it. In the test phase we use outcomes of the learning
phase to resolve worm clusters. This section presents the learning methodology applied on N
training worms obtained by an initial segmentation of the images. The next section deals
with partitioning the clusters formed by the remaining worms.

We first represent the shape deformations of the worms by using the medial-axis transform
[12], which returns the skeleton of the shape and its distances to the boundaries. Similarly to
the ASM, the vector representations of the parameterized skeletons are projected into a
lower-dimensional feature space. The compact representation is used for reconstruction and
retrieval [10]. Fig. 1 exemplifies the process of skeleton extraction and reconstruction of an
individual worm. The skeleton of each worm (Fig. 1A) is extracted (Fig. 1C), and spurs are
pruned off by iteratively removing the shortest spur of every branch point of the skeleton.
Once a non-branched skeleton is obtained (Fig. 1D), end points are extracted, and n control
points are uniformly sampled along the skeleton. The local radii of the worm are also
extracted and saved for each of the control points. Thus, the original worm shape can be
approximately restored by placing disks with the local radius at each control point, and then
smoothing the edges by taking the pair-wise convex hull of the disks (Fig. 1E).

We use similarity transformation (i.e., rotation and translation) to align the skeletons of the
worms to the y-axis minimizing the squared sum of the Euclidean distances of
corresponding points along the skeletons [9]. Fig. 2A shows the aligned skeletons of the
training set. All images are also mirrored around the y-axis to obtain a symmetric descriptor.
Note that the alignment is rigid (no scaling or skew), so that the non-rigid components of the
deformations are captured within the shape descriptors. In the absence of prior scaling, for
example, segments that are significantly smaller then the average worm have lower
probability of being classified as worms. We define the mean worm as the average of the
aligned control points and their corresponding distances from the background.

Fig. 2B shows the radii of the training worms along their skeletons. The regularity of the
worms' radius profiles allows us to represent the radii by a single value; the median
thickness of the worm. The deformations of the postures of the worms are therefore
described by the coordinates of the n aligned control points and the median thickness of the
worm, resulting in a (2n + 1)-dimensional data space.
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We use principal component analysis [13] to project the descriptor of the training worms
into a lower-dimensional feature space. Let D define the covariance matrix of the descriptors
of the training worms. Then,

(1)

where bk and λk are the k-th eigenvector and eigenvalue of D, respectively. We were able to
restore with good approximation each worm x in the training set using linear combinations
of L of the 2N + 1 eigenvectors:

(2)

where  is the averaged worm descriptor, w is a vector of weights, and BL is a matrix of the
eigenvectors {b1 …bL} corresponding to the L larges eigenvalues. Fig. 3 shows five
“eigenworms”, each built from an eigenvector multiplied by increasing weights.

We observed that the weights of the training worms are normally distributed. Constructing
the feature space of the worms' deformations, we can now define a probability measure on
that space:

(3)

where ΣL = diag(λ1 …λL). This is the key principle used to resolve clustered objects in the
next section.

3. RESOLVING WORM CLUSTERS
Once the shape deformation model is defined, we apply it to resolve the clusters of worms
that remain after initial image segmentation (described in Sec. 4). Because the worms in our
screens vary only slightly in body area, we can readily identify clusters as objects larger than
1.5 times the mean size of the worms in the training set. Unusually small objects, such as
debris and over-segmented worms, are excluded from the analysis.

Let S denote the skeleton of a cluster of worms pruned so that only branches longer than the
average radius of a worm remain. S is separated in to segments by cutting the skeleton at
every branch point. The skeleton S can now be represented by a sparse undirect graph where
each skeleton segment corresponds to a vertex v, and each branch point corresponds to an
edge e. Thus, the full cluster skeleton S can be represented by the set of vertices {v} and the
set of edges {e}.

Next, we want to resolve the cluster by finding the set of paths ρ through the cluster that has
the highest probability of representing a set of worms. A path ρ on S is a set of vertices {v1
…vm} connected by a set of edges edges {e1 …en}, where m ≥ 1, n ≥ 0. Note that the
number of possible paths in S grows exponentially with the number of edges, or branch
points. We first estimate the number of worms in a cluster by dividing the cluster area by the
area of the mean worm. We use a greedy algorithm to search for a cluster partition that
maximizes the sum of the probabilities of the segments. Formally, let K be the estimated
number of worms in a cluster and let ρk be a path in S that represents a worm. We look for a
partition {ρ1 …ρK} of S such that the cost
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(4)

of the partition is minimized. The probability p of a path ρ is given by Eq. 3, where the
weights w are obtained when describing the path ρ with the worm model, using Eq. 2.

Fig. 4 shows an example of a cluster with two intersecting worms. We calculate the
probability p of each path in the graph. The five most probable sub-skeletons of Fig. 4B are
shown in Fig. 4D–H. We select the most probable path to represent a worm in the cluster.
When the path contains intersections, we remove the largest vertex; otherwise, we remove it
entirely. We continue the process until the remaining vertices are smaller than the smallest
worm in the training set.

4. EXPERIMENT
4.1. Image data

The worm preparation and image acquisition are detailed in Moy et al. [4]. In brief, C.
elegans is infected by the bacterial pathogen Enterococcus faecalis, washed, transferred to
384-well plates containing liquid media with the compound to be tested, incubated until the
infection kills untreated worms, washed, and imaged by a Discovery-1 automated
microscope (Molecular Devices) with a 2× magnification lens.

4.2. Initial image segmentation and model building
To build the training set, we segment worms from the image background by local adaptive
thresholding [14] and morphological opening, after reducing illumination variation by
subtracting a B-spline surface approximating the image background [15]. Worms are further
separated from each other based on gray-scale information by watershed segmentation [16]
followed by extensive merging [17].

From the objects identified by this automated method, we manually selected N = 454
correctly segmented worms from a total of 56 images of wells containing approximately 15
worms each. The worms had varying shapes, and approximately 25% of the worms had a
straight rod shape, characteristic of dead worms. We cropped the selected worms and the
corresponding binary masks from the input images, and a model worm was created using
eight eignevectors (L=8) responsible for 99% of the model variation as described above.

4.3. Cluster partition
We applied the proposed segmentation approach to images containing worm clusters that
could not be resolved based on gray-scale information alone. Most of the worms were
correctly segmented as compared to visual evaluation (Fig. 5). Note that the 4-cluster in Fig.
5A, the 5-cluster in Fig. 5B, the several 2-clusters in Fig. 5C, and the 6-cluster in Fig. 5D
were partitioned correctly.

5. CONCLUSION AND FUTURE WORK
We have shown that incorporating shape information allows clusters of C. elegans to be
resolved. Once worm clusters can be reliably resolved, the live–dead assay can be
automatically scored using simple shape descriptors. For classification of more complex
phenotypes, machine learning may be used to derive a combination of texture, shape, and
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color features. Overall, the algorithms described here show promise as the basis of an open-
source toolbox for the robust, automated scoring of a wide range of C. elegans assays.

We are currently exploring more advanced skeletonization algorithms and extending our
shape model to handle self-intersections and other challenging topologies. Finally, we will
apply the methods to several large screening experiments.
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Fig. 1.
Creating a worm descriptor. A: Input image (rotated). B: Result from initial segmentation.
C: Skeleton. D: Pruned skeleton with control points shown as disks with the local radius. E:
Shape recreated from descriptor.
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Fig. 2.
The training set. A: Connected control points of N worms (and their shape mirrored around
the y-axis) after alignment by translation and rotation. B: Variation in radius along the
length of all N worms.
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Fig. 3.
The effect of varying the weights of five of the largest “eigenworms” of the worm model.
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Fig. 4.
A simple cluster and its separation. A: input image. B: binary image after foreground/
background segmentation of A. C: skeleton of B partitioned into four vertices (v) and one
edge (e). D–H: The 5 most probable skeletons, with corresponding probabilities. I: final
segmentation result.
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Fig. 5.
Four wells from a viability assay with segmentation shown as outlines. The first worm of
every cluster, as well as single worms, are outlined in red.
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