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Abstract

In perceptual decision-making, ideal decision-makers should bias their choices toward alternatives associated with larger
rewards, and the extent of the bias should decrease as stimulus sensitivity increases. When responses must be made at
different times after stimulus onset, stimulus sensitivity grows with time from zero to a final asymptotic level. Are decision
makers able to produce responses that are more biased if they are made soon after stimulus onset, but less biased if they
are made after more evidence has been accumulated? If so, how close to optimal can they come in doing this, and how
might their performance be achieved mechanistically? We report an experiment in which the payoff for each alternative is
indicated before stimulus onset. Processing time is controlled by a ‘‘go’’ cue occurring at different times post stimulus onset,
requiring a response within 250 msec. Reward bias does start high when processing time is short and decreases as
sensitivity increases, leveling off at a non-zero value. However, the degree of bias is sub-optimal for shorter processing
times. We present a mechanistic account of participants’ performance within the framework of the leaky competing
accumulator model [1], in which accumulators for each alternative accumulate noisy information subject to leakage and
mutual inhibition. The leveling off of accuracy is attributed to mutual inhibition between the accumulators, allowing the
accumulator that gathers the most evidence early in a trial to suppress the alternative. Three ways reward might affect
decision making in this framework are considered. One of the three, in which reward affects the starting point of the
evidence accumulation process, is consistent with the qualitative pattern of the observed reward bias effect, while the other
two are not. Incorporating this assumption into the leaky competing accumulator model, we are able to provide close
quantitative fits to individual participant data.
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Introduction

Imagine you are in a counter-terrorist fight. As a person

approaches, you have to quickly identity whether he is a friend or

foe and take an action: either you must protect him or kill him

before he kills you. The consequences are dramatic and different:

the cost is either your own life or your teammate’s. How well

would you do at making the right move? More specifically, how do

we integrate vague stimulus information, such as that person’s

body-figure, and the consequences of taking each of several

possible actions, under time pressure? Can we perform optimally

under such circumstances? If so, how is this achieved, and what

mechanisms might explain observed deviations from optimality?

The answers to these questions tell us more than just how well

people can do in such situations. They may also open a window to

the underlying mechanism of the interaction between bottom-up

stimulus information and higher-level factors such as payoffs.

How observers cope with stimulus uncertainty in decision-

making tasks has been intensively studied both experimentally and

theoretically [1–4]. Models ranging from abstract information

processing models to concrete neurophysiological models [1,2,5–7]

agree that the process involves an accumulation of noisy

information to drive a decision. However, there has been less

emphasis on the question: How do decision makers integrate

differential payoffs for responses to the different alternatives? This

issue has been explored extensively within the classical literature

on signal detection theory [8–10], where accuracy and bias

without regard to time taken to decide have been the prime

considerations. In a dynamic context, there were a few earlier

theoretical investigations (See [11,12] and other papers cited in

[12]), but there is only a small and very recent literature combining

experimental and computational investigations [12–15].

In our work we build on a theoretical analysis [14] of the

behavioral data from a recent study in non-human primates [15]

investigating the integration of reward and uncertain stimulus

information. This study employed a two-alternative forced-choice

task with random-dot motion stimuli varying in the percentage of

dots moving coherently in either of two directions. Monkeys were

trained to judge the motion direction, as in many earlier

experiments [3,16]. In addition, monkeys are informed before

motion onset of the amount of reward that would be available for

each correct choice (either one or two drops of juice). There was

then a 500 msec motion stimulus, followed by a delay of 350–

550 msec before the monkeys received a cue to respond. The key
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behavioral results are shown in Figure 1A. When rewards are

balanced, probability of choosing one alternative increases with

motion coherence in that direction in a sigmoidal fashion

(coherence is treated as a signed quantity with positive numbers

representing motion in one direction, called the positive direction,

and negative numbers representing motion in the opposite

direction, called the negative direction), and is unaffected by the

magnitude of the reward. With unbalanced rewards, the sigmoid

curve shifts to the left or right, reflecting increased responses to the

alternative associated with the higher reward.

In their theoretical analysis of this behavioral data, Feng et.al.

[14] found that monkeys are almost optimal in their use of reward

information to bias their decisions about uncertain stimulus

information. We rely on signal detection theory [17] to capture

the pattern of results and to provide a grounding for the analysis of

the dynamics of reward processing explored in the present article

(our formulation is equivalent to the formulation offered by Feng.

et.al. [14] but slightly different in its formalization). In signal

detection theory, the presentation of a stimulus is thought to give

rise to a normally-distributed evidence variable. The mean value

of the evidence variable depends on the stimulus condition; the

value on a specific trial is thought to be distributed normally

around this mean. Feng et. al. [14] found that a good fit to the

data is obtained by treating the mean as linearly increasing with

the stimulus coherence, and the standard deviation of the

distributions as the same for all values of the coherence variable.

According to signal detection theory, the monkey makes a

decision by comparing the value of the evidence variable, here

called x, with a decision criterion h. From these assumptions, it

follows that the area to the right of h under the distribution

associated with each stimulus condition measures the probability

of positive choices for that stimulus condition. The effect of reward

is to shift the position of this criterion relative to the distributions of

evidence values, so that a greater fraction of trials contributing to

each distribution fall on the high reward side of the criterion (this

could also be achieved by a shift in the evidence variable in the

opposite direction). The shift in criterion results in a shift in the

sigmoidal curve relating response probability to stimulus coher-

ence, reflecting an increase in the probability of responses in the

direction of the more rewarded alternative. See panel B in

Figure 1.

Consider a specific pair of coherence values zC and {C,

represented by two Gaussian distributions with the same standard

deviation. The distance between the two distributions in the unit of

their standard deviation is known in signal detection theory as

sensitivity, and is called d ’. Without loss of generality, we can shift

and scale the two distributions so that their midpoint falls at 0 and

each has standard deviation equal to 1. In this case their means fall

at zd ’=2 and {d ’=2 (Figure 2, panel A). The position of the

decision criterion, scaled to this normalized axis, represents the

degree of bias in units of the standard deviation [10]. Hereafter we

will call this the normalized decision criterion, and call it h’. Note that

the evidence variable x is also a normalized variable.

When payoffs are balanced, signal detection theory tells us that

an ideal decision maker should place the criterion at the

intersection of the two distributions, i.e. at 0 on the normalized

evidence axis. To see why, consider any point to the right of this

0 point. The height of the right-shifted curve indicates the

probability of observing this value of x when the motion is in

the positive direction p(xjP), while the height of the left-shifted

curve indicates the probability of observing this value of x when

the motion is in the negative direction p(xjN). When the two

directions of motion are equally likely (as in the experiments we

consider here), Bayes’ rule immediately tells us that we are more

likely to be correct if we choose the positive direction for all points

to the right of 0: p(Pjx)~p(xjP)=½p(xjP)zp(xjN)� is greater than

p(Njx)~p(xjN)=½p(xjP)zp(xjN)�. Conversely, we will be more

likely to be correct if we choose the negative direction for all points

to the left of 0. This shows that the best placement of the decision

boundary is right at 0 in this situation; with any other placement

our choices would have a lower overall probability of being

correct.

When the payoffs are unbalanced, we assume the participant is

seeking to maximize the expected reward. The expected value of

Figure 1. Choice behavior with unbalanced rewards and an account in signal detection theory. A: Response probabilities in a perceptual
decision-making task [14] with reward manipulations. Data from one of two monkeys in [14] have been replotted with permission from the authors.
Percentage of positive direction choices (denoted T1 in the figure) increases with motion coherence in the positive direction in a sigmoidal fashion;
one direction of motion is nominally defined as positive, the other as negative. Black: balanced reward condition; Green: reward is higher in the
positive direction; Red: reward is higher in the negative direction. Dots represent data in [14] and solid curves represent fits based on signal detection
theory (SDT) as depicted in panel B. B: a characterization of this choice behavior based on SDT. Gaussian functions in different colors indicate the
distribution of the evidence variable x arising in each of the different coherence conditions. Vertical lines indicate the relative positions of the
decision criterion. Black, green and red vertical lines represent the criterion positions for the balanced, positive, and negative reward conditions
respectively. The area to the right of a specific criterion under a specific distribution corresponds to the percentage of positive choices in that reward
and coherence condition. As examples, the areas associated with balanced reward, and coherences~+6% (blue curves) are shaded.
doi:10.1371/journal.pone.0016749.g001
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each choice is equal to the probability that the response is correct,

times the reward value of this response. The relative expected

value of the two alternatives at each value of x can be illustrated

graphically by scaling the distribution functions. We illustrate this

in Figure 2A for the case where the reward for a response in the

positive direction is twice as large as the reward for a response in

the negative direction.

With this scaling included in the heights of the curves, these

heights now represent the relative expected value of the positive or

negative choice for each value of the normalized evidence variable

x. These heights tell us, for example, that if the value of the

evidence variable sampled on a particular trial falls right at 0, the

expected reward will be maximized by choosing the positive

response, because the height of the right-hand curve is higher at

this point than the height of the left-hand curve. As before, the best

choice of the placement of the criterion is to put it at the place

where the curves intersect. To the left of this point, the expected

payoff is greater for the negative direction; to the right of this point

it is greater for the positive direction. As can be seen, this means

that the optimal placement of the criterion is shifted to the left,

producing an increase in the proportions of the area under the

curve to the right of the criterion under both the positive and the

negative distributions.

Now we can visualize how the optimal decision criterion is

affected by sensitivity. When stimulus sensitivity is low (Figure 2B),

the crossing-point of the two curves is shifted further to the left.

Indeed, in the extreme case where sensitivity is zero, the expected

value is always greater for the higher reward alternative, and so the

optimal policy is to always choose the higher reward alternative.

On the other hand, when the stimulus sensitivity is very high, the

optimal shift becomes very small. The farther apart the two

distributions are, the closer to zero is the point where the

distributions cross. In fact it is easy to show that the optimal

criterion position is inversely proportional to sensitivity:

h’opt~{
logRR

d ’
, ð1Þ

where RR is reward ratio, R1=R2.

When multiple stimulus levels are used and randomized in an

experiment, the optimal criterion placement depends on exactly

the same logic already developed, but is made more complicated

by the fact that the stimuli associated with motion in the positive

direction now come from several different distributions rather than

just a single distribution. The probability of observing a particular

evidence value when the direction was positive is the sum of the

probability of observing the value under each of the distributions

associated with the different positive stimulus levels, normalized to

sum to 1; and similarly for the negative direction. For simplicity,

the standard deviations of the distributions are all taken to be the

same, and the means are assumed to be symmetrically distributed

around the 0 point of the evidence dimension x. Within these

constraints, we can then compute the optimal decision criterion,

by locating the position of the intersection of the summed

distribution functions scaled by the corresponding reward values

(Figure 2C), and compare it with the bias observed in each

participant’s performance to see how close the decision maker

comes to being optimal. The Figure gives an example of what the

distributions of values of the evidence variable might look like for

three positive and three negative stimulus levels whose means are

spaced proportionally to the spacing of the physical stimuli used in

our experiment.Note that the actual spacing can be determined

empirically, and need not be proportional to the physical spacing;

remarkably, however, the sensitivity data as shown in [14] are

consistent with proportional spacing, and the same holds for the

data from the present experiment.

The human and animal psychophysical literature on reward

bias [8–10] indicates that task details can have a huge impact on

measures of bias, and that, in some tasks at least, there are large

individual differences between participants. It is all the more

remarkable, therefore, that the data reported in Feng et. al. shows

a high level of consistency across the two animals, and follows a

simple pattern, consistent with a single criterion value for each

level of relative reward across all levels of stimulus difficulty. This

pattern is consistent with a statement in MacMillan and Creelman

[10] that a constant criterion is most likely to be observed when

stimuli differing in sensitivity are intermixed, and participants

cannot easily discern the relative difficulty level of the stimulus on

each trial [18].

Feng et.al. found that for both monkeys, the magnitude of the

criterion shift due to the reward manipulation is approximately

optimal given the range of stimuli used and their sensitivity to

them, deviating very slightly in the over-biased direction for both

of the monkeys in the experiment. Once again, this is a simpler

Figure 2. Optimal reward bias for relatively high (panel A), low (B) and combined (C) stimulus levels. A and B: When there is only one
stimulus level, the optimal decision criterion is at the point where the distributions intersect after scaling their relative heights by the corresponding
reward amounts. The amount of reward bias is smaller when the sensitivity is higher (panel A), and greater when the sensitivity is lower (panel B). C:
When multiple stimulus levels are employed, the optimal criterion lies at the intersection of the summed distributions multiplied by the
corresponding reward amounts.
doi:10.1371/journal.pone.0016749.g002
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and more consistent pattern than the patterns found in other

studies [8,9]. Task variables such as strength of motivation to

maximize reward and the provision of accuracy feedback on a

trial-by-trial basis may well contribute to the simplicity and clarity

of the reward effect in the data reported in Feng et. al.

The results of the analysis in Feng et. al. are encouraging from

the point of view of indicating that participants can perform close

to optimally under fixed timing conditions, at least under certain

task conditions. However, these results leave open questions about

whether or to what extent observers can achieve optimality when

the time available for stimulus processing varies, so that on

different trials participants must respond based on different

amounts of accumulated information. This question is important

for decision-making in many real-world situations, where the time

available for decision-making is not necessarily under the control

of the observer, and thus may have to be based on incomplete

evidence accumulation. Also, the behavioral results do not strongly

constrain possible mechanistic accounts of how observers achieve

the near optimal bias they exhibit, as part of a process that unfolds

in real time. Indeed, Feng et. al. were able to suggest a number of

different possible underlying process variants that could have given

rise to the observed results. These issues are the focus of the

current investigation.

The empirical question at the heart of our investigation is this:

How does a difference in reward magnitude associated with each

of two alternatives manifest itself in choice performance when

observers are required to make a decision at different times after

stimulus onset, including both very short and much longer times?

We investigate this matter using a procedure often called the

response signal procedure, in which participants are required to

respond within a very brief time (250 msec) after the presentation

of a ‘‘go’’ cue or response signal. Previous studies using this

procedure [1,19,20] have shown that stimulus sensitivity builds up

with time according to a shifted exponential function. That is,

when stimulus duration is less than a certain critical time t0,

stimulus sensitivity is equal to 0. As stimulus duration lengthens

beyond this critical time, sensitivity grows rapidly at first, then

levels off. Under these conditions, we ask how effectively

participants are able to use differential payoff contingencies. Are

participants able to optimize their performance, so that their

responses at different times reflect the optimal degree of reward

bias? Several delays are used ranging from 0 to 2 seconds, a time

past the point at which participants’ performance levels off.

Intuitively, (and according to the analysis given above) with zero

stimulus sensitivity, at very short delays, an ideal decision maker

should always choose the higher reward alternative. As stimulus

sensitivity builds up, reward bias should decrease, and level off in

an predictable way. Do decision makers achieve optimality when

forced to respond at different times after stimulus onset? If not, in

what way do they deviate from optimality?

Using the response signal method, we will see that sensitivity

grows with stimulus processing time, following a delayed exponen-

tial function, consistent with previous studies. We also find that the

reward bias, as measured by the position of the criterion h’, is larger

for short stimulus duration and becomes smaller as processing time

increases. Although weaker, the reward bias effect is still present

even for the longest times, after performance has leveled off.

Consistent with [14], we find participants are close to optimal for

long processing times, although slightly under-biased unlike the

monkeys. For short processing times, however, where stimulus

sensitivity is zero, participants are considerably under-biased.

A failure of optimality such as the one we will report invites the

question: How can we explain the actual observed pattern of

behavior? We explore this question within the context of the leaky

competing accumulator (LCA) model [1]. This model is one of a

broad class of accumulator models of decision-making (See [4] for

a review), incorporating leakage or decay of accumulated informa-

tion, as well as competition among accumulators, factors moti-

vated both by behavioral and neurophysiological considerations,

in the context of a stochastic information integration process. We

discuss the behavioral motivation below. Here we briefly note that

leakage (or decay) of the state of neural activity and inhibition

among populations of neurons are both characteristics of the

dynamics of neural processing, and these characteristics were

among the key motivating factors behind the development of this

model. The model is situated between abstract drift diffusion

models [2,5] and more neurophysiologically realistic models [6,7].

The presence of inhibition and leakage extend the model beyond

the classical drift-diffusion model, though it can be reduced to that

model as a special case. Its relative simplicity compared to the

more detailed physiological models gives it an advantage in

simulation and mathematical analysis. Indeed, the behavioral

predictions of the LCA model can be well-approximated under a

range of conditions by an even simpler one-dimensional dynamical

system called the Ornstein-Uhlenbeck (O-U) process [1,4,21],

which allows analytical predictions of choice behavior which, we

will argue below, increases our insight and facilitates fitting the

model to experimental data.

In the LCA model, separate accumulators are proposed for each

of the alternative choices available to the decision maker. The

accumulators are assigned initial activation values before accu-

mulation begins. At each time step of the accumulation process, a

noisy sample of stimulus information is added to each accumu-

lator; the accumulated activation of each accumulator is subject to

leakage, or decay back towards an activation of 0, and also to

inhibition from all other accumulators. When applied to

experiments such as ours, in which a response must be made to

a go signal that can come at different times after stimulus onset,

the LCA assumes that choice goes to the accumulator with the

highest activation value at the moment the decision must be made

[1]. When there are two accumulators in the model, choosing the

one with the largest activation is equivalent to basing the choice on

the difference in activation between the two accumulators: We

choose response 1 if the difference is positive, and response 2

otherwise. Because of noise in the evidence accumulation process,

this difference variable closely approximates the characteristics of

the evidence variable postulated in Signal Detection Theory.

Thus, the LCA modeling framework allows us to explore different

ways in which reward and stimulus information might be

integrated into the decision-making process in real time.

One of the key behavioral motivations for the LCA model was

to explain why performance levels off in perceptual decision-

making tasks with longer processing times. In the absence of leak

or inhibition, the integration of noisy information allows accuracy

(measured in d ’) to grow without bound: as accumulation

continues, more and more noisy information is accumulated and

even a very weak signal will eventually dominate noise. With

leakage and/or inhibition, however, sensitivity tends to level off,

unless leakage and inhibition are in a perfect balance. When there

is an imbalance, performance asymptotes at a level reflecting the

degree of imbalance (as well as the strength of the stimulus

information), in accordance with the pattern seen in behavioral

experiments [1]. Intuitively, with leakage only, older information

decays away, preventing perfect integration. Inhibition can

counteract the leakage, but if inhibition becomes stronger than

leak, early information feeds back through the inhibition and tends

to overmatch the influence of later information. We will discuss

these points in more detail when we develop the model formally.

Integration of Reward and Stimulus Information
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While time accuracy curves alone cannot discriminate between

leak- and inhibition-dominance, several experiments have now

been reported assessing participant’s sensitivity to early vs late

information. Under conditions like those we use in the present

study, in which participants must respond promptly to the

occurrence of a go cue, early information tends to be more

important than late [22,23]. Within our framework, this finding is

consistent with inhibition dominance, though the authors of [22]

prefer an alternative interpretation. With this guidance from other

work, we ground our consideration of the mechanism underlying

reward effects within the inhibition-dominant regime of the LCA

framework, henceforth denoted LCAi.

Using this framework, we test the following hypotheses about

the way in which reward information might influence the decision-

making process: HOI : Reward acts as a source of ongoing input that

affects the accumulators in the same way as the stimulus

information, thereby affecting which accumulator has the largest

value at the moment of the decision. HIC : Reward offsets the initial

condition of the process; it is not maintained as an ongoing input to

the accumulators, but it sets the initial state and can therefore

influence how the process unfolds. HFO: Reward does not enter

the dynamics of the information integration process at all, but only

introduces a fixed offset favoring the accumulator associated with

the higher reward. Under both HOI and HIC , reward input

favoring one accumulator will affect the dynamics of the activation

process. In contrast, under HFO, reward does not affect the

accumulation dynamics, but only comes into play at the time the

choice is made.

Although not exhaustive, these hypotheses encompass three

natural ways reward information might enter the decision process.

The first two hypotheses were considered in [14], but could not be

discriminated; the third one could also have been used to model

the monkey behavioral data. The fact that the decision occurred at

an approximately fixed time after stimulus onset prevented that

experiment from discriminating among these three possibilities.

However, the analysis of the neurophysiological data from the

same experiment, reported in [15], did provide relevant

information: The data provided no support for the idea that

reward produced an ongoing input into the accumulators (HOI ),

but did provide direct support for the idea that reward affected the

initial activation of accumulators at the time stimulus information

began to accumulate (HIC ). Modeling work reported in that paper

indicated that such an offset in the starting activation of the

accumulators was sufficient to account both for the physiological

data and the behavioral data reported in the paper, without the

need to also introduce a shift in the decision criterion (HFO).Our

theoretical analysis will show that the three hypotheses make

distinct predictions about the qualitative changes we should see

over time in the magnitude of the effect of reward bias. Thus, as

we shall see, our experimental data can be used to provide both a

qualitative and a quantitative assessment of the adequacy of each

of the three alternative accounts of the possible role of reward in

the dynamics of processing within the inhibition dominant leaky

competing accumulator model.

Issues similar to the ones we investigate here have also

previously been explored in two recent studies [12,13]. In these

studies, participants were required to decide whether two

horizontal lines presented to the left and right of fixation were

the same or different in length, under different deadline and payoff

conditions; as in [15] and in the studies we will report, information

about payoffs was presented in advance of the presentation of the

stimulus display. In the first of these papers [12], there was a

consideration of optimality, and both papers considered a range of

possible models that bear similarities to the set of models

considered here. These studies provide important information

relevant to the questions we address here. In particular, these

studies found no support for models in which the reward acts as a

source of ongoing input to the accumulators, and favored a model

in which processing of reward information preceded, and set the

initial state, of an evidence variable prior to the start of processing

stimulus information. However, in their framework, which does

not include either leakage or inhibition, a shift in starting place is

indistinguishable from a change in decision criterion. Thus, their

analysis does not distinguish between our HIC and HFO (we will

return to a consideration of the models in these papers in the

Discussion section). Furthermore, the best model they considered,

while far better than the others, still left room for improvement in

the fit to the data. Thus, it is of considerable interest to explore

whether our framework, which includes processes these studies did

not consider (specifically, leakage and inhibition), can provide an

adequate fit to data from a similar task, and whether the

mechanisms offered by our model allow a distinction to be made

between HIC and HFO. Additionally, it is worth noting two ways in

which our study extends the empirical base on which to test model

predictions about the time course of reward effects on decision-

making. First, our study spans a larger range of processing times,

encompassing very short as well as longer times, at which stimulus

sensitivity reaches asymptotic levels; and second, each participant

in our study completed a substantially larger number of experi-

mental trials, allowing us to assess the adequacy of alternative

models to fit individual participant data.

Before proceeding, it is important to acknowledge that there are

alternatives to the LCAi model that could be used to explain some

of the important aspects of the data we will report, including the

leveling off of accuracy in time-controlled tasks and the relatively

greater importance of early- compared with late-arriving infor-

mation in [2,22,24]. Most basically, the leveling off can be

explained if there is trial to trial variability in the stimulus

information reaching the accumulators [2]. This could either arise

because the stimuli themselves vary from trial to trial or because of

variation from trial to trial in the output of lower-level stimulus

processing processes. In either case, an experimenter’s nominal

stimulus condition can actually encompass a normally distributed

range of effective stimulus values. In this situation, the lossless

integration of the classical DDM can eventually achieve a perfect

representation of the trial-specific value, but if the distribution of

values for different nominal stimulus conditions overlaps, asymp-

totic sensitivity will remain imperfect. Another way to explain why

performance levels off at longer trial durations is to propose that

participants do not continue integrating information throughout

the entire duration of the trial. Although the response signal

method in principle allows participants to continue integrating

until the go cue occurs, several authors have proposed that

integration may stop when the accumulated evidence reaches a

criterial level, even though further integration could result in

further improvements in accuracy [22]. With one or both of these

extensions of the basic drift-diffusion mechanism it has often been

possible to capture the patterns in time controlled data quite well

without invoking the leakage or inhibition features of the LCAi.

Thus, we offer the analysis we will present here as one possible

account for the findings from the present study, though possibly

not the only one. We do consider some alternative models in the

general discussion and the dataset from our investigation is

available for others to use in considering alternative accounts. The

data set is available at: http://www.stanford.edu/group/pdplab/

projects/GaoEtAlDynamicIntegrationData/.

The rest of this article is organized as follows. Our experiment

design is described in Methods. The Results section contains the

Integration of Reward and Stimulus Information
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results using response probabilities to trace the time-evolution of

stimulus sensitivity and reward bias at different times, comparing

this with what would be optimal given the corresponding

sensitivity. In a third section on Dynamic Models, we apply the

LCA model to test our three hypotheses about how reward affects

the decision-making progress. Finally we return to the broader

issues in the Discussion.

Results

Basic Findings
To focus analysis on the effect of reward, we collapse across left

and right sides and present results in terms of choices toward the

higher reward alternative. There are hence six stimulus conditions

(three amounts of shift towards the higher reward, and three shift

amounts toward the lower reward) and ten delay conditions,

amounting to sixty combinations. Our observations are summa-

rized in Figure 3. For each combination, we plotted the percentage

of choices towards the higher reward vs the mean response time for

trials in the specified condition. Response time is defined as the

time from stimulus onset to a response, equal to the sum of the go-

cue delay plus the time to respond from the go-cue delay to the

actual occurrence of the response. Lines with filled symbols

represent congruent conditions in which stimulus and reward

favor the same direction, while lines with open symbols are used

for incongruent conditions where stimulus and reward favor

opposite directions. For congruent conditions, the probability of

choosing the higher reward corresponds to accuracy (proportion

correct). For incongruent conditions, proportion correct is 1 minus

the probability of choosing the higher reward.

As in a previous study using a similar method (Experiment 1 in

[1]), participants responded promptly to the go cue overall, though

all participants’ responses were slower when the go cue delay was

shorter. This can be seen by measuring the distance along the x
axis from the go cue delay value (successive vertical lines on the

figure, starting at 0) to the corresponding data point in the figure.

For the shortest go cue delay, participants missed the response

deadline 20% to 75% of the time. Rate of missing the deadline

declined rapidly at first then leveled off at longer go cue delays. In

the longest delay conditions participants missed the deadline 2% to

10% of the time.

All participants’ performance, except that of SL, shares the

following features: 1) the overall probability of choosing the higher

reward, roughly indicated by the mean position of all the curves, is

larger for short delay conditions and remains above 0:5 for all

delay conditions; 2) The curves for all stimulus conditions all fall

on top of each other for the shortest delay condition, indicating

zero stimulus sensitivity; 3) Although the responses are completely

insensitive to the stimulus at shortest delays, participants do not

always choose the higher reward alternative; 4) The curves diverge

as processing time increases, tending to level off at long durations.

For participant SL, although the curves do diverge as processing

time increases, and level off at long durations, there is little or no

indication of a bias toward the higher reward, with the possible

exception of a very slight deflection in the direction of higher

reward for responses in short delay conditions.

Extracting Sensitivity and Criterion Placement By Delay
Condition

The previous section qualitatively answered some of the

questions raised in the Introduction: Most participants do exhibit

a gradual reduction in the magnitude of the reward bias. To

quantify how they deviate from optimality and to motivate

dynamic models, we measured their stimulus sensitivity and

reward bias separately according to the Signal Detection Theory

analysis described in the Introduction. For each delay condition,

we calculated three sensitivities d ’
i ,i~1,2,3 for the three stimulus

levels and one value for the normalized decision variable, h’, as

discussed in the introduction, choosing values that maximize the

probability of the data for that delay condition. It should be noted

that the adequacy of such an analysis even as a descriptive

characterization of the data is not guaranteed, as discussed in the

introduction. We assessed this using a graphical method discussed

in [10], together with Chi square tests. The results of this analysis

are presented in Supporting Information S1. The conclusion from

this analysis is that, indeed, the three d ’
i values and single h’ value

provide a good empirical description of the data; as in [14], it

appears that participants did not adapt their criterion placement as

a function of the stimulus difficulty level, as expected when

stimulus difficulty varies unpredictably from trial to trial, as it does

in our experiment [10,18].

Stimulus Sensitivity Analysis
Sensitivity values as a function of time are shown in Figure 4

(symbols). Apparently stimulus sensitivity grows with stimulus

duration initially and then levels off for all participants. To further

demonstrate that the sensitivity observed is consistent with the

shifted exponential function as in previous studies [1,19,20], we

then carried out a maximum likelihood fit assuming sensitivity

follows a delayed exponential function

d ’ tð Þ~D’i 1{e{
t{t0

t

� �
: ð2Þ

where D
0
i ,i~1,2,3 denotes the asymptotic sensitivity levels for the

three stimulus conditions, t0 denotes the initial period of time

Figure 3. Results of our perceptual decision-making task with
unequal payoffs. For each combination of stimulus and delay
conditions, the percentage of choices towards higher reward (ordinate)
is plotted against the mean response time, the time from the stimulus
onset (time 0) to a response (abscissa). Lines with filled symbols denote
congruent conditions in which stimulus and reward favor the same
direction, lines with open symbols denote incongruent conditions in
which stimulus and reward favor opposite directions. Task difficulty is
color coded: Red, green and blue for high, intermediate and low
discriminability levels respectively. Dashed vertical lines indicate the
time of the ‘‘go’’ cue: 0–2000 msec after the stimulus onset.
doi:10.1371/journal.pone.0016749.g003
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before participants become sensitive to the stimulus and t denotes

the timescale of the dynamics of the stimulus sensitivity. The fitting

results are summarized in Figure 4 (solid curves) and the fitted

parameters are summarized in Table 1. The close match between

the solid curves and the symbols in Figure 4 suggests that the stimulus

dynamics in this experiment is well-captured by the delayed

exponential function. We emphasize that sensitivity measures the

distance between the centers of the distributions in the unit of their

standard deviation, and both the mean and the standard deviation of

the activation can change over time. Indeed, both variables change

in the models we explore in the Dynamical Models section.

Our experiment employs a simple static visual stimulus, unlike

the dynamic motion stimuli used in many primate studies of the

dynamics of decision making. Interestingly, however, the time-

course of the accumulation of evidence is comparable in our study

and the similar study of Kiani et. al. [22], in which standard

dynamic motion stimuli are used; in both cases, a time constant on

the order of 1/3 of a second appears typical (for one of our

participants, the time constant is even longer). This may seem

surprising, since in the motion studies evidence must necessarily be

integrated over time due to the intrinsic noise of the stimuli,

whereas in our study, there is no intrinsic noise in the stimulus. We

cannot say, however, whether processing noise arising from micro-

saccades or neural sources, or some processing time constant

somewhat independent of the noise level, is governing the

relatively long time constant seen in our experiment.

An additional finding that emerges from this analysis is that the

asymptotic sensitivity D
0
i scales approximately linearly with the

stimulus level in this study. See Figure 5 for the linear fitting results

assuming:

D
0
i~kS ð3Þ

where S represents stimulus level taking values 1,3,5 and k is a

linear scalar.

Reward Bias
The measured normalized decision criterion, h’, for each delay

condition is depicted in Figure 6 (open circles connected with

dashed lines). As previously noted, this variable changes in the

expected way for all participants except SL, whose behavior is

unaffected by the reward manipulation.For each of the remaining

participants, we calculated the optimal decision criterion, h’opt,

based on the signal detection theoretic analysis presented in the

introduction and the observed sensitivity data presented in the

preceding section, and plotted these optimal values in Figure 6

(solid curves) together with the normalized criterion value h’
estimated from the data as described above. Note that h’opt~?
when d ’ is equal to 0; for display purposes, such values are plotted

at an ordinate value of 3.0.

In the calculation of the stimulus sensitivity and the reward bias,

di’,i~1,2,3 and h’, we assumed the distributions of the evidence

variables for the three stimulus levels have the same standard

deviation: higher sensitivity, associated with higher stimulus levels,

results from distributions that are farther apart. However, the

increase in sensitivity could result from changes in the standard

deviation, as well as the separation of the distributions. Does the

finding that participants are underbiased depend on the

assumption that the standard deviations are equal? We considered

Figure 4. Stimulus sensitivity follows a shifted exponential
approach to asymptote as processing time increases. Colors
code the three discriminability levels: red, green and blue for 5,3 and 1
pixel(s) difference respectively. Symbols denote data (see text for
details) and solid curves denote the delayed exponential fit.
doi:10.1371/journal.pone.0016749.g004

Table 1. Parameters for the delayed exponential fitting.

Participant t t0 D’1 D’2 D’3

CM 0.23 0.34 0.46 1.3 2.3

JA 0.45 0.27 0.66 2.0 3.2

MJ 0.16 0.34 0.53 1.4 2.3

ZA 0.20 0.32 0.76 2.1 3.2

SL 0.29 0.34 0.35 1.1 1.9

Parameters of the delayed exponential fitting according to signal detection
theory. Results for the five participants are shown in five rows. t,t0 and D’
denote the timescale, the delay and the asymptotic value of the delayed
exponential function respectively. Subscripts 1,2,3 refer to the three stimulus
levels. See Equation (2). The fitting result is depicted in Figure 4.
doi:10.1371/journal.pone.0016749.t001

Figure 5. Asymptotic sensitivity scales approximately linearly
with stimulus level. Symbols denote the asymptotic sensitivity as in
Figure 4 and Table 1; Solid lines denote the linear fit constrained to
go through the origin. Fitted values of the scalar k are 0:45,
0:64,0:46,0:66,0:38 respectively for participants CM, JA, MJ, ZA
and SL.
doi:10.1371/journal.pone.0016749.g005
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an extreme case in which the sensitivity differences between the

different stimulus levels resulted only from a reduced standard

deviation, rather than increased separation of the distribution. In

this case as well all four participants actual bias came out below

what would be optimal; as with the equal standard deviation case,

the deviation was larger for short delays and smaller for long

delays (results now shown).

To assess the cost of participant’s deviations from optimality, we

calculated their reward harvest rates: the number of points they

obtained relative to the number they could have harvested had they

chosen the criterion optimally based on their stimulus sensitivity at

each time point. As with the monkeys in [14], all four participants

harvested more than 98% of the points for long delay conditions.

For the two longest delay conditions their harvest rates are:

99:9%,99:2%,98:9%,99:9%. However, for the two shortest delay

conditions, the rates are 93:2%,93:3%,87:9%,96:3% indicating that

they are considerably under-biased under these conditions. We

consider possible reasons for this underbias in the Discussion.

Dynamical Models
Motivated by the dynamics of the stimulus sensitivity and

reward bias, we now explore a possible mechanism underlying the

effect of reward on the decision-making process within the context

of the leaky competing accumulator (LCA) model. We review the

LCA model first and then implement and test the three hypotheses

raised in the Introduction. This leads to several alternative accounts

of the underbiasing of performance on trials at short delays.

The Leaky Competing Accumulator Model and Its One-
Dimensional Reduction

In the leaky competing accumulator model, noisy evidence for

each alternative is accumulated over time in each accumulator.

The accumulators compete with each other through mutual

inhibition, and the accumulated evidence in each is subject to

‘‘leakage’’ or decay. To model our experiment in which

participants have to respond promptly after a go cue, we assume

that the go cue triggers a comparison of the activation of the two

accumulators, and the response associated with the highest value is

emitted, subject to a possible offset as discussed below. For our case

with two alternatives, the accumulation dynamics is described by

dy1~({cy1{bf z½y2�zI1)dtzêedv1, ð4Þ

dy2~({cy2{bf z½y1�zI2)dtzêedv2; ð5Þ

where y1,y2 represent the activations of the accumulators, c,b are

leak and inhibition strengths respectively, I1,I2 are stimulus inputs

to the two accumulators, dv1,dv2 denote independent white noise

with strength êe, and f z½:� is a nonlinear input-output function

arising from the neural inspiration for the model. A neuron does

not send outputs to other neurons when its activation goes below a

certain level; above this level, its output can be approximated with a

linear function of its activation. Motivated by this fact, we follow

[1,25] in using the threshold linear function. The value of the

function f z½:� is equal to its argument when the argument is above

zero, but is equal to zero when the argument is below zero.

By convention, we treat alternative 1 as the positive alternative

(associated with the high reward), and alternative 2 as the negative

alternative (associated with the low reward). The assumption that

the participant chooses the response associated with the accumu-

lator with the largest activation is equivalent to the assumption

that the choice is determined by the sign of the activity difference

y~y1{y2 at the moment the accumulators are interrogated. If

yw0(y1wy2), the positive alternative is chosen, otherwise the

negative alternative is chosen. Therefore, we only need to track the

difference between the two accumulators y, hereafter referred to as

the activation difference variable. Note that this variable is similar to the

normalized evidence variable x from our analysis using signal

detection theory, but is not the same as that variable since it is not

scaled in the units of its standard deviation.

As long as the activities of the two units stay above zero,

f z½yi�~yi, we can subtract Equation(5) from (4), yielding

dy~({lyzI)dtzedv: ð6Þ

In [1] it was observed that the above simplification can provide a

good approximation to the time evolution of the decision outcome

Figure 6. Reward bias is sub-optimal, especially at short delays. The observed reward bias, h’ (open circles connected with dotted lines) is
put together with the optimal bias h’opt (diamonds with solid curves). Individual panels represent the individual results of the four participants
showing a reward bias.
doi:10.1371/journal.pone.0016749.g006
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of the LCA, as long as the activations of both accumulators are

above 0 during the early phases of the information accumulation

process (see also [4,21] and the discussion below for the effect of

nonlinearity). In this simplified model, often called the ‘one-

dimensional reduction’ of the LCA, the stimulus input I

corresponds to the difference between the two stimulus inputs

I1{I2. Without reward effects, it should be positive if stimulus 1 is

presented and negative otherwise. In accordance with the

approximately linear relationship between the stimulus level and

the asymptotic d ’ noted in the Stimulus Sensitivity Analysis above, we

adopt the simplifying assumption that I is proportional to stimulus

level I~aS in our primary simulations. The value of the scalar a,

a free parameter of the model, corresponds to the participant’s

sensitivity to stimulus information. To distinguish this parameter

from the sensitivity for a specific stimulus condition, we call it

personal sensitivity. Noise ev results from the independent Gaussian

noise to the two accumulators so that e in the one dimensional

model is equal to
ffiffiffi
2
p

times the value of êe from the two dimensional

model. The term {ly results from the difference in the leak and

inhibition in the LCA model l~c{b.

This one dimension model in Equation (6) is well known as the

Ornstein-Uhlenbeck (O-U) process in mathematics and physics,

and was first employed in a decision-making context by [26,27]. Its

linear form allows analytical solutions. Before the introduction of

reward bias, we follow the natural assumption that the

accumulation starts from a neutral state that is subject to trial-

to-trial variability. Mathematically, we treat the initial condition y0

as a Gaussian random variable with zero mean and initial variance

s2
0. Hence at any time the activation difference variable y follows a

Gaussian distribution with mean and variance

m(t)~
aS

l
(1{e{lt); s2(t)~s2

0e{2ltz
e2

2l
(1{e{2lt), ð7Þ

where I is replaced by aS and t denotes time. When connecting t

with response times in decision-making tasks, one should acknowl-

edge that it takes time before the stimulus information starts to accu-

mulate, as well as to physically execute the action [1,2]. We follow the

literature and use t{T0 to represent the duration of actual accumu-

lation process, with t representing total time relative to stimulus onset

and T0 representing the non-decision time just explained.

In general, the value of the activation difference variable y reflects

the accumulated noisy signal in the system. The accumulated signal

strength is reflected in the mean of y and the accumulated noise

strength is reflected in its standard deviation, both of which change

over time. In the positive stimulus condition, the mean m(t)w0, and

when the corresponding negative stimulus is presented, the mean

m(t) takes the same absolute value but with a negative sign.

However, the standard deviation of the accumulated noise, s(t), has

the same pattern of growth in both cases. The Gaussian distribution

with mean m(t) and standard deviation s(t) represents the time

evolution of the distribution of the activation difference variable

across trials for a given stimulus condition. In a particular trial, the

activation difference variable is represented as a sample from this

distribution, and y(t)=s(t) corresponds to the normalized evidence

variable x as discussed in the Introduction. Given the assumption

that the choice will be positive if y(t)w0, the response probabilities

are uniquely determined by the ratio of the mean of the activation

difference variable to its standard deviation:

R(t)~

aS

l
(1{e{l(t{T0))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
0e{2l(t{T0)z

e2

2l
(1{e{2l(t{T0))

r : ð8Þ

For a specific stimulus condition, for example when the stimulus is

shifted three-pixels to the right, this ratio measures the center

position of the distribution of the activation difference variable

relative to zero in the unit of its standard deviation. Since the mean

position of the corresponding opposite stimulus, three-pixel shifts to

the left, is the same distance away from zero in the opposite

direction, the variable R(t) corresponds to half of the stimulus

sensitivity d ’(t) in Signal Detection Theory.

The stimulus sensitivity predicted by the O-U process above

also builds up and levels off with time (see Figure 7D and F),

similar to the delayed exponential function used in Stimulus

Sensitivity Analysis. The closeness of the approximation depends on

the value of s0, but the shifted exponential provides a good

approximation over a range of values of this parameter [1].

The time evolution of the distribution of the activation

difference variable y is sketched in Figure 7. We concentrate first

on panel A, which represents the time evolution for the case where

leak is greater than inhibition, so l is greater than 0. Here the

horizontal axis represents the value of the activation difference

variable, and the probability density of it having a particular value

is represented in the vertical dimension. Time is depicted moving

away from the observer. Red and blue denote two symmetrical

stimulus conditions: red for a positive stimulus and blue for the

corresponding negative stimulus. The center positions of the

distributions (represented by the thick blue and red lines shown on

the base plane of each plot) correspond to the mean of the

activation difference variable m(t) for trials of each type and the

width of each distribution represents its across-trial variability s(t).
As time goes on, the distributions broaden and diverge

symmetrically. Values of the distance between the two center

positions (green) and the width of the distributions (magenta) are

plotted in panel C, and the ratio between the two, d ’(t) which

uniquely determines response probabilities, is plotted in panel D.

As previously noted, panel A of Figure 7 depicts the time

evolution of the variable when lw0. This corresponds to the case

where the leakage parameter c is larger than the inhibition

parameter b in the underlying two-dimensional LCA model.

When c is greater than b, so that lw0, we say the information

accumulation process is leak-dominant. As [1] noted, in leak-

dominance, as noisy information accumulates the effect of any

early input decays away. Hence at the decision time, the most

recent information plays a larger role.

A very different situation, inhibition-dominance, occurs when

inhibition is stronger than leak, so that lv0. In this situation,

whichever alternative has the lead at the beginning tends to

dominate and suppress its opponent through inhibition. Earlier

information is thus more important in the decision outcome. The

mean and the standard deviation of the activation difference

variable, although captured by the same equations Equation (7),

differ dramatically: they both reach asymptotic values with time in

leak-dominance (Figure 7 A), while they both explode to infinity in

inhibition-dominance (Figure 7 B). Remarkably, however, the

ratio between the two behaves in the same way in the two cases

(Figure 7 C and F). Intuitively, the reason for this is that the

absolute value of l affects the relative accumulation of stimulus

information compared to noise in the system. Response probabil-

ities are determined by the ratio between the accumulated signal

and accumulated noise, and it is this ratio that behaves the same in

the two cases. Indeed, with an appropriate substitution of

parameters, exactly the same response probability patterns can

be produced in leak- and inhibition-dominance, as discussed in

Supporting Information S2. As mentioned in the introduction,

however, behavioral evidence from other studies using similar

procedures supports the inhibition-dominant version of the LCA
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model: in these studies, [22,23] information arriving early in an

observation interval exerts a stronger influence on the decision

outcome than information coming later, consistent with inhibition-

dominance and not leak-dominance. Accordingly, we turn

attention to the inhibition-dominant version of the model, and

consider the effects of reward bias within this context. We

complete the theoretical framework by presenting the predictions

in leak-dominance in Supporting Information S3.

Inhibition-dominance is characterized by a negative l which

means the activation difference variable explodes with time

(Figure 7B and E). Clearly, this is physiologically unrealistic; neural

activity does not grow without bound. However, the explosion is

characteristic of the linear approximation to the two dimensional

LCA model, and does not occur in the full model itself [1]. In the

linear approximation, the explosion is a consequence of the mutual

inhibition among the accumulators: As the activation of one of the

accumulators goes negative, its influence on the other accumulator

becomes excitatory (negative activation times the negative influence

results in positive input). However, in the full nonlinear LCA

model, when the activity of an accumulator reaches zero, it stops

sending any output. The effective inhibition of the other

accumulator then ceases, thereby putting that accumulator in a

leak-dominant regime, so that its activation tends to stabilize at a

positive activation value, while the activation of the other tends to

stabilize at a point below 0. (Physiologically, this would correspond

to suppression of the potential of the neuron, below the threshold

for emitting action potentials.)

The situation is illustrated in Figure 8A. Here, the dynamics and

the two stable equilibria are plotted for a case in which a positive

stimulus is presented, favoring accumulator 1. Typically, the

accumulators are thought of as being initialized at a point in the

upper right quadrant, but as shown in [21] there is a rapid

convergence onto the solid red diagonal line illustrated. This

diagonal line captures the dynamics of the difference between the

two accumulators, the activation difference variable y in Figure 8B.

Because of the positive input, most trials end in the equilibrium

with accumulator 1 active and accumulator 2 inactive (the red

point on the bottom right quadrant of the figure), but due to the

combined effects of noise in the starting place and in the

accumulation process, the network occasionally ends up in a state

where accumulator 2 is active and accumulator 1 is inactive (this is

the equilibrium point in the upper left quadrant of the figure). The

difference between the two accumulators thus diverges at first and

then stabilizes near one of two possible values. In the linear

Ornstein-Uhlenbeck (O-U) approximation, the difference variable

explodes to either positive or negative infinity, as illustrated

schematically in Figure 8B. But, since the decision outcome

depends on the sign of the difference variable, the linear

approximation captures the same decision outcomes as the full

nonlinear model, as long as parameters are such that neither

activation goes below 0 too early [1,21].

Panel C of Figure 8 shows the time evolution of the difference

between the two accumulators in the full nonlinear LCA model

when the positive stimulus is presented as in panel A. The

probability of choosing alternative 1 is indicated by the area under

the red surface that falls to the right of the black vertical separating

plane at 0. With nonlinearity, the distribution exhibits major and

minor concentrations corresponding to the two attracting

Figure 7. Time evolution of the activation difference variable y in the reduced leaky competing accumulator model. Top panels:
probability density functions of the activation difference variable in leak- (panel A) and inhibition-dominance (panel B). See text for details. At a given
time point, the variable is described by a Gaussian distribution (red distribution for a positive stimulus condition and blue for the corresponding
negative stimulus). The center position of each distribution (red and blue solid lines on the bottom) represents the mean of the activation difference
variable m(t) and each distribution’s width represents the standard deviation s(t). As time goes on, the two distributions broaden and diverge
following the dynamics in Equation (7). The distance between them normalized by their width correspond to the stimulus sensitivity d ’(t), which
uniquely determines response probabilities when the decision criterion is zero (vertical black plane). In leak-dominance, the distance between the
two distributions and their width (green and magenta lines respectively in panel C) both level off at asymptotic values. In contrast, they both explode
in inhibition-dominance (panel E). However, the ratio between the two behaves in the same way (panel D and F). Note: In panels C–F, the T0 point on
the x-axis corresponds to the time at which the stimulus information first begins to affect the accumulators. The flat portion of each curve before that
time simply illustrates the starting value at time T0 .
doi:10.1371/journal.pone.0016749.g007
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equilibria. This bimodality does not occur without nonlinearity.

Instead, the distribution flattens out quickly and its center moves

quickly as well (See Figure 7 panel B). However, the areas under

the two distributions to the right of the dividing plane can be the

same.

Because the one-dimensional O-U approximation allows

analytic solutions we use it as a first step in modeling the data.

We then present simulations using the full LCAi model to confirm

that the results are indeed consistent with the underlying model

itself, and not only with its one-dimensional approximation.

Formal Analysis of The Hypotheses for the Effects of
Reward

When unbalanced reward is introduced into the LCAi

framework, the hypotheses stated in the Introduction can be

specified as follows. Under the ongoing input hypothesis, HOI ,

influences of both reward and stimulus accumulate in the same

way, so that reward affects the input term I , albeit starting before

the onset of the stimulus. Under the initial condition hypothesis, HIC ,

reward information offsets the state of the activation difference

variable at the time when stimulus information begins to

accumulate, perhaps due to a transitory input ending before the

stimulus. Under the fixed offset hypothesis, HFO, reward information

biases decision-making independently of the processes that affect

the accumulation of stimulus information. It offsets the activation

difference variable by a fixed amount favoring the high reward

alternative, or equivalently, it offsets the decision criterion applied

to this variable by a fixed amount in the opposite direction. With

the help of the Ornstein-Uhlenbeck model, the effect of the reward

on the activation difference variable at any time can be quantified

under each of these three hypotheses. Without loss of generality,

we assume that the higher reward is associated with alternative 1,

or the positive alternative. So in all hypotheses, the unbalanced

reward shifts the activation difference variable in the positive

direction relative to the decision criterion in all stimulus

conditions.

The ongoing input hypothesis, HOI , treats reward as an input Ir on

top of the stimulus input that drives the accumulator. In the full

two-accumulator LCA model, this could correspond to an

additional input to the higher reward unit resulting in the new

input term in the O-U process: I~aSzIr. By inserting this to

Equation (6), we obtain the new solution for the mean of the

activation difference variable

m(t)~
aS

l
(1{e{l(t{T0))z

Ir

l
(1{e{l(t{T0z0:75)), ð9Þ

where t denotes time relative to the stimulus onset. Note that the

non-decision time T0 is included in order to match the prediction

with response times in the experiment. Comparing this solution

with the m(t) term in Equation (7), one can notice the addition of

an independent reward term which grows in the same way as the

stimulus. Intuitively, in this hypothesis the activation difference

variable is shifted towards the higher reward by an amount that

builds up with time. Because the reward cue comes on 750 ms

before the stimulus, the reward effect is already present to some

extent at stimulus onset (note the additional time 0:75 in the

reward term), although it will continue to build up further as time

continues. The overall strength of reward bias is controlled by free

parameter Ir.

The initial condition hypothesis, HIC , assumes that reward

information affects the initial condition or starting point of the

process by the amount Yr. In the full framework of the LCA

model, this could result from a higher starting point of

accumulator 1, or a lower starting point of accumulator 2, or

both. This hypothesis differs from the first one in that reward

information enters the accumulation process only at or before the

stimulus onset. Mechanistically the reward effect can be thought of

as having been subject to integration before the stimulus onset with

the integration terminating when the stimulus turns on, or possibly

before that time. This effect then follows the dynamics of the

system in this hypothesis. Mathematically, the mean of the

activation difference variable is changed to

m(t)~
aS

l
(1{e{l(t{T0))zYre

{l(t{T0), ð10Þ

where the dynamic effect of the reward is represented by

Yre
{l(t{T0). The value of the parameter Yr denotes the overall

strength of the reward effect.

Figure 8. Effect of nonlinearity on the dynamics of the activation difference variable and on response probabilities. Only the case of a
positive stimulus is drawn. Left column: phase planes of the full nonlinear leaky competing accumulator model (panel A) and the linear O-U
approximation (panel B). In panel A, a point on the y1,y2 plane represents the two activation variables whose values are read out from the horizonal
and vertical axes. The time evolution of the two variables is described by the trace of the point. They explode first until they are out of the first
quadrant and then converge to one of the two attracting equilibria. In panel B, the activation difference variable y explodes to either {? or z?.
The dashed line in panel A denotes the boundary of the basins of attraction. In the one-dimensional space in panel B, the boundary is denoted by the
red dot. Panel C: the probability density function (PDF) of y1{y2 based on the full nonlinear LCA. Panel format is as in Figure 7. Panel D: the PDF at
the end of the time interval simulated.
doi:10.1371/journal.pone.0016749.g008
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In the fixed offset hypothesis, HFO, reward affects the decision

independently of the sensory accumulation process. The reward

effect is therefore treated as a constant offset of the activation

difference variable whose mean value is changed to:

m(t)~
aS

l
(1{e{l(t{T0))zCr: ð11Þ

According to this hypothesis, the accumulators only accumulate

evidence from the stimulus, and the reward information is

essentially processed separately, without interacting with the

dynamics of stimulus integration. This is quite different from the

situation in the other two hypotheses, where decisions are

completely determined by the activity of the accumulator, and

reward and stimulus both influence the processing dynamics.

So far, we have quantified the reward effect on the mean of the

activation difference variable averaged across trials m(t). However,

response probability is determined by variability s(t) as well as by

the mean, as previously discussed. One source of noise is

variability in the initial state of the activation difference variable,

with standard deviation s0. The other source is the noise intrinsic

to the dynamics of the process itself, with standard deviation e.

The absolute noise level is not measurable in the current experiment

because response probability results from the signal to noise ratio.

For this reason, we can fix the strength of the intrinsic noise at a

specific value, and we set e~1 without loss of generality. The fitted

values for other free parameters can therefore be viewed as relative

to the value of the intrinsic noise level e.

We now summarize the predictions of the three hypotheses on

response probabilities. The probability of choosing the higher

reward is determined by the ratio between the mean and the

standard deviation of the activation difference variable, which

both evolve with time. Thanks to the linearity of the O-U model, it

is a linear combination of a stimulus term and a reward term.

These hypotheses share the same stimulus term, Equation (8), and

they have their unique reward terms

HOI :

Ir

l
(1{e{l(t{T0z0:75))ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
0e{2l(t{T0)z

1

2l
(1{e{2l(t{T0))

r ; ð12Þ

HIC :
Yre

{l(t{T0)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

0e{2l(t{T0)z
1

2l
(1{e{2l(t{T0))

r ; ð13Þ

HFO :
Crffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
0e{2l(t{T0)z

1

2l
(1{e{2l(t{T0))

r : ð14Þ

To see how these hypotheses predict response probabilities as

shown in Figure 3, one simply needs to assign values of S and t to

the prediction of a hypothesis, where S refers to the stimulus level

and t refers to the time of a response since stimulus onset. For

example, to see the prediction of the ongoing input hypothesis, in

the condition of 3 pixels shifted towards the higher reward and

responses occurring 500 ms after stimulus onset, one should assign

S~z3,t~0:5 to Equation (8) and Equation (12) to obtain the

response probability. The predicted values should be compared

with a data point in the corresponding condition in Figure 3 to

evaluate the hypothesis. To fit the model to the individual

participant data, there are five free parameters that must be fit for

each participant. Four of them are shared across the three

hypotheses: l which determines the dynamics of the system (the

sign of l determines whether the process is leak or inhibition-

dominant, and its absolute value determines how long the process

takes to stabilize); a, which characterizes the participant’s personal

stimulus sensitivity; s0 denoting the variability in the initial

condition; T0, the non-decision time in the task which includes the

time it takes before the information arrives at the accumulators

and the time for action execution. The fifth parameter is the

hypothesis dependent parameter expressing the effect of reward

information. In HOI , it represents the reward input strength Ir; in

HIC it represents the magnitude of the reward-based offset to the

initial condition, Yr; and in HFO, it represents the magnitude of

the fixed offset Cr.

Test Results on the Hypotheses
The predictions of the three hypotheses are depicted in Figure 9,

with each column representing those of each hypothesis. As

emphasized before, the analysis focuses on the inhibition-

dominant regime in which lv0. The time evolution of the

activation difference variable y is summarized in the top row. As in

Figure 7B, red and blue denote the condition of the positive and

negative stimulus respectively. The width of the distributions

convey the variability of the activation difference variable, and

their center positions, marked by solid red and blue lines below the

distributions, indicate their mean values.

Without reward, the distributions are symmetrical (Figure 7B).

With a reward influence in place, an overall asymmetry is

introduced, corresponding to the reward effect – the time-

evolution of the mean reward effect is indicated by the green

curve in each panel of the top row of Figure 9. The effect of

reward bias on response probability at a given time t depends on

the reward effect on the normalized decision variable, corre-

sponding to the mean of the activation difference divided by its

standard deviation. The panels in the middle row show the mean

reward effect and the standard deviation of the activation

difference variable in green and magenta respectively. The ratio

between the two, which represents the qualitative pattern of the

normalized reward-bias on response probabilities under each of

the three hypotheses, is sketched in the bottom row of the figure

and summarized in Equations (12, 13, and 14).

With these figures in front of us, let us now consider the three

hypotheses. They all make predictions that are in some ways

similar, in that the effect of reward bias starts at a fairly high but

finite value, and then drops gradually with time. Focusing first on

the starting place and initial drop, these effects arise as follows. Just

at the instant that the stimulus effect is about to begin to influence

the accumulators (t{To~0), all three hypotheses express the state

of the reward bias as a simple ratio of the size of the reward bias

that is in effect at that time, divided by the initial variability. In the

idealized situation in which there were no such initial variability,

then, participants could show the idealized and optimal initial bias,

that is, they would always choose the alternative associated with

the larger reward. If some initial variability is inevitable, then it is

the ratio of the initial bias to the magnitude of this variability that

determines how large the reward bias will be. The subsequent

drop in the magnitude of the reward bias then reflects, in part, the

increase in the overall variance – this increase is the same under all

three hypotheses, as illustrated in the middle panels of the figure.

As previously discussed, any variability in the activation difference

variable at the outset of processing grows exponentially, without

limit. This causes the widening and flattening of the distributions

in the top row of Figure 9. What differs across the three hypotheses
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is the way in which the reward bias (captured by the numerators of

Equations 12–13) changes as time goes onward.

HFO: reward as a fixed offset in the value of the activation difference

variable. Under this hypothesis, the reward introduces a fixed offset

in the activation difference variable, so that the effect of the reward

on the mean of the activation difference variable remains constant

over time (green solid line in the middle right panel). Given the

increasing variance, the reward effect on choices thus weakens

with time when scaled against the accumulated noise. Therefore,

the reward effect on response probabilities disappears as stimulus

duration lengthens (see bottom right panel in Figure 9). Reviewing

Figure 6, we see that the reward bias sustains for long response

times. Thus, HFO is inconsistent with the data from the

participants.

HOI vs HIC : reward information participates in processing dynamics.

Under both of the remaining hypotheses, the reward effect on the

mean of the activation difference variable grows without limit, but

it does so more aggressively in the case where the reward is

assumed to provide an ongoing source of input to the

accumulators (HOI , green curve in the middle left panel) than in

the case where the reward input only affects the initial conditions

of the accumulators (HIC , green curve in the middle center panel).

At first, under both hypotheses, the dynamics of the normalized

decision criterion (i.e. the reward bias in the bottom left and center

panels) is more affected by the growth of the denominator, causing

the ratio to decline. As time elapses, however, the growth of the

reward effect under HOI exceeds that of the accumulated noise.

The resulting ratio hence starts to grow again. Quantitatively,

we can take the derivative of the reward bias with respect

to time which indicates that the turn-over occurs at time

t~0:75zT0zlog(1{2ls2
0)=l. From this we can see that

stronger initial variability is associated with an earlier minimum

in the value of the normalized reward bias. A similar growing-

declining pattern on accuracy was noticed in [28] with dynamical

signal strength in the drift diffusion model. The data in Figure 6

indicates that none of the participants exhibited this pattern.

Therefore, we conclude that HOI is qualitatively inconsistent with

the observed experimental data.

The pattern that we observe under the initial condition

hypothesis HIC is consistent with the data. In this case, the

reward effect on the activation difference variable grows

exponentially with time, but it grows more slowly than in HOI ,

because there is no continuing driving input behind it. The

resulting reward bias on choice decreases monotonically with time

and levels off, as shown in the bottom middle panel of the figure.

Quantitatively, this asymptotic value is equal to Yr=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

0{1=2l
q

.

Quantitative Fit Based on HIC

Based on the qualitative superiority of HIC , we proceeded to

investigate whether a good quantitative fit to the individual

participant data could be obtained under this hypothesis. To do

so, we assign values of the stimulus and time to obtain the predicted

response probabilities described by Equations(8) and (13). Please

see the example below Equation(14). The stimulus takes value of 1,3
or 5 according to the experiment. The value of time is the mean

reaction time of the participant in a specific experiment condition,

defined by the averaged time of the response relative to the

stimulus onset. The parameters that were allowed to vary in fitting

the data from individual participants were the net inhibition

parameter l (forced to be negative, in line with the inhibition-

Figure 9. Reward effects in the three hypotheses based on the reduced leaky competing accumulator model. Figure format is similar to
that in Figure 7. Top panels: time evolution of distributions of the activation difference variable y in inhibition-dominance for the positive (red) and
negative (blue) stimulus conditions. Solid red, blue and green lines present the mean positions of the positive, negative distributions and the two
distributions combined respectively. Middle panels: time evolution of the mean position of the distributions (green lines, as in the top panel) and the
standard deviations of these distributions (magenta). Bottom panels: the ratio between the two, which represents the reward bias on the normalized
decision variable corresponding to the reward bias in Figure 6. Left column: HOI , in which reward information provides an ongoing input to the
accumulator. Conventions for the x axis in the middle and bottom panels are as in Figure 7. Note that reward cue comes on before the stimulus in the
experiment so some reward effect is already present at the stimulus onset. Middle column: HIC , in which reward offsets the initial condition. Right
column: HFO, in which reward offsets the activation variable y by a fixed amount. Note that under HOI , the effect of reward bias on choice grows
with time in long delay conditions (bottom left); under HFO it disappears as stimulus duration lengthens (bottom right); under HIC , the effect of
reward decreases to a fixed value greater than 0 as accuracy reaches asymptote.
doi:10.1371/journal.pone.0016749.g009
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dominant regime); the personal stimulus sensitivity a; the initial

bias strength Yr, initial variability s0, and non-decision time T0.

We found values for these parameters that jointly maximize the

likelihood of the data, using the MATLAB optimization tool

fminsearch which finds local minima using the Nelder-Mead simplex

algorithm. 50 searches were run for each participant to identify

multiple minima and the result with the highest data likelihood

was selected.

As before, the intrinsic incoming noise strength e was held

constant at 1.0. Parameters a,Yr and s0, which reflect the

activation of the accumulators or their growing rate, are therefore

normalized by the noise strength and do not have units. Values of

T0 are in seconds and of l in 1=sec. The maximum likelihood values

of the parameters are shown in Table 2, and the expected

behavioral choice results are displayed in Figure 10. This

hypothesis captures all four of the important qualitative features

of the data itemized in the section on Basic Findings.

The correspondence between the experimental data and the

model is generally quite close for all four participants. However,

there are slight deviations from the fitted values for all four

participants. We asked whether the deviation between the data

and the model is greater than we would expect by chance by

generating 1000 simulated data sets from the predicted response

probabilities given by the model, calculating the log likelihood of

each such simulated data set, and comparing the value of the log

likelihood for the participant’s actual data to the distribution of

values obtained with the simulated data sets. These simulated

values for each participant form unimodal and approximately

normal distributions. For two of the participants (CM and JA), the

obtained log likelihood falls well within the distribution of values

generated by the stochastic simulation (56% and 78% of the

simulated values fall below the values for CM and JA respectively).

What this means is that, for these two participants, the data are as

consistent with the model as we would expect if the model actually

generated the data. For the other two participants (MJ and ZA),

however, the obtained log likelihood values fall in the tail (below all

but 5% and 1% of the simulated values, respectively), suggesting

that there may be a real, though subtle, discrepancy between the

model and the experimental data. Examination of the relationship

between the expected and predicted values in Figure 10 suggests

that in the case of participant ZA, the model may be systematically

overstating the degree of reward bias in the hardest stimulus

conditions (for longer delays, the actual data points for both +1

and 21 conditions tend to fall below the fitted curves for this

participant). The pattern of deviations in the case of participant

MJ are more scattered, and do not appear to be systematic. We

explored the possibility that a better fit to the data for MJ and ZA

could be obtained by relaxing the simplifying assumption that the

asymptotic sensitivity levels D’ is a linear function of the stimulus

level S. This idea seemed worth exploring because, as can be seen

in Table 1 and Figure 5, the approximation seems less adequate

for these participants than for the others. However, using the three

fitted values of D’ directly, instead of the linear approximation to

the relation between D’ and S, only resulted in a slight

improvement in both cases (actual log likelihood values still fall

below all but 9% and 5% of simulated values based on the direct

D’ fits for MJ and ZA respectively), and makes the pattern of

deviation described in the text for ZA appear even more clearly.

Even if there is room for further improvement in the case of

participant ZA, the overall fit of the model to the pattern of the

data from all four participants indicates that the model can capture

nearly all of the systematic structure in the data.

Reward Offset in the Full Nonlinear Leaky Competing
Accumulator Model

Before we finalize our assessment of the account we have offered

for our data, we must revisit the effect of nonlinearity in the full

leaky competing accumulator model. To address this we

conducted a further fitting exercise using the full LCA. We

constrained the parameter values for this fit based on those in the

reduced Ornstein-Uhlenbeck model in Table 2. As explained

above, the single variable in O-U results from the difference

between the two activation variables in the LCA: y~y1{y2,

l~c{b,aS~i1{i2 and e~
ffiffiffi
2
p

êe. With this relationship, we only

have two more free parameters: c and a baseline input B. With

them, we can specify the strength of the mutual inhibition b since

b~c{l, as well as the inputs to the two accumulators:

i1~BzaS=2 and i2~B{aS=2. For this simulation, we initialize

each of the two accumulators with independent Gaussian random

values drawn from distributions with the same mean value

B=(czb) and standard deviation s0=
ffiffiffi
2
p

. Then, we add half of

the initial reward offset amount (Yr=2) to the first accumulator and

subtract this quantity from the second accumulator. Effectively the

difference between the two activation variables at the moment

stimulus information starts to affect them has a mean of Yr and a

standard deviation of s0. This initial condition corresponds to a

two-dimensional Gaussian distribution whose mean falls on the

negative diagonal line shown in Figure 8A, shifted along this line

toward the direction of higher reward. We then explored possible

values of the two remaining free parameters to find values that

would allow a good fit to the data.

The chosen values of the parameters are shown in Table 3.

Although the parameter b is not independent of other parameters,

we show its value in the table as well. Since analytical prediction of

response probability is not possible due to the nonlinearity, the

values are chosen according to stochastic simulation. For each

delay and stimulus condition, we ran 2000 simulated trials. The

simulated response probabilities in all the conditions were then

treated as the prediction of the model associated with a parameter

set. We then searched for a parameter set to maximize the

likelihood of the data. These simulations are themselves subject to

noise, and there is no guarantee that the best values we found are

the best possible values. In fact, similarly good fits can be obtained

with other values, as we should expect given previous results

demonstrating the adequacy of the one dimensional projection of

the model to mimic predictions of the full two dimensional

modelUsher2001,Bogacz2006. For given values of the other

parameters, the parameter B influences the correspondence

Table 2. Parameter values in fitting the reduced LCA.

Participant l a Yr s0 T0 log(p)

CM 23.4 0.35 0.23 0.21 0.35 2192

JA 21.6 0.33 0.14 0.14 0.32 2198

MJ 25.1 0.43 0.10 0.16 0.35 2223

ZA 23.9 0.52 0.16 0.11 0.36 2199

Fitted parameters of the linear approximation (Ornstein-Uhlenbeck) of the leaky
competing accumulator model in the inhibition-dominant regime under the
initial condition hypothesis HIC . Each row represents the results for each of the
four participants who show a reward bias. The model is explained in the main
text and summarized in Equations (6, 8, 10, 13). The absolute value of l is
inversely related to the time scale of the decision-making process and the
minus sign means the process is in inhibition-dominance. a,Yr,s0 and T0

denote a participant’s personal sensitivity to the stimulus, the overall strength
of the reward bias, the level of the initial variability and the non-decision time
respectively.
doi:10.1371/journal.pone.0016749.t002
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between the reduced model and the full two dimensional model.

When B is very large, the correspondence becomes perfect, because

both accumulators’ activation values stay above 0. As B decreases to

the point where B=(czb)v0:5, we begin to find subtle effects,

whereby occasionally, trials that initially reached the wrong

attractor can bounce out of it due to noise, improving accuracy.

A subtle effect of this kind may be affecting the simulation results for

participants MJ and ZA, but the effect is too small to produce a

noticeable improvement in the overall goodness of fit.

The expected response probability patterns for each of the

participants are plotted in Figure 11 together with the data.

Evidently, with the chosen values of the 2 additional parameters,

the full two dimensional model fits the experimental data in a way

that is very similar to the fit provided by the reduced model.

Overall, it appears that HIC , in which reward offsets the initial

condition of the decision process, provides a very good account of

the observed data.

Discussion

In this work, we attempted to answer the question: How do

humans integrate reward and stimulus information dynamically in

perceptual decision-making? We used a perceptual decision-

making task with unbalanced rewards in which stimulus duration

varied from 0 to 2000 ms. We found that, for four of the five

participants in the experiment, reward bias, measured in terms of

the position of the normalized decision criterion h’, starts high

initially and declines as stimulus sensitivity builds up, then levels off

as stimulus sensitivity reaches asymptotic levels.

We find that the detailed pattern of results can be captured by

the inhibition-dominant leaky competing accumulator model

(LCA), under the assumption that reward offsets the initial state

of the accumulators before stimulus information begins to

accumulate. In the inhibition-dominant regime, the accumulator

that has an initial lead in activation tends to suppress the other

accumulator. The advantage thereby granted by the reward

difference to the accumulator associated with the higher reward

actually builds up over time, although it lessens in a relative sense

as time goes on since variability builds up even more quickly

initially. The model explains how an imbalance in the initial

activation of the two accumulators can produce a monotonically

decreasing shift in the position of the normalized decision

criterion, as seen in the data, in terms of the relative rates of

growth of the reward offset signal and the total accumulated noise.

It is worth noting that our analysis revealed that the three different

accounts of the way in which reward might affect the information

integration process each has its own qualitatively distinct empirical

signature. Thus, we were able to rule out two of the three

hypotheses by relying on the qualitative form of the data. Focusing

on the remaining hypothesis, we found it to provide not only a

match to the qualitative pattern of the data but also to allow a

close fit of the exact quantitative pattern in the data as well.

Our use of the inhibition-dominant LCA is not strictly required

by the present data – these data could be fit by a leak-dominant

variant of the model equally well (See Appendices 2 and 3). Our

choice to pursue the inhibition-dominant regime is not arbitrary,

however. It is based on findings of other recent studies using

similar paradigms, in which humans or primates must be prepared

to respond quickly to an imperative go cue or response signal, as

they must in our experiment. The inhibition-dominant LCA

simultaneously explains (a) why accuracy levels off at non-ceiling

levels as stimulus processing time increases, and (b) why

Table 3. Parameter values in fitting the full nonlinear LCA.

Participant ª B

CM 1.8 5.3

JA 0.4 1.5

MJ 0.7 2.1

ZA 0.5 2.0

Leak c and the baseline input B in the full nonlinear leaky competing
accumulator model. Based on these parameters and the parameters from the
reduced model (Table 2), we can obtain the inhibition strength b~c{l and the
inputs to the two accumulators B+aS=2 where S~1,3,5 refers to the stimulus
levels. See Equations (4–5) and the main text for details.
doi:10.1371/journal.pone.0016749.t003

Figure 10. Fitting results under the hypothesis that reward affects the initial conditions of the evidence accumulation process (HIC),
based on the reduced leaky competing accumulator model. Solid curves denote fitting results and symbols denote data as shown in Figure 3.
Red, green and blue denote high, intermediate and low discriminability levels respectively. See Table 2 for fitted parameters and log likelihoods.
Fitting is based on the one dimensional linear approximation (Ornstein-Uhlenbeck) of the leaky competing accumulator model, see Equation (6).
doi:10.1371/journal.pone.0016749.g010
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information coming early in a trial exerts more influence on

decision outcomes than information coming later [22,23].

Alternative Models
While the model offers an excellent fit to the data, this does not

necessarily preclude the possibility that other approaches might

also be able to explain the present data. Future research will be

needed to examine the full range of possible alternative models.

Here we briefly consider whether our results can be explained

within the classic drift diffusion model.

The first point to note is that the drift-diffusion model, in its

simplest form (no between trial drift variance and no bound in the

integration of information) predicts that accuracy will continue to

grow without limit, something that is not observed in this or other

experiments. The leveling off of accuracy as a function of

processing time can be explained by assuming there is trial-to-

trial variability in the driving input to the evidence accumulation

process [2]. While such an approach can provide a good fit to our

stimulus sensitivity data, it is not consistent with the pattern of

reward bias effects we observe under any of the hypotheses we

have considered. Under either the initial condition hypothesis HIC

or the fixed offset hypothesis HFO the effect of the reward bias will

eventually become negligible, because the variance of the evidence

accumulation process increases without limit. Under the ongoing

input hypothesis HOI , in which the reward input starts with

reward cue onset and continues until the response choice is

initiated, it is possible to capture a large initial bias that reduces as

accuracy grows and then levels off. However, according to such a

model, the fit is constrained by the fact that the normalized reward

bias and the stimulus sensitivity have the same dynamics except

that reward starts 0:75 second earlier. For example, in order to

prevent the stimulus sensitivity from saturating too early, the main

source of noise should be within-trial variability. However, this

results in a dip in the normalized reward bias curve as in HOI in

the LCAi framework. Due to these constraints, the fit to the data is

poorer than the fit to the LCAi for all four participants (log-

likelihood values are {204,{215,{352,{369 for CM, MJ, JA,

and ZA, respectively; fits were obtained using an unbounded drift

diffusion model with free parameters for sensitivity a, overall

reward strength b, between-trial drift variability sb, starting point

variability s0, and dead-time parameter T0, amounting to the

same number of free parameters as the LCAi).

We considered the further possibility that the imposition of a

bound on the integration process might allow the DDM to account

for our data, since it has been argued that participants may reach a

integration bound before the go cue occurs [22]. However,

inclusion of a bound tends to compromise the fit to the sensitivity

data: the presence of the bound tends to cause d ’ to asymptote

earlier for easy trials and later for hard trials, contra the pattern in

the data. It remains possible that some version of the drift diffusion

model could account for the data. We leave it to others to explore

this possibility further.

Our findings on the effects of reward bias are largely consistent

with, but also extend, other recent studies of the role of reward in

the dynamics of decision-making. Previous human behavioral

studies [12,13] also rejected the idea that reward bias acts as a

continuing input to the state of the accumulators during

accumulation of stimulus information, and supported a two-stage

model, similar to ours in some ways, in which processing of reward

cues preceded, and set the initial state, of the evidence variable

prior to the start of stimulus processing (for further consideration

of this model, see future directions below). Neurophysiological data

from [15] likewise supports the view that reward cues affect the

starting point of an information accumulation process in a

paradigm somewhat similar to ours, albeit one with a fixed

stimulus duration. Neither study explored as wide a range of

processing times as the present study, and in consequence, neither

study showed clearly that reward bias effects decrease but level off

at nonzero levels as processing continues.

Consistent with findings in [14], for the four participants who

showed reward bias effects, the amount of bias is close to optimal

when stimulus duration is long, deviating slightly and with

relatively little cost in the under-biased direction. In contrast,

when they have zero sensitivity to the stimulus at very short delays,

all participants deviate from the optimal strategy of always

choosing the alternative associated with the higher reward. We

should also note that one of the five participants in the study failed

to exhibit a systematic reward bias. We have occasionally seen this

pattern in other participants tested on variants of the task used

here, and the finding is reminiscent of the finding in the study of

Diederich and Busemeyer [13], in which there was a group of

participants who showed little or no sensitivity to their reward

manipulation. We have sometimes found that participants could

be induced to show reward bias effects through persistent

Figure 11. Fitting results under the initial condition hypothesis HIC , based on the full nonlinear leaky competing accumulator
model. Figure format is as in Figure 10. See Table 3 for fitted parameters.
doi:10.1371/journal.pone.0016749.g011
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instructions reminding them of the benefits of exploiting reward

information when stimulus information is uncertain, but we did

not employ this approach in the present investigation.

Explaining the Initial Underbias in Choice Responses
Can our model help explain why participants do not always

choose the higher reward alternative at short processing times,

where performance shows no stimulus sensitivity? In the model,

one factor that limits the size of the initial reward bias is initial

variability in the activations of the accumulators (see Figure 12).

This initial variability may reflect a carry over or compensation for

previous trials [29], and it can also reflect noise accumulated

within a trial before stimulus onset. The variability could also arise

from trial-to-trial fluctuation in the magnitude of the reward offset

signal. For the same amount of mean offset in the activation

difference variable due to reward, the resulting effect on response

probability is strongly affected by this initial variability. Indeed, if

the initial variability were 0, even a very slight initial reward bias

would always lead to a choice of the higher reward alternative in

our model.

The initial variability, as well as other parameters associated

with each individual participant’s performance, might be viewed

as inherent in the decision process – factors the participant has

little or no ability to control. However, even if the amount of initial

variability and these other parameters were fixed, a decision maker

could still come closer to achieving an optimal bias on short trials

by offsetting the activation difference variable by an even larger

amount. Assuming participants have strategic control over the

magnitude of this initial bias, the question then arises, why do they

not simply make the initial bias even stronger?

One response to this question is to note that if participants offset

the starting point of the accumulation process by too much, this

may produce an over-bias on trials where the stimulus duration

turns out to be very long. To investigate this, we can examine, for

each participant, the expected rewards for different delays, and for

the average over delays, as the magnitude of the initial reward

offset increases (Figure 13), holding all other parameters of the

decision process constant. The amount of offset that maximizes

reward in the longest delay condition (the vertical green bar on the

top of the green curve) is plotted together with the amount of offset

each participant used (vertical blue line), according to the fitted

value of the reward offset parameter in the one dimensional

reduction of the model. Also shown (vertical black bar on top of

the black curve) is the amount of bias that will optimize reward

overall. This plot demonstrates that the actual bias is close to

optimal for longer delays, but that all participants will gain more

rewards overall by starting each trial with a larger reward offset.

Why participants do not fully optimize the magnitude of their

reward bias is a question that cannot be fully resolved by the

present study. However, it may be worth considering a few

possibilities. One possible reason could be that participants’

subjective utility is a decreasing function of the objective rewards

[30,31]. The desirability of winning 2 points may be less than

twice that of winning 1 point, or alternatively, observers may place

some intrinsic value C on being correct, independent of the

reward, such that the subjective reward ratio becomes

(RHzC)=(RLzC); this quantity is always less than RH=RL as

long as C is positive. See also [32] and references therein. Another

possibility is that setting a large initial offset in the accumulators

requires effort, and participants are trading off a small amount of

their possible payoff for a reduction of this effort. In this

connection it is worth noting that all four of the participants

who showed reward effects are achieving within 5% of their

maximum possible reward in the longest delay condition (as

indicated by the horizontal dashed lines on each panel of

Figure 13). Thus, even if the extra effort required were only

moderate, the benefits might not be worth it. This is due to the

shallow curvature of the reward harvesting curves, especially for

Figure 12. The magnitude of the effect of reward bias is affected by the initial variability. The same reward offset (center position of the
distributions relative to 0) results in choosing the higher reward alternative almost 100% of the time when the variability in the activation difference
variable is very low (blue); while this occurs much less often (about 65% of the time in the case illustrated) when the variability is high (red).
doi:10.1371/journal.pone.0016749.g012
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the long delay conditions. Similar shallow reward curves are

reported in the free response protocol with the drift diffusion

model [33].

Beyond these possibilities, there are other kinds of reasons why

participants might not adopt a larger reward offset: One possibility

that is of interest from the point of view of models like the LCA is

that too large a reward offset would distort the dynamics of the

information integration process. As things stand, according to the

analysis offered by our model, the dynamics of the decision-

making process are effectively linear, in the sense that the linear

approximation offered by the one dimensional simplified model

provides a close fit to the data. A larger offset might push the

dynamics of the process outside of the region where this

approximation holds, and into a regime where the nonlinearity

in the process would lead to deviations from optimality. A further

possibility is that there are nonlinearities at the upper end of the

activation range not fully captured in either version of our model,

but present in more biologically realistic models [7], and that these

would come into play with strong initial reward biases. Also, if we

view the accumulators in the model as neural populations that

actually trigger overt responses when their activation reaches a

critical level (as the squeeze of a trigger causes a gun to fire), then

too much activation of an accumulator might actually trigger overt

responding prematurely. In that case, participants would have to

limit the magnitude of the initial activation of the more highly

rewarded alternative. As previously noted, selection among these

possibilities is beyond the scope of the present paper.

Open Questions and Future Directions
Here we consider several further issues that remain open and

discuss some possible directions for further research on these matters.

We have provided an account for the role of reward bias in a

particular paradigm, and the account provides quite a good fit to the

data from all four participants. There may be room for further

improvement, however, in the adequacy of the fit in two of the four

cases. One obvious question is to explore how other models would

fare in fitting these data, and also to investigate whether an even

better fit might be achieved within the LCAi framework. In

examining the pattern of deviations from the fit offered by the

current version of the inhibition-dominant leaky competing

accumulator (LCAi ) model, we see little clear pattern in the case

of participant MJ, and so are uncertain whether a closer fit will be

possible with any parsimonious model. In the case of participant

ZA, however, the deviations appear to reflect a slight under-

representation, on the part of the model, of the degree of reward

bias in the hardest stimulus condition (both blue curves fall above

most of the corresponding data points). Otherwise, the fit appears to

capture other features of the data quite accurately. Whether a slight

adjustment of the current model, or some alternative model, is able

to capture this small but apparently systematic deviation is an issue

that should be explored in further research. More generally, we

welcome comparison of the account offered by the LCAi to other

possible approaches to capturing the overall pattern in the data.

Several broader questions, going beyond the details of our

specific experiment, also deserve to be examined in future studies.

One concerns how well the LCAi might explain the pattern of

data presented in the two studies mentioned earlier on reward bias

effects in a task that is similar to ours in many respects but relies on

a deadline procedure [12,13]. The models considered in those

papers did not include leakage or inhibition. Two models that

share with our model the assumption that reward affects the initial

state of the accumulators were considered in these papers,

although the modeling framework used could not distinguish

between an offset in the starting place of the accumulators per se vs.

an offset in decision criteria. (One of the models considered in both

[12,13]–the ‘two-stage’ model– is most naturally viewed as a

model in which the first (reward-processing) stage drives activation

of the accumulators, but it is still possible to think of this stage as

one that introduces a complementary adjustment in the position of

decision boundaries). Although some of the models considered

provided better fits to the data than others, there was still room for

improvement even for the best models considered. In light of this,

it will be interesting to see how well the LCAi may be able to

account for the data from these studies.

Reward effects might also be explored in a standard reaction

time experiment, in which no explicit time constraint on

processing is provided. In such experiments, participants are

usually thought to respond when the activation of one of the

detectors reaches a criterial activation level. In the absence of trial-

to-trial variability in the input to the accumulators, the optimal

policy in the classical diffusion model is to offset the starting point

of the accumulators (or equivalently, to offset the positions of the

decision boundaries) by a fixed amount. However, if there is trial

to trial variability in stimulus difficulty (either due to drift variance

or to a mixture of difficulty levels), a superior policy may be to

allow the amount of reward bias to gradually increase [34], or,

alternatively, to allow it to produce a gradual decrease in the

position of the decision boundaries. This will have the useful

consequence of leading to less reward bias for the easy conditions

(which will tend to reach a boundary early) compared to the

harder conditions (which will tend to reach the boundary later,

when the effect of the bias is greater). It will be interesting to see

whether participants are able to achieve near-optimal reward bias

effects under such conditions, and if so to understand how such

effects are implemented mechanistically.

Figure 13. Normalized expected rewards as a function of the
reward offset under the initial condition hypothesis. Expected
reward obtained in the shortest delay condition (red), the longest delay
condition (green) and all delay conditions (black) are plotted together.
In each condition, the amounts of reward are normalized by the
maximum rewards the participant can achieve in that condition or set
of conditions. In each panel, the vertical blue line denotes the observed
reward offset, the vertical green bar on top of the green curve indicates
the amount of reward offset that would optimize performance for the
longest duration and the vertical black bar on top of the black curve
denotes the amount of reward offset that maximizes the overall
expected rewards across all durations. Note that optimal reward offsets
are based on the fits of the model rather than on the data. See text for
details.
doi:10.1371/journal.pone.0016749.g013
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Additionally, further research is needed to investigate the neural

basis of reward effects on the dynamics of decision-making. While

the Rorie et. al. study [15] provides important evidence on this

issue, in a paradigm that has many similarities with the one we

have used in these studies, it would be desirable to develop non-

invasive methods for use in human studies as well, preferably using

imaging modalities such as EEG and MEG with high temporal

resolution. Investigations of this type are currently in progress in

our laboratory.

Another important direction for future investigations is to

understand better the individual differences we see between

participants, and to discover ways in which participant’s

performance can be optimized. In the earlier part of this

discussion, we focused on optimization of the way in which the

reward bias influences the decision-making process, considering

other parameters as fixed, but it may be that other parameters of

the process are also subject to strategic control, and hence possible

optimization. Participants may have some control over the

variability in the initial state of the accumulators. For example,

they may be trying to anticipate which alternative will be

presented on a given trial, even though this is completely

randomly determined. Alternatively, participants may have some

control over the shared input to the two accumulators (the B
parameter in the full two dimensional model), and/or the balance

between leak and inhibition. These parameters might be affected

by top-down activation signals or by neuromodulatory processes

partially or completely under strategic control, or at least subject to

individual differences. Exploration of these possibilities will be an

important target of future investigations.

Conclusion
Our investigation has considered how reward information

affects decision dynamics under conditions of time pressure and

uncertainty, and we have found that all four of the participants

who exhibited sensitivity to reward information showed a pattern

of reward bias in which responses after very short processing times

exhibited a strong reward bias, which tapered off to a steady level

as stimulus sensitivity also approached an asymptotic level. A good

account of our data was provided by a variant of the leaky

competing accumulator model, in which reward offsets the starting

place of a competitive, inhibition-dominant, activation process.

Exploring this further within the model, the initial offset values

fitted to the data of all four reward-sensitive participants allowed

each of them to harvest more than 95% of possible rewards, fixing

all other parameters of the model. Additional research is needed to

determine why participants were not able to come even closer to

optimality. Further research is also needed to consider how well

our data might be explained by alternative models; to further

understand the role of reward in other paradigms in which

responses must be made quickly based on uncertain information;

to understand the neural basis of reward effects on decision-

making; to understand individual differences; and to explore the

Figure 14. Procedure of the perceptual decision-making task with unequal payoffs. The reward cue (a left or right pointing triangle)
indicates which choice, if correct, receives higher reward. Timing of the stages of the experiment is depicted on the bottom. The ‘‘Go’’ cue comes on
with a delay of 0,75,150, 225,300,450, 600,900,1200 or 2000 milliseconds. See text for details.
doi:10.1371/journal.pone.0016749.g014
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extent to which other aspects of participants’ performance in tasks

requiring the integration of reward and stimulus information can

be optimized.

Methods

The research on human participants reported herein was

approved by the Stanford University Institutional Review Board

(nonmedical subcommitte) under protocol #7029. Written

informed consent was obtained from all participants.

The stimulus was displayed on a Dell LCD monitor at

128061024 resolution using the Psychophysics Toolbox v2.54

extensions of Matlab r2007a. All stimuli were light gray rectangles

on a darker gray background. On each trial, the rectangle was

longer to the left or right of the screen center by 1,3 or 5 pixels

over a basis of 300 pixels, resulting in a shift of the center by

0:5,1:5 or 2:5 pixels. Participants, seated approximately 2.5 feet

from the monitor, were asked to judge which side of the rectangle

was longer and to indicate their decision by pressing one of two

specified keys assigned to the left and right index fingers.

On each trial, participants saw a fixation cross for 900 ms. An

arrow then replaced the fixation cross for 250 ms, pointing either

left or right to indicate which of the two responses, if correct, would

lead to a 2-point reward. The other alternative was always

associated with a reward of one point. The arrow was then replaced

by the fixation cross, and a stimulus was displayed 500 ms later.

After the stimulus appeared, participants were instructed to hold

their response until they heard the ‘‘go’’ cue. The cue tone was

played 0 to 2000 ms after the appearance of the stimulus. There

were ten possible cue onset times within this range. Participants

were to respond within 250 ms of the onset of the go cue.

The stimulus disappeared after the response. Visual and

auditory feedback was given 750 ms after the go cue indicating

whether the response occurred within 250 ms, and (if so) whether

it was correct. If participants responded within 250 msec and

chose correctly, they heard a cash register sound (‘ka-ching!’) once

or twice, and earned either 1 or 2 points. A correct response in the

direction indicated by the arrow would earn two points, while a

correct response in the opposite direction would earn only one

point. Incorrect responses earned no points and were followed by

an error noise. Responses that occurred too early or too late also

received no points, and were followed by a different noise.

The total time allotted for feedback of any type was 1000 ms.

Participants were paid a base amount of USD$7:00 per session

and an additional amount equal to 0:33 cent per point earned. See

Figure 14.

Five participants who reported normal or correct-to-normal

vision and hearing were tested in one-hour sessions over several

weeks. In each session, all combinations of discriminability level (1,

3, 5 pixels longer to the left or right), reward (left- or rightward

arrow) and delay condition (‘‘go’’ cue occurring 0,75,150,225,
300,450,600,900,1200,2000 milliseconds after stimulus onset)

were presented in a pseudorandom manner. In each session,

participants completed 7 blocks of 126 trials. A self-timed break

occurred between blocks. For all participants, the first two sessions

in which they familiarized themselves with the task were ignored.

The total number of trials included in the reported analysis were

15120,18720,19200,15120,10920 for participants CM, JA, MJ,

ZA, and SL respectively.

Supporting Information

Supporting Information S1 Here, we present the Iso-Criterion

analysis of the data. For each delay condition, we plot the stimulus

sensitivity and the decision criterion variable representing the

degree of reward bias individually for each of the three difficulty

levels. The results are generally consistent with the hypothesis that

the participants are adopting a common criterion for the three

difficulty levels within each delay condition.

(PDF)

Supporting Information S2 In the linear version of the leaky

competing accumulator model, exactly the same pattern of choice

behavior can be predicted in either leak- or inhibition-dominance

with proper parameter values. Here, we demonstrate this result

and show the relationship between the two parameter sets in the

two regimes.

(PDF)

Supporting Information S3 Here we consider how reward

might influence choice behavior in the leak-dominant regime of

the leaky competing accumulator model, examining the same

three hypotheses considered in the main text for the inhibition-

dominant regime. Although the data from the reported experi-

ment are treated as arising within the inhibition-dominant regime,

we include this analysis to complete the analysis of the full

theoretical framework.

(PDF)
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