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Summary

Vaccination with autologous cancer cells aims to enhance adaptive immune
responses to tumour-associated antigens. The incorporation of Fms-like
tyrosine kinase 3-ligand (FLT3L) treatment to the vaccination scheme has
been shown previously to increase the immunogenicity of cancer vaccines,
thereby enhancing their therapeutic potential. While evidence has been pro-
vided that FLT3L confers its effect through the increase of absolute dendritic
cell (DC) numbers, it is currently unknown which DC populations are
responsive to FLT3L and which effect FLT3L treatment has on DC functions.
Here we show that the beneficial effects of FLT3L treatment resulted predomi-
nantly from a marked increase of two specific DC populations, the CD8 DCs
and the recently identified merocytic DC (mcDC). These two DC populations
(cross)-present cell-associated antigens to T cells in a natural killer (NK)-
independent fashion. FLT3L treatment augmented the absolute numbers of
these DCs, but did not change their activation status nor their capacity to
prime antigen-specific T cells. While both DC populations effectively primed
CD8+ T cell responses to cell-associated antigens, only mcDC were capable to
prime CD4+ T cells to cell-associated antigens. Consequentially, the transfer of
tumour vaccine-pulsed mcDC, but not of CD8 DCs, protected mice from
subsequent tumour challenge in a vaccination model and resulted in eradica-
tion of established tumours in a therapeutic approach. These results show that
the beneficial effect of FLT3L is associated with the induction of mcDC and
suggests that selective targeting to mcDC or instilling mcDC ‘characteristics’
into conventional DC populations could significantly enhance the efficacy of
tumour vaccines.

Keywords: cytotoxic T cell response, dendritic cell, tumour, vaccine

Accepted for publication 16 November 2010

Correspondence: E. M. Janssen, Cincinnati

Children’s Hospital Research Foundation,

University of Cincinnati College of Medicine,

Division of Molecular Immunology, Room

S5·419, 3333 Burnet Avenue, Cincinnati, OH

45229, USA.

E-mail: edith.janssen@cchmc.org

Introduction

Autologous tumour cell vaccines are intended to drive
specific activation of the adaptive immune system for
therapy of existing malignancies. The resulting in vivo
destruction of tumour cells leads to an additional release
of tumour antigens that further amplifies tumour-specific
T cell responses [1–3]. This secondary antigenic boost
has been suggested to help to enhance and sustain anti-
tumour T cell responses and prevent recurrences and
metastases.

Dendritic cells (DC) are the only antigen-presenting cells
that can adequately prime naive T cells. The (cross)-
presentation of tumour antigens by DC upon uptake of
dying tumour cells/tumour cell debris has also been shown

to be critical for the induction of endogenous anti-tumour T
cell responses [4,5].

DCs are phenotypically and functionally heterogeneous.
At least six DC subsets have been described in mice and
humans: plasmacytoid DCs (pDCs), three blood-derived
subsets (CD4+ DCs, CD8a+ DCs and CD4-CD8- DCs [6,7])
and two tissue-derived subsets (Langerhans’ cells and
dermal/interstitial DCs) – all of which appear to be distinct
sublineages and not precursor-product-related [8–10].
However, this classification has been proved to be a simpli-
fied subdivision, as we and others have recently identified
novel DC subsets that are either present in common lym-
phoid tissues or associated with specific organs [11–15].

Even though most DC subsets can capture proteins and
cell-associated antigens and can activate CD4+ and CD8+ T
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cells when pulsed with cognate peptides, only few DC popu-
lations have the actual capacity to process and present
tumour-derived antigens to T cells [16,17]. Cross-
presentation of cell-associated antigens to CD8+ T cells in
particular is believed to be limited to just one or two DC
populations [17,18].

Moreover, besides the fact that only few DC subsets can
present both CD4+ and CD8+ T cell epitopes from cell-
associated antigens, both human and mouse studies have
shown that detection and subsequent clearance of apoptotic
cells leads to a tolerogenic state in DC [19–22]. Phagocytosis
of apoptotic material has, in fact, been shown to prevent
DC maturation and inhibit proinflammatory cytokine
production. In addition, the uptake of apoptotic cells by
various lineages of phagocytes has been shown to induce
specific immunoregulatory factors, including interleukin
(IL)-10, transforming growth factor (TGF)-b and prostag-
landin E2, that dampen adaptive immune responses [19–22].
While this process is beneficial for maintaining tissue
homeostasis and preventing autoimmunity, it is clearly an
impediment in the induction of anti-tumour responses.

We have recently identified a novel naturally occurring
DC population [CD11c+CD11b-CD8a-PDCA-1- merocytic
DC (mcDC)] that, in contrast with other DC subsets, pro-
duces proinflammatory type I IFN after uptake of dying cells
and potently (cross)-primes both CD4+ and CD8+ T cells to
cell-associated antigens [12,23,24]. T cells primed by mcDC
display a greater capacity for primary expansion, cytokine
production and memory formation on a per cell basis than
those primed by other DC subsets. Because mcDCs are not
susceptible to tolerance induction by apoptotic cells, we
hypothesize that the selective expansion of mcDCs would be
therapeutically more beneficial than the expansion of all DC
populations.

The incorporation of the cytokine Fms-like tyrosine
kinase 3-ligand (FLT3L) with various treatment strategies
has been shown recently to increase the immunogenic and
thereby therapeutic potential of cancer vaccines [25–29].
FLT3L by itself promotes tumour regression in some solid
tumour models, presumably through the activation of
natural killer (NK) cells [30–32]. However, poorly immuno-
genic tumours are seldom rejected by this means alone. The
primary mechanism of FLT3L is attributed currently to its
support of the survival, proliferation and differentiation of
haematopoietic progenitors into DCs [33–36]. Although
there is consensus that the increase in DC numbers is one of
the main mechanisms for the enhanced anti-tumour
responses upon FLT3L treatment, many details on the rela-
tive contribution of distinct DC populations or the possible
effect of FLT3L on their functions are still unclear.

Here we show that FLT3L confers its immunostimulatory
effect to prime CD4+ and CD8+ T cells to tumour-associated
antigens through the preferential expansion of specific DC
subsets rather than through changing the capacity of DC
subtypes.

Materials and methods

Mice, cell lines and peptides

C57Bl/6J mice were purchased from The Jackson Laboratory
(Bar Harbor, ME, USA). Mice expressing chicken ovalbumin
(ActmOVA) were a kind gift from M. Jenkins [37] and were
bred onto the B6.C-H2bm1/ByJ (B6.Kbm1) background. OT-1
(OVA-specific transgenic CD8 T cells) were bred
onto the CD45·1 (B6.SJL.Ptpcra) background and OT-2
(OVA-specific transgenic CD4 T cells) were bred onto the
CD90·1 (B6.PL-Thy1a/CyJ) background in our facility. Mice
were maintained under specific pathogen-free conditions
in accordance with the guidelines of the Association for
Assessment and Accreditation of Laboratory Animal Care
International.

PK136 (NK1·1 depleting antibody), EL-4mOVA and the
parental line EL-4 were cultured in Iscove’s modified Dul-
becco’s medium (IMDM) (Invitrogen Life Technologies,
Carlsbad, CA, USA) supplemented with 10% fetal calf serum
(FCS), 50 mM 2-mercaptoethanol (ME), 2 mM l-glutamine,
20 U/ml penicillin and 20 mg/ml streptomycin. OVA257–264

(SIINFEKL), tyrosine-related protein-2 tyrosinase-related
protein (TRP)-2180–188 (SVDYDFFDWL), OVA323–339

(ISQAVHAAHAEINEAGR) and lymphocytic choriomenin-
gitis virus–glycoprotein (LCMV GP)61–80 (GLKGPDIYK
GVYQFKSVEFD) were obtained from A&A Laboratories
(San Diego, CA, USA).

DC and T cell isolation

DC were isolated from spleens of naive mice or mice treated
for 9 days with 10 mg human recombinant (hr)FLT3L as
described previously [34]. hrFLT3L was a kind gift from
Amgen (Thousand Oaks, CA, USA). DC were analysed for
the expression of CD4, CD8a, CD11b, CD11c, CD40, CD54,
CD80, CD86, Kb, Db and I-A/E by flow cytometric analysis
(antibodies/isotype controls; eBioscience/Biolegend, San
Diego, CA, USA; DCs were subsorted by flow cytometry
based on their expression of CD11c, CD11b, CD8a or
PDCA-1 by flow cytometry to purity of >95% and viability
>95% (7-AAD staining).

OT-1 and OT-2 T cells were isolated using CD8 or CD4
microbeads (Miltenyi Biotec, Auburn, CA, USA) and
labelled with 5,6-carboxy-succinimidyl-fluorescein-ester
(CFSE) (Molecular Probes, Eugene, OR, USA) as described
previously [38]. Purity of sorted cells was >98% and viability
was >97% as determined by CD4/CD8/Va2/Vb5 expression
and 7-AAD staining.

Cytokine induction in DC

Purified DCs (1 ¥ 105) were cultured with irradiated spleno-
cytes in a 1:3 ratio in 96-well U-bottomed plates. After 3, 6
and 16 h supernatant was analysed for type I IFN by reporter

C. M. Hennies et al.

382 © 2011 The Authors
Clinical and Experimental Immunology © 2011 British Society for Immunology, Clinical and Experimental Immunology, 163: 381–391



assay [39] and IL-10, tumour necrosis factor (TNF)-a and
TGF-b by quantitative polymerase chain reaction (PCR)
using SybrGreen and the following primers: ml32 forward
5-GAAACTGGCGGAAACCCA-3, ml32 reverse 5-GGATCT
GGCCCTTGAACCTT-3, TNF-a forward 5-GTACTGGCA
TGTGTATGTCA-3, TNF-a reverse 5-TGGTTGAGGGAA
TCATT-3, IL-10 forward 5-GGTTGCCAAGCCTTATCG
GA-3, IL-10 reverse 5-ACCTGCTCCACTGCCTTGCT-3,
TGF-b forward 5-GACCGCAACAACGCCATCTA-3, TGF-
b reverse 5-GGCGTATCAGTGGGGGTCAG-3. The fold
increase of specific RNA (mRNA after apoptotic cells
exposure/mRNA before apoptotic cells) was determined
after normalization to L32 for each sample.

In vitro priming by DCs

Purified DCs (1 ¥ 105) were cultured with irradiated purified
ActmOVA-Kbm1 T cells in a 1:3 ratio in 96-well U-bottomed
plates. After 24 h, 1 ¥ 105 CFSE-labelled OT-1 or OT-2 T cells
were added to the wells. This experimental set-up allows us
to study exclusively cross-priming by the DC subsets because
the mutated peptide binding groove of Kbm1 cannot bind
the OVA257–264 peptide [40] and the lack of MHC class II on
the T cells prevents direct activation of the OT-2 T cells [41].
As positive control, DCs were pulsed with OVA peptides for
10 min and washed thoroughly.

OT-1 and OT-2 T cell proliferation and survival were
determined after 70 h by analysis of CFSE dilution together
with staining for Va2, CD4/CD8 and 7-AAD. Expansion of
OT-1/OT-2 T cells was determined by dividing the number
of live T cells at the end of the culture by the number of cells
added at the start of culture [12]. In parallel studies, 0·3 mM
[3H]-thymidine was added after 60 h of culture, and incor-
poration was determined 12 h later. Cytokine production in
the supernatant was determined by standard sandwich
enzyme-linked immunosorbent assay (ELISA) for IL-2, IL-4,
TNF-a and IFN-g (Biolegend, San Diego, CA, USA).

In vivo priming by DCs

For in vivo priming, B6 mice received intravenous (i.v.)
4 ¥ 105 purified DC that were incubated with irradiated
ActmOVA-Kbm1 T cells, as described above. Apoptotic cells
were removed from the DC populations using the apoptotic
cell removal kit (Miltenyi Biotec, Auburn, CA, USA). CD8+ T
cell responses were analysed in spleens 7 days after DC trans-
fer using intracellular cytokine staining to IFN-g and TNF-a
upon incubation with OVA257–264 (5 mg/ml) or control peptide
TRP-2180–188 (5 mg/ml) for 5 h in the presence of brefeldin A.
Surface staining for CD8 and CD44 and intracellular cytokine
staining for IFN-g was performed using a Cytofix/Cytoperm
kit (BD Pharmingen, La Jolla, CA, USA), according to the
manufacturer’s instructions [12,41]. For memory CD8+ T cell
assessment, an in vivo cytotoxicity assay was performed 28
days after DC treatment. Briefly, mice received CFSEhigh-

labelled splenocyte pulsed with OVA257–264 (target cells) mixed
with an equal number of CFSEmedium-labelled control cells.
Twenty-four h later the ratio of CFSElow/CFSEhigh cells was
determined by flow cytometry [42].

OVA-specific CD4+ T helper type 1 (Th1) and Th2 cells
were enumerated by enzyme-linked immunospot assay
(ELISPOT) 10 days after DC transfer after a 48-h in vitro
stimulation with OVA323–339 (10 mg/ml), control peptide
GP61–80 (10 mg/ml) or concanavalin A (ConA) (2 mg/ml; posi-
tive control), as described previously [43].

Tumour model studies

Challenge model. Mice received i.v. 5 ¥ 105 purified DC that
were incubated with irradiated ActmOVA-Kbm1 T cells.
Seven days later, mice were challenged by subcutaneous (s.c.)
injection of 2 ¥ 106 EL-4-mOVA cells in the left flank and
2 ¥ 106 EL-4 cells in the right flank. Tumour growth was
measured every second day with vernier calipers. Tumour
size was calculated as the product of bisecting tumour
diameters.

Therapeutic model. In the therapeutic approach, mice were
inoculated with 2 ¥ 106 live EL-4-mOVA cells on the left flank
and 2 ¥ 106 EL-4 as control on the right flank. As soon as
palpable tumours had formed, mice received 1 ¥ 106 purified
DC that had been exposed to irradiated ActmOVA cells, and
tumour growth was monitored daily with a vernier caliper. In
parallel studies mice received only EL-4-mOVA cells in the left
flank to determine long-term survival, reoccurrence of
tumours and possible loss of OVA-tumour antigen.

Statistics

Unless stated otherwise, the data are expressed as means
[standard error of the mean (s.e.m.)]. Survival responses
were analysed by Kaplan–Meyer using a log-rank test. All
other data were evaluated using an analysis of variance fol-
lowed by a Dunnett test. A probability value of P < 0·05 was
considered statistically significant.

Results

Immunostimulatory effect of FLT3L to cell-associated
antigens is independent of NK T cells

We first established the immunostimulatory capacity of
FLT3L in our model. To this end, mice pretreated with PBS
or FLT3L were immunized s.c. with irradiated EL-4mOVA
cells and OVA257–264 specific CD8+ T cell responses in spleens
were determined 7 days later by intracellular cytokine stain-
ing upon stimulation with OVA257–264 or with control peptide.
As expected, FLT3L-treated mice showed a greater induction
of OVA257–264-specific IFNg-producing CD8+ T cells com-
pared to PBS-treated mice (Fig. 1a and b). FLT3L-treated,

FLT3L induces therapeutic merocytic DC

383© 2011 The Authors
Clinical and Experimental Immunology © 2011 British Society for Immunology, Clinical and Experimental Immunology, 163: 381–391



but not PBS-treated, mice were protected from EL-4-mOVA
challenge 35 days after the initial immunization (Fig. 1c).
This protection was CD8+ T cell-dependent, as antibody-
mediated depletion of CD8+ T cells before tumour challenge
resulted in tumour growth comparable to that observed in
naive mice (data not shown).

As FLT3L has been shown to increase NK cell numbers and
their activation status [44,45], we determined if NK cells
played a role in the increased CD8+ T cell priming in FLT3L-
treated mice. Temporary elimination of NK T cells by anti-
body depletion prior to immunization did not affect the
magnitude of the antigen-specific T cell response or survival
upon tumour challenge in PBS- and FLT3L-treated mice.
Moreover, NK T cell depletion after immunization (but
before tumour challenge) did not affect the FLT3L-mediated
protection from tumour outgrowth, demonstrating that both
the protection to tumour growth and increased OVA257–264-
specific CD8+ T cell response in FLT3L-treated mice was NK T
cell-independent (Fig. 1d, and data not shown).

FLT3L treatment alters the composition of the DC
population but not DC functions

As FLT3L treatment has been shown to expand DCs in the
spleen and secondary lymphoid organs [34], we next analy-
sed the effect of FLT3L treatment on frequency of total
DC, the frequency of different DC subsets (CD11b DCs,
CD11c+CD11b+PDCA-1-CD8a-; CD8 DCs, CD11c+CD11b-

PDCA-1-CD8a+; pDC, CD11c+CD11b-PDCA-1+CD8a-;
mcDC, CD11c+CD11b-PDCA-1-CD8a- (Fig. 2a) and their
functional capacity. Importantly, not only the absolute
number of DC but also the distribution of different DC
populations within the CD11+ population changed dramati-
cally upon FLT3L treatment (Fig. 2b). While total CD11b
DCs expanded ~ twofold (2·2 � 0·3) upon FLT3L treatment,
CD8 DCs, mcDC and pDC expanded ~ ninefold (9·6 � 2·3-,
9·2 � 1·6- and 8·3 � 1·1-fold, respectively).

Interestingly, FLT3L treatment did not affect the func-
tional profile of the DC supsets. The expression levels
of major histocompatibility complex (MHC) I/II or
co-stimulatory molecules [CD40, CD54, CD80, CD86,
CD274 programmed cell death ligand 1 (PD-L1), CD273
(PD-L2)] were comparable with the corresponding DC
populations from PBS-treated mice (data not shown). In
addition, the cytokine induction by DCs upon interaction
with apoptotic cells was also unaltered (Fig. 2c). Specifically,
CD11b DCs displayed increased mRNA levels in both
FLT3L- and PBS-treated mice of the anti-inflammatory
TGF-b and IL-10 upon interaction with apoptotic cells,
while CD8 DCs showed a modest increase in TGF-b only.
Importantly, mcDC, and to a lesser degree pDC, produced
the proinflammatory type I IFN upon uptake of apoptotic
cells (Fig. 2d). Together these data show that FLT3L treat-
ment induces the proliferation but not the functional profile
of specific DC subsets.
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Fig. 1. Increased induction of tumour-specific CD8+ T cell responses

and tumour rejection upon Fms-like tyrosine kinase 3-ligand (FLT3L)

treatment. Phosphate-buffered saline (PBS)- and FLT3L-treated mice

were immunized subcutaneously with 10 ¥ 106 irradiated EL-4 cells

expressing chicken ovalbumin (EL4-mOVA). (a,b) Frequency of

OVA257–264-specific interferon (IFN)-g-producing CD8+ T cells 7 days

after immunization, as assessed by intracellular cytokine staining

upon a brief incubation with cognate peptide (OVA257–264; black bar)

or control peptide (white bar) for 5 h. Data in (a) show representative

dot-plots of one mouse/group (representative of two independent

experiments; four mice per group). Data in (b) are shown as

mean � standard error of the mean (n = 4). (c) PBS- (open circles)

and FLT3L (closed circles)-treated mice were immunized with

irradiated EL-4-mOVA cells and 35 days later challenged with live

EL-4mOVA. Naive untreated mice (x) served as control (five to seven

mice per group). (d) PBS (open circles)- and FLT3L (closed

symbols)-treated mice were immunized with irradiated EL-4-mOVA

cells and 35 days later challenged with live EL-4mOVA. Natural killer

T cells were depleted 2 days before immunization (squares) or 2 days

before tumour challenge (circles) by intraperitoneal administration of

300 mg PK136 antibody (five to seven mice per group).
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Comparable T cell priming capacity of DC subsets
from PBS- and FLT3L-treated mice

To study T cell priming to cell-associated antigens in vitro we
used a culturing system where DC were cultured with irra-
diated ActmOVA cells that lacked MHC-I/II before CFSE-

labelled OVA-specific OT-1 (CD8+) and OT-2 (CD4+) T cells
were added [12].

Bulk DC from FLT3L-treated mice induced more prolif-
eration in both OT-1 and OT-2 T cells than bulk DC from
PBS-treated mice (Fig. 2e), showing that the increased T cell
activation in vivo (Fig. 1a and b) could be recapitulated in
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vitro. The increased activation of both CD4+ and CD8+ T
cells primed by FLT3L-DC was also measurable by elevated
levels of the cytokines IFN-g and IL-2 (CD4+ T cells) and
IFN-g and TNF-a (CD8+ T cells) (data not shown). To deter-
mine whether the increased T cell activation in FLT3L-DC
resulted from the altered composition of the DC population
or rather from altered functionality of one or more specific
DC populations, we repeated the experiment with purified
DC populations. CD11b DCs induced poor OT-1 T cell pro-
liferation and intermediate OT-2 T cell proliferation (Fig. 2f
and g). In contrast, CD8 DCs from both treatment groups
induced good proliferation of CD8+ OT-1 T cells, but poor
proliferation in OT-2 cells. mcDC potently induced both
OT-1 and OT-2 responses, while pDC failed to induce sig-
nificant T cell responses (Fig. 2f and g). Cytokine analysis of
the primed OT-1 and OT-2 T cells showed similar results
(data not shown). Importantly, we could not detect signifi-
cant differences between DC populations that were isolated
from PBS- and FLT3L-treated mice. This finding again shows
that DC functions were not altered upon FLT3L treatment
and indicates that the increased T cell priming observed
upon FLT3L treatment results from changes in the compo-
sition of the DC population.

mcDC potently induce endogenous CD8+ and CD4+

T cell responses

To determine the effect of FLT3L treatment in the capacity
of DC to prime endogenous CD8+ T cell responses in vivo,
DC subpopulations (purified from PBS- and FLT3L-treated
mice) were incubated with irradiated ActmOVA-Kbm1T
cells, repurified and transferred i.v. into naive mice. Seven
days later the frequency of endogenous OVA257–264-specific
CD8+ T cells was determined by intracellular IFN-g stain-
ing. pDCs failed to induce OVA257–264-specific CD8+ T cell
responses and CD11b DC-treated mice showed poor
induction of OVA257–264-specific responses, and FLT3L treat-
ment did not change this phenotype (Fig. 3a and b). In
contrast, priming by CD8 DCs was robust, and mcDC
showed superior priming of endogenous OVA257–264-specific
CD8+ T cells. OVA257–264-specific CD8+ T cells induced by
CD8 DCs and mcDC produced both IFN-g and TNF-a,
but IL-2 or IL-4 production was undetectable (data not
shown). Importantly, mcDC transfer induced CD8+ T cell
memory. When mice were challenged with OVA257–264-
pulsed target cells 28 days after DC transfer, mcDC-treated
mice showed robust killing of target cells. This antigen-
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specific killing was superior to the killing observed in CD8
DC-transferred mice (Fig. 3c).

We next determined the induction of OVA323–339-specific
CD4+ T cell responses by the different DC subsets. CD11b
DCs, pDC and CD8 DCs showed poor priming of OVA323–339-
specific CD4+ T cell responses as determined by ELISPOT
for IFN-g 10 days after DC transfer (Fig. 3d). Importantly,
mcDC transfer resulted in a significantly stronger priming of
IFN-g-producing OVA323–339-specific CD4+ T cells (P < 0·05).
We could not detect the cytokines IL-4 and IL-5 by ELISPOT
upon mcDC transfer, indicating that mcDCs induce CD4+ T
cell responses of a Th1 phenotype. Comparable to the in
vitro data, DC populations from PBS- and FLT3L-treated
mice had the same capacity to activate endogenous CD4+

and CD8+ T cell responses, showing that the DC functions
also remain unaltered in vivo by FLT3L treatment.

mcDC display the greatest capacity to induce protective
anti-tumour responses

To determine the capacity of the different DC populations to
induce protective anti-tumour responses, mice received DC
populations from FTL3L-treated mice that had been cul-
tured with irradiated ActmOVA-Kbm1 T cells in vitro. Seven
days after the transfer of 0·5 ¥ 106 DC, mice were challenged
on the left flank with EL-4-mOVA cells and on the right flank
with EL-4 parental cells. In naive mice, EL-4 and EL-4-
mOVA tumours grew with comparable kinetics (data not
shown). Pretreatment of the mice with CD11b DCs did not
affect tumour growth of either EL-4 or EL-4-mOVA
(Fig. 4a). Pretreatment of the mice with CD8 DCs delayed
tumour growth of the EL-4-mOVA but not the parental EL-4
tumour. Strikingly, mcDC pretreatment protected the mice
completely from EL-4-mOVA tumour challenge but not
EL-4-tumour challenge (Fig. 4a), highlighting their potency
to induce protective tumour-specific immunity. Similar out-
comes were seen when mcDC were isolated from PBS-
treated mice (Fig. 4b), which was expected given their
similar capacity to prime endogenous T cell responses to
cell-associated antigens in vivo. Moreover, the protection to
EL-4-mOVA but not EL-4 parental tumour challenge dem-
onstrated the specificity of the DC treatments.

Differences in capacity for therapeutic intervention

We next determined the therapeutic potential of tumour cell
vaccine presentation by the different DC populations in
tumour-bearing mice. Mice received EL-4-mOVA cells on
one flank and the parental EL-4 on the other flank. As soon
as palpable tumours had formed, mice were treated with
purified DC that had been exposed to irradiated ActmOVA-
Kbm1 cells in vitro.

Treatment with CD11b DCs did not affect tumour
growth, and both EL-4 tumour and EL-4-mOVA tumour
growth was comparable with the tumour growth in

untreated mice (Fig. 5a). CD8 DC treatment resulted in a
significant but temporary inhibition of the EL-4-mOVA
tumour, but not the EL-4 tumour. Importantly, treatment
with mcDC resulted in specific rejection of the EL-4-mOVA
tumour (Fig. 5a). The observed tumour rejection was com-
plete, as parallel studies using mice that received EL-4-
mOVA tumours (but not EL-4 tumours) did not show
tumour re-occurrences or metastases for >70 days after
mcDC treatment (Fig. 5b and data not shown).

Discussion

In this study we show that the beneficial effects of FLT3L
administration before treatment with autologous tumour
vaccine result predominantly from the increase of CD8 DCs
and mcDC, two specific DC populations that have the capac-
ity to (cross)-present cell-associated antigens to T cells in an
NK-independent fashion. Interestingly, FLT3L treatment
solely augmented the numbers of these DC populations, but
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did not change the activation status of DCs upon interaction
with tumour cell vaccines or their capacity to prime antigen-
specific CD4+ and CD8+ T cells. This was also evidenced by
the fact that T cell priming was equally efficient by DCs
derived from PBS- and FLT3L-treated mice.

FLT3L is essential for DC development. Its receptor, FLT3,
a type-III receptor tyrosine kinase, is expressed continuously
from progenitor cells to steady-state DC. The development
from precursor into specific DC subpopulation may be both
stochastic or defined by cytokines and other extrinsic factors
[15,36]. Previously it has been shown that FLT3L of mice
treatment results in massive expansion of the pDC and CD8
DC populations [33,34]. Here we show that the recently
described mcDC expand to a similar degree.

pDC are known for their capacity to produce type I IFN
upon infection of the host and are generally considered poor
presenters of cell-associated antigens. Recent studies showed
that human pDC have the capacity to prime T cells to cell-
associated antigens, especially in the context of infection or
Toll-like receptor (TLR) ligation. pDC have been implicated
in the development of autoimmune diseases where type I IFN
production is thought to amplify the immune responses to

self. Conversely, pDC have also been shown to suppress
ongoing immune responses through their production of
immune suppressive molecules such as IL-10 or indoleamine-
2,3 dioxygenase (IDO), or signalling via the PD-L1–PD-1 or
inducible co-stimulator–inducible co-stimulator ligand
(ICOS–ICOSL) pathways (reviewed in [46]).

In our studies, pDC showed some capacity for uptake of
apoptotic materials and subsequent type I IFN production.
However, pDC failed to prime T cells in vitro and in vivo. In
addition, OT-1 and OT-2 T cells cultured with pDC did not
express activation markers such as CD69/CD44 (data not
shown), suggesting that in this setting the lack of T cell
responses did not result from induction of anergy or toler-
ance but rather from a lack of activation. Although pDC did
not seem to have a direct effect on anti-tumour vaccine
priming, it is extremely possible that they amplified indi-
rectly the immune response through their production of
type I IFNs that have been shown to induce DC maturation,
enhance antigen processing and presentation and enhance T
cell recruitment, proliferation and accumulation by inhibi-
tion of apoptosis [47–51].

CD8 DCs are considered the classic cross-presenting DC
and, for a long time, have been assumed to be the only mouse
DC population with the ability to cross-present cell-
associated antigens to CD8+ T cells. CD8 DCs display more
efficient phagocytic uptake of dead cells and loading of anti-
genic peptides into MHC class I than many other DC
populations. In addition, CD8 DCs are able to produce high
levels of bioactive IL-12p70 that helps in their induction of
Th1/Tc1 responses. However, their capacity to present anti-
gens in MHC class II to CD4+ T cells under conditions of
limiting antigen is relatively poor (reviewed in [52]).

Our studies show that FLT3L treatment greatly expanded
the recently described mcDC population, that potently
primes both CD4+ and CD8+ T cell to cell-associated anti-
gens [12,23]. Importantly, T cells primed to cell-associated
antigens by mcDC displayed greater primary expansion and
development into memory cells than those primed by other
DC populations.

The superior T cell priming capacity of mcDC can be
contributed to several mechanisms. mcDC store phagoy-
tosed materials in non-acid organelles and use this as an
antigen depot which allows for prolonged antigen presenta-
tion [24]. Increasing the length of antigenic stimulation has
been shown to positively affect T cell expansion, acquisition
of effector functions and memory development [53–56].
Secondly, the type I IFN production by mcDC upon uptake
of apoptotic material is likely to provide an adjuvant effect in
both an autocrine and paracrine fashion (manuscript in
preparation). Moreover, our previous observations indicated
that mice deficient in type I IFN sensing failed to induce
protective CD8+ T cell responses when treated with autolo-
gous tumour vaccines [12,23]. Besides the production of
type I IFN, the mcDCs capacity to prime strong CD4+ T cell
responses to cell-associated antigens is also instrumental in
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the induction of anti-tumour CD8+ T cell responses. We and
others have shown that CD4+ T cell help during priming of
CD8+ T cells is required for optimal CD8+ T cell activation,
primary expansion, acquisition of effector function and the
development of memory [42,57,58]. Supportively, increasing
CD4+ T cell help through transfer of (transgenic) CD4+ T
cells or preimmunization of mice enhances the induction of
CD8+ T cell responses [59,60]. In addition, ample studies
indicate that CD4+ T cell help plays a supporting role in
the maintenance, reactivation and expansion of existing
memory cells [61–63].

FLT3L was shown recently to increase a DC population
that had the ability to cross-present cell-associated antigens
to CD8+ T cells without the need to express CD8a [64].
These cells converted into CD8 DCs without dividing upon
transfer in vivo or manipulation in vitro, suggesting that
these cells could be immediate precursors of CD8 DCs
(preCD8 DCs). Due to their increased lifespan compared to
CD8 DCs, the preCD 8DCs displayed an increased capacity
to prime CD8+ T cells [64]. In contrast to preCD8 DCs,
mcDCs do not convert into CD8 DCs upon transfer in vivo
and have a similar lifespan as CD8 DCs [24]. Moreover,
their type I IFN production upon uptake of apoptotic
material and generation of antigen depots in non-acidic
organelles are characteristic features of mcDC that are
essential for their T cell priming capacity [24]. Based on
these functional data, mcDC seem to represent a distinct
DC population, but further elucidation of their develop-
mental pathways and lineage commitment may demon-
strate a close relationship to other DC populations with
cross-priming capacities.

Given the therapeutic potential of the mcDC, it will be of
extreme interest to identify the human equivalent of this
population. Recent publications discussing the capacity of
human pDC and CD141+ DC to present cell-associated anti-
gens in the presence and absence of infection [18,65–69]
indicate that novel human DC subpopulations or new func-
tions within existing populations remain to be discovered.

Collectively, our data suggest that FLT3L expands DC
populations with capacity to (cross)-present cell-associated
antigens while having a limited effect on DC populations
that are associated with the induction of tolerance (such as
CD11b DCs). The expansion of CD8 DCs will be beneficial
in the induction of CD8+ T cell responses, whereas mcDC
will increase both CD8+ and CD4+ T cell responses. Selective
targeting to especially mcDC or instilling mcDC ‘traits’ into
conventional DC populations could enhance tumour
vaccine efficacy significantly.
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