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Summary
Immunoglobulin D (IgD) has remained a mysterious antibody class for almost half a century. IgD
was initially thought to be a recently evolved Ig isotype expressed only by some mammalian
species, but recent discoveries in fishes and amphibians demonstrate that IgD was present in the
ancestor of all jawed vertebrates and has important immunological functions. The structure of IgD
has been very dynamic throughout evolution. Mammals can express IgD through alternative
splicing and class switch recombination (CSR). Active cell-dependent and T-cell-independent
IgM-to-IgD class switching takes place in a unique subset of human B cells from the upper
aerodigestive mucosa, which provides a layer of mucosal protection by interacting with many
pathogens and their virulence factors. Circulating IgD can bind to myeloid cells such as basophils
and induce antimicrobial, inflammatory, and B-cell-stimulating factors upon cross-linking, which
contributes to immune surveillance but also inflammation and tissue damage when this pathway is
overactivated under pathological conditions. Recent research shows that IgD is an important
immunomodulator that orchestrates an ancestral surveillance system at the interface between
immunity and inflammation.
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Introduction
Immunoglobulin D (IgD) has remained an enigmatic antibody class since its discovery
almost 50 years ago. Because of its spotty presence in mammals and absence in birds, IgD
was initially thought to be a recently evolved Ig isotype. Recent discoveries of IgD in more
ancient vertebrates, such as fishes and amphibians, demonstrate that IgD was present in the
ancestor of all jawed vertebrates and arose together with IgM at the time of the emergence
of the adaptive immune system, approximately 500 million years ago. While IgM remains
stable over evolutionary time, IgD shows greater structural plasticity and can be
predominantly expressed as a transmembrane or secreted molecule in a species-specific
manner. One possible interpretation is that IgD has been preserved as a structurally flexible
locus to complement the functions of IgM.

IgM and IgD are the first antibody isotypes expressed during B-cell ontogeny. After leaving
the bone marrow to colonize secondary lymphoid organs, B cells acquire surface IgD of the
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same specificity as surface IgM through alternative splicing of a pre-messenger RNA
comprising V(D)J and both heavy chain constant μ (Cμ) and Cδ exons. After encountering
antigen in secondary lymphoid organs, mature B cells transcriptionally downregulate surface
IgD and undergo somatic hypermutation (SHM) and class switch DNA recombination
(CSR) to further diversify their Ig gene repertoire. Some B cells class switch from IgM to
IgD, at least in humans, suggesting that IgD confers some functional advantage over IgM.
Here we review the literature on the evolution of IgD in jawed vertebrates and focus the
discussion on the major problems that have surrounded IgD since its discovery, including
the regulation of IgD expression and secretion, the immunological function of secreted IgD,
and the putative role of secreted IgD in various diseases. The B-cell-activating and signaling
properties of transmembrane IgD will not be discussed in detail, because IgD seems to share
most of these functions with IgM.

Discovery and evolution of IgD
Discovery of IgD

It has been almost half a century since IgD was discovered as a novel Ig class, first in
humans. In 1964, physicians David Rowe and John Fahey (1–2), while studying the disease
multiple myeloma, identified and characterized an unusual myeloma protein with
electrophoretic and metabolic properties distinct from the known Ig classes at that time,
namely IgM, IgG, and IgA. The myeloma protein displayed no reactivity to the anti-sera
against IgM, IgG, or IgA. In addition, an antigenically related form of this protein was
detected at low concentrations in the serum of healthy subjects. It did not possess the
antigenic determinants characteristic of IgM, IgG, or IgA, and thus did not appear to be a
subclass of any of these three Ig classes. The evidence collectively suggested that this
myeloma protein represented a member of a novel Ig class rather than an abnormal product
of the malignant myeloma cells. They subsequently named this new Ig class IgD. Rowe and
Fahey stated in their original paper on the discovery of IgD (2) that the reason why they
named the new Ig class IgD was ‘because of the evidence that the distinctive properties lie
in the heavy polypeptide chains and the properties are sufficient to clearly differentiate these
proteins from IgG, IgA, and IgM classes, or from known subclasses of these groups.’
However, based on some anecdotal communication, the selection of the letter ‘D’ was
indeed a decision arrived upon with few other choices (3). IgA, IgM, and IgG had already
been designated at that time. When Rowe and Fahey were looking for a name for their
newly discovered antibody class, their first choice was IgB or β-globulin, but at that time it
was expected that the murine Igs would be called β-globulin even though this never
eventuated. The Roman letter ‘C’ has no Greek equivalent. The ‘E’ reactive antibody, later
termed IgE, had traditionally been associated with allergy. Thus, Fahey and Rowe were left
with little choice but to name the new class of antibody IgD. Interestingly, ‘IgD’ is probably
a name that cannot be more appropriate for this Ig class, because it is not only distinctive
and to be differentiated from other Ig classes but also displays considerable levels of
diversity in both structure and abundance both in a single individual and among different
individuals, and is probably the most evolutionarily dynamic Ig class among all vertebrate
Igs.

Studies of IgD in other species in the late 1970s and early 1980s identified IgD only in
primates, rodents, and selected species of mammals, including dog, mouse, rat, rabbit, and
guinea pig, whereas it was undetectable in other mammals, such as swine and birds (4–8).
The discordance of the spotty presence of IgD with the animal phylogeny and evolution had
led to the general view that IgD was a recently evolved Ig class selected for certain species-
specific functions in the respective host. With the increasing availability of animal genome
sequences and the rapid developments of gene identification tools, the past 20 years have
witnessed a series of discoveries of IgD or its homologs and orthologs in many more
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mammalian species, including those where IgD was thought to be absent, such as cattle,
sheep, and pig (9–10). More importantly, IgD and its homologs and orthologs have recently
been found in a wide spectrum of species that are evolutionarily much more ancient, such as
cartilaginous fishes, bony fishes, amphibians, and reptiles, with the exception of birds (9–
22). The most primitive form of these species, i.e. the cartilaginous fishes, appeared on earth
as many as some 470 million years ago, when jawed vertebrates first evolved and adaptive
immune systems first appeared. These findings demonstrated that IgD is indeed an ancient
Ig class selected throughout evolution just like IgM and suggested that IgD or its homologs
and orthologs are probably present in not only all extant mammals but also all jawed
vertebrates (perhaps except birds). This striking evolutionary perpetuation clearly pinpoints
to some important functions of IgD associated with survival advantages of the host and has
rekindled much research interest in demystifying the functions of this enigmatic Ig class.

Evolution and diversity of IgD
Although as primordial as IgM, IgD in various vertebrate species show much greater
plasticity in terms of both the number of C domains and the types of splice variants found,
especially in fish. The variability in the numbers of C domains in fish IgW and IgNAR,
which are related to mammalian IgD, was frequently caused by various intragenic
duplications and alternative splicing. In cartilaginous fish, two of the C domains were
derived approximately 250 million years ago by a tandem duplication event (23), and in
some bony fish there was a three-domain duplication (11). Within teleost fish, the number of
C exons is different in various species (16), and the secreted and transmembrane forms are
encoded by different loci in the channel catfish (21). In addition, in teleosts the Cμ1 domain
exon is spliced into the IgD transcript (15,24), a unique way to express IgD in fish. In
xenopus, there was a recent two-domain tandem duplication event (12). Xenopus IgD
contains eight Cδ domains per chain and represents an intermediate form between fish IgD
and mammalian IgD. Splicing of the Cμ1 exon onto the IgD sequences is not observed in
xenopus. Rather, the expression of IgD is similar to that in mammals, where rearranged
V(D)J sequences are joined directly to the Cδ sequence. In the reptile leopard gecko
(Eublepharis macularius), two IgD genes have been discovered (13). The first IgD is made
up of 11 Cδ domains without evidence of recent intragenic duplications of exons. The
second IgD has seven C domains, with the first four and the seventh generated by a recent
partial duplication of the domains of the first IgD gene, and the other two (fifth and sixth)
arising from exon shuffling of domains 3 and 4 of an IgA-like molecule. In the green anole
lizard (Anolis carolinensis), one IgD gene was identified to contain 11 Cδ domains, but only
the first four Cδ domains are used in the expression of membrane-bound form of IgD (14).
IgD has also been detected at mRNA level in the Chinese soft shell turtle (Pelodiscus
sinensis) and is predicted to be a non-transmembrane protein with six Cδ domains (25). In
mammals, structural diversity of IgD is also widely present. Rodent IgD differs from human
IgD by the absence of the Cδ2 domain. In artiodactyl species including pig, sheep, cow, and
horse, in spite of the overall similarity of domain structure to human IgD, the Cδ1 exon has
been deleted and replaced with a duplicated Cμ1 or Cμ1-like exon (20,26–27). The hinge
region of mammalian IgD is of great diversity in terms of both length and amino acid
composition (Fig. 1). Rodent IgD hinge region is encoded by one exon, while in ungulates
the IgD hinge regions are encoded by two exons. Ungulate IgD hinge regions, such as those
of sheep, cow, pig, and horse, however, are structurally distinct from each other (20). Dog
IgD hinge region is related more closely to that of ungulates and is distinct to the hinge
regions of primate IgD by the absence of a highly charged C-terminal region. Primate IgD
hinge regions are highly conserved, all of which contain an N-terminal sub-region rich in
alanine and threonine and a C-terminal sub-region rich in charged amino acids including
lysine, glutamate, and arginine.
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One possible interpretation of the presence of this striking diversity of IgD throughout
evolution is that IgD has been selected as a structurally flexible locus to back up and
complement the functions of IgM. The presence of IgD may ensure the preservation of
essential immune functions in case of IgM defects, and the structure flexibility of IgD may
provide additional immune functions in a species-specific manner.

Distribution of IgD in human
The distribution of IgD in species other than human and mouse, especially in non-mammals,
is poorly characterized. This is at least in part due to the unavailability of antibodies against
IgD and the low abundance of IgD in those species. This section therefore focuses on the
discussion of the distribution of IgD in human.

Soluble IgD
Secreted IgD has been detected in various human body compartments using different
techniques. The first measurement was probably done by Rowe and Fahey (2) when they
discovered IgD. Using quantitative gel diffusion, they measured serum IgD concentrations
of 72 individuals of different sexes and ages. The median was 30 µg/ml. Some prominent
and rather unique features of IgD were observed. Serum IgD concentrations spanned a very
wide range, from barely detectable to more than 400 µg/ml. The values were not distributed
in a Gaussian manner, in contrast to the log Gaussian distribution of serum IgG, IgM, and
IgA concentrations observed by many other studies (28–34). There was also no correlation
of serum IgD level with age or sex. In addition, IgD was electrophoretically heterogeneous,
indicating differences in molecular weight of IgD molecules found in serum of a given
individual and among different individuals (35–38). Other studies carried out later with
more sensitive techniques, such as radioimmunoassay, enzyme-linked immunosorbent assay
(ELISA), nephelometry, and two-dimensional gel electrophoresis, confirmed the findings of
Rowe and Fahey on the heterogeneity of structure and abundance of IgD. The median serum
IgD concentrations generally range from 20–50 µg/ml, with considerable variation even
among people of the same age and sex. No consistent correlation with sex or age was found.
The normal serum range of IgD is wider than that of any other Ig isotype. Individuals can be
high or low producers, and low producers can convert to high producers in the setting of
certain infections and immune activation. Therefore, the large variability and lack of
correlation with demographic parameters of serum IgD might be contributed by the distinct
history of immunological exposure in different individuals. In addition to blood, IgD is also
present in human nasal, lacrimal, salivary, mammary, bronchial, pancreatic, and
cerebrospinal fluids (39–45), and in the amniotic fluid of pregnant women with
concentrations progressively increasing during the first half of pregnancy (46). Only trace
amounts of IgD are present in intestinal mucosal secretions (39,43,47–49). The distribution
of soluble IgD largely correlates with the distribution of IgD-producing B cells. Intestinal
mucosa, liver, peripheral lymph nodes, spleen, and bone marrow contain very few IgD-
producing B cells, while tonsils, adenoids, salivary, and lachrymal glands, and nasal mucosa
harbor abundant IgD-producing B cells (39,43–45,50–53). IgD-producing B cells can
account for up to 20% of all Ig-secreting cells in human tonsils (53–55). The reason why
they are rarely found in bone marrow and gut associated-lymphoid tissues (GALTs) in
healthy individuals is probably because they are not normally generated there and they
express a homing profile not in favor of the intestinal mucosa
(α4β7

int/lowCCR9lowCCR7highCD62Lhigh) (56). The numbers of IgD-producing B cells in
the upper aerodigestive mucosa are drastically increased in patients with IgA deficiency
(57–59).

Despite of the fact that IgD-producing B cells express abundant J chain (43,45,47,51), IgD is
generally recognized not to associate with J-chain or the secretory component (SC) and not
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to cross epithelium, placenta, or blood brain barrier (58). IgD found on the surface of
epithelium and in mucosal secretions, in cerebrospinal fluid, as well as in the cord blood of
some pregnant women (60–63) is thought to result from paracellular diffusion through cell
junctions and production of IgD in the fetus. Nonetheless, evidence supporting the
transepithelial and transplacental movements of IgD has been documented (64).

The metabolism of IgD was studied by Rogentine and colleagues (65) soon after its
discovery. The half-life of serum IgD was approximately 2.8 days. Serum IgD concentration
was largely determined by the rate of synthesis because of the strong correlation between the
two parameters. The fractional catabolic rate (fraction of the intravascular pool catabolized
per day) of IgD was similar to that of IgA and much higher than those of IgM and IgG,
which indicates that IgD might be catabolized in similar ways as IgA but in very different
ways from IgM and IgG. IgD is often viewed as a predominantly mucosal Ig isotype
because of the preferential localization of IgD-producing B cells in the upper aerodigestive
mucosa, such as tonsils, adenoids, and nasal mucosa, but the presence of IgD as well as IgD-
producing B cells in circulation in addition to upper aerodigestive mucosa-associated
lymphoid tissues (MALTs) indicates that IgD can potentially exert its immunological
functions both systemically and in mucosal districts. In fact, intravascular IgD takes up 73%
of total IgD in human, despite of its higher susceptibility to proteolysis, in contrast to IgA
and IgG, of which only 40–50% is in the vascular compartment and are less susceptible to
proteolysis (65). Therefore, this ancient Ig isotype may be equally important in monitoring
the presence of systemic antigens as compared to mucosal antigens.

Cell-associated IgD
Cell-associated IgD includes transmembrane IgD, intracellular IgD, and secreted IgD bound
to various cell types. Transmembrane IgD is expressed by mature naive B cells prior to
antigenic stimulation and class switch recombination (CSR) and by IgD-producing B cells in
the upper aerodigestive MALTs and peripheral blood of healthy individuals. B cells, in
addition to expressing transmembrane IgD, can also bind secreted IgD (66). The studies of
interaction of secreted IgD with T cells postulated a putative IgD receptor on a small
fraction of T cells in human peripheral blood and mouse peripheral lymphoid organs, which
binds to N-linked carbohydrate moieties of IgD (67–68). Crosslinking of IgD receptor on T
cells was shown to protect T cells from apoptosis (69). It has also been shown that this IgD
receptor could promote the formation of immune synapse between cognate T cells and naive
B cells that express transmembrane IgD and thereby augment antigen presentation and
antibody production (70–71). The expression of this receptor was detected on CD4+ T cells
in mice within minutes after oligomeric or aggregated but not monomeric IgD injection into
mouse and was inhibited by the administration of tyrosine kinase inhibitors (67). However,
many data were not readily explainable. IgD receptor-expressing T cells did not immediately
show an activated phenotype, such as the expression of CD25. Co-administration of T-cell-
specific activating agents with oligomeric IgD did not enhance IgD receptor expression on T
cells. The IgD receptor on T cells has not been identified. One reason that may have given
rise to the many intriguing data is that this putative IgD receptor may not normally be
expressed by T cells but rather be released by other cell types and binds to T cells after
oligomeric IgD injection into mice. The release of the IgD receptor and its binding to T cells
would be very rapid in response to oligomeric IgD injection, which may explain the rapid
appearance of IgD receptor on T cells.

Many myeloid cell types have been shown to be able to bind secreted IgD. In humans,
circulating basophils as well as basophils in tonsils, although rare in healthy subjects,
displayed abundant surface IgD (53). Circulating malignant mastocytomas also bound IgD
on the cell surface (53). This binding pattern of IgD to basophils and mast cells was
consistent with the specific binding of IgD to basophilic and mast cell lines in vitro (53,72).
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Neutrophils and/or eosinophils showed no or low IgD binding under physiological
conditions (53,73–75) but can bind significant levels of IgD under certain pathological
conditions, such as skin allergy and inflammation (76–77). Peripheral blood adherent
monocytes have been shown to produce pro-inflammatory cytokines upon IgD treatment
(78), but other studies showed that monocytes did not have significant IgD binding (75,79).

The IgD paradox
Soon after the discovery of IgD, a preferential association of many IgD myeloma proteins
with λ light chain was observed (80–86). This association was confirmed to be true also for
secreted IgD found in healthy individuals (54–55,81,87). Evidence of this preferential
association of secreted IgD with λ light chain also came from studies showing that
concentrations of both serum IgD and secreted IgD induced in cell culture correlated well
with λ light chain concentrations (88–90). While the ratio of κ to λ light chains in other
transmembrane or secreted Ig classes are approximately 2:1, the preference for λ light chain
in secreted IgD can be as high as 60% to 90%. Transmembrane IgD, in contrast,
predominantly contains κ light chain. This biased preference of secreted IgD for λ light
chain and of transmembrane IgD for κ light chain observed more than 30 years ago is still
not understood and has been termed the ‘IgD paradox’.

It has been hypothesized that the biased λ light chain association with secreted IgD results
from receptor editing in the precursors of IgD+IgM− B cells in bone marrow or receptor
revision in class switched IgD+IgM− B cells in the germinal center environment (55).
Receptor editing is a process through which B-cell progenitors change the Ig light chain in
their BCR in bone marrow in order to limit self-reactivity and is achieved by consecutive
rearrangements of Vκ and Jκ gene segments at the κ locus and subsequently rearrangements
of Vλ and Jλ gene segments at the λ locus; the latter often occurs after rearrangement of the
noncoding combining sequence (RS) element with either a Vκ segment or a recombination
signal sequence in the intronic region (IRS) of the Igκ locus, leading to the inactivation of
the Igκ locus (RS combination) (91–92). Receptor revision results from secondary Ig gene
rearrangement at the Ig light chain loci in the germinal center environment elicited by
unfavorable somatic mutations that cause loss of Ig expression or disturb pairing of Ig heavy
and light chains. In both cases, the usage of the λ light chain is expected to be increased.
However, a recent study (93) found no evidence of receptor revision in class-switched IgD
multiple myeloma cells, arguing against receptor revision or receptor editing as the
underlying mechanism of the IgD paradox. Interestingly, the development of λ+ B cells, but
not receptor editing, has now been found to be dependent on NF-κB signals (94). Therefore,
it is possible that IgD+IgM− B cells predominantly develop from a precursor population that
relied on NF-κB signals in bone marrow.

Expression of IgD
Vertebrates have evolved two major strategies to express Igs, alternative RNA splicing and
CSR. In fish, alternative splicing is used to express multiple forms of IgD, while in other
higher vertebrates, the expression of IgD utilizes both strategies.

Expression of IgD by alternative splicing
Bony fishes use alternative splicing as the strategy to produce IgD by splicing the Cμ1 to
numerous duplicated Cδ exons (15,21,95–96). In amphibians, reptiles, and mammals, the Cδ
gene is positioned immediately downstream of the Cμ gene in the same transcriptional unit,
allowing these two primordial Ig isotypes to be coordinately regulated at the transcriptional
level. In early stages of B-cell development prior to the mature B-cell stage, only IgM is
expressed. The expression of IgD first starts when the B cell leaves the bone marrow to
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populate secondary lymphoid organs. Mature B cells of these species co-express IgM and
IgD on the cell surface (Fig. 2A). IgM and IgD are generated by alternative splicing of a
long primary mRNA transcript containing the rearranged VDJ exons and the Cμ and Cδ
exons. The recombined VDJ exons are spliced to the first Cμ exon to generate IgM, or to the
first Cδ exon to generate IgD (Fig. 2B). In addition, alternative splicing also determines if a
cell expresses the transmembrane or secreted form of these two isotypes.

The alternative splicing process is tightly regulated during B-cell development. However,
the mechanism of regulation is poorly understood. The transcription ratio of μ and δ exons
varies in different types of B cells and B-cell lines (97) and does not necessarily reflect the
abundance of membrane protein of either isotype. For example, in mature resting follicular
mantle B cells, more μ mRNA than δ mRNA is transcribed, but IgD is expressed at higher
densities on the surface than IgM. This has been attributed to the higher stability and better
translation efficiency of δ mRNA than μ mRNA and the higher turnover rate of
transmembrane IgM protein (98–99). When activated by antigen, μ exon transcription is
preferentially induced and the half-life of μ mRNA is significantly increased. In contrast, δ
exon transcription and IgD expression are significantly repressed. The result is the drastic
downregulation of IgD expression by antigen-activated B cells, which explains the low level
of IgD found in germinal centers of lymphoid tissues, such as lymph nodes, spleen, and
tonsils (Fig. 2C). Studies have shown the existence of a specific region between the μ and δ
genes that attenuates the transcription complex 5′ to the δ exons and forces the preferential
production of mRNA for membrane IgM. Binding of lineage-specific regulatory proteins to
this region may alter the ratio of processing of the primary mRNA transcripts (100–101). In
terms of the regulation of alternative splicing between transmembrane and secreted forms,
limited information is known for IgM. Peterson and Perry (102) have suggested that there is
competition between the tails of Cμ3 exon and Cμ2 exon for the cleavage and
polyadenylation factors and that the biases in this competition change as the B cell matures.
Indeed, these two sites compete for limiting amounts of a factor, CstF-64, that directs the
cutting enzymes to the 3′ splice site (103). The site for the transmembrane form of the μ
chain is more efficient at binding. Hence, at the low amounts of CstF present in the B cell,
only the transmembrane form of IgM is made. However, when the B cell differentiates into a
plasma cell, more CstF-64 is produced, and both sites are utilized. The developing plasma
cell synthesizes both transmembrane and secreted forms of IgM. Whether such a mechanism
is also involved in the regulation of alternative splicing of transmembrane versus secreted
forms of IgD is unknown.

Expression of IgD by CSR
In contrast to other Ig isotypes, there is no canonical switch region 5′ to the Cδ gene in
mammals. Only rudimentary switch sequences are present in human and mouse.
Consequently, CSR from μ to δ is traditionally considered a very rare event. Study of human
normal tonsillar and leukemic B cells revealed that a region called σδ located in the intron
between Cμ and Cδ exons and containing G-rich pentameric repeats is able to serve as an
actual switch region to mediate CSR with Sμ and result in the deletion of Cμ (55,104). Study
of human and murine myeloma and hybridoma cells also demonstrated recombinations
involving two regions that contain homologous sequences, namely Iμ and Σμ located 5′ and
3′ to the Cμ gene, respectively, followed by the deletion of Cμ (9,105) (Fig. 2D). Therefore,
B cells that switch to IgD and are capable of secreting large amounts of IgD do exist in
normal individuals. Indeed, they are quite abundant in the upper aerodigestive MALTs, such
as tonsils, adenoids, and nasal mucosa, as discussed earlier, which corresponds to the
abundant IgD found in these tissues.

Similar to the regulation of alternative splicing, the regulation of IgD CSR and production
are not well understood. Genotypic analysis has obtained evidence of the oligoclonal nature
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of tonsillar IgD-secreting B cells and their generation in superantigen-driven immune
responses (106). Germinal center IgD+IgM−CD38+ B cells in tonsils could differentiate into
IgD-secreting cells in the presence of the combined stimulation of CD40 ligand (CD40L) (or
CD154), IL-2, and IL-10. However, these germinal center-derived precursor cells were
probably already switched to IgD before stimulation, because they lacked the expression of
IgM. It was also clear that stimulation through CD40 is dispensable in the induction of IgD
secretion (9). IL-2 and IL-10 thus contribute to the differentiation of IgD class-switched B
cells and their secretion of IgD in vitro. IgD can be spontaneously secreted by cultured
peripheral blood and tonsil mononuclear cells, and the secretion was markedly increased by
anti-CD40 stimulation in the presence of T-helper 2 (Th2) cytokines such as IL-4 and IL-10.
However, the spontaneous and Th2 cytokine-induced IgD secretion was only observed in
certain healthy donors. Furthermore, as no assessment of CSR was performed and mixed
populations of unswitched and IgD class-switched B cells were present in the culture, it was
not possible to delineate whether anti-CD40 and Th2 cytokines induced B cells to undergo
IgD CSR and differentiation into IgD-secreting cells or simply increased IgD secretion by
unswitched or IgD class-switched B cells. The signals for IgD CSR and secretion in vivo are
further obscured by the frequently increased IgD levels in patients with HIGMs. These
patients have elevated serum IgM but reduced IgG, IgA, and IgE due to defects in various
components of the CSR machinery. The increase in IgD may be a result of the compensatory
response from IgM+IgD+ B cells due to the absence of other switched isotypes rather than an
indication of the inhibitory effect of the CSR machinery on IgD CSR and secretion in vivo.
Therefore, the delineation of the signals that drive Cμ-to-Cδ CSR and the secretion of IgD
requires an experimental strategy that directly assesses Cμ-to-Cδ CSR and differentiation of
IgD-producing cells and simultaneously correlates those with the secretion of IgD. Using
unswitched IgD+IgM+ B cells purified from human peripheral blood, we found that B-cell
activation factor of the tumor necrosis factor family (BAFF), also known as B lymphocyte
stimulator (BLyS), in combination with IL-15 and IL-21or IL-2 and IL-21 could
simultaneously induce CSR to IgD, development of IgD+IgM− B cells, as well as IgD
secretion in vitro. A proliferation-inducing ligand (APRIL) in combination with IL-15 and
IL-21 or IL-2 and IL-21 was also able to do so (53). The number of circulating IgD class-
switched B cells is reduced in patients with defects in the CD40L–CD40 and BAFF/APRIL-
transmembrane activator and calcium modulator and cyclophilin ligand interactor (TACI)
signaling pathways, suggesting the involvement of both T-cell-dependent and T-cell-
independent pathways for IgD CSR in vivo. The localization of IgD class-switched B cells
both inside germinal centers and outside follicles also seems to support the notion that
multiple pathways participate in IgD CSR in vivo. Activation-induced cytidine deaminase
(AID), a DNA-editing enzyme essential for CSR to other Ig isotypes, was required for CSR
to IgD both in vivo and in vitro.

Biochemical properties of IgD and functional implications
IgD is a monomer made up two identical heavy and light chains organized into variable and
constant domains, similar to IgG. Human IgD has three Cδ domains. The structure of Cδ1
and Cδ2 domains is similar to that of C domains of other Ig isotypes. Cδ3, in contrast, is
unique by the absence of several proline residues (which usually introduce turns in
polypeptide backbones) and by the presence of two N-linked glycosylations. The overall
conformation of Cδ3 domain is thus different from that of the C domains of other isotypes.
Several studies suggest that these structural features and the resulting configuration of the
molecule participate in specific biological properties of IgD (37,107–109). An additional N-
linked glycosylation in the Cδ2 domain close to the inter-H chain disulfide bond was found
to be essential for the folding and secretion of the intact IgD molecule (110). This glycan is
usually in the high-mannose form and is buried within the folded IgD molecule.
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Mammalian IgD has a hinge made up of 64 amino acids, longer than the hinge of any other
Ig isotype. It includes two sub-regions encoded by two exons respectively (Fig. 1). The first
sub-region is alanine- and threonine-rich and is densely decorated with multiple (up to
seven) O-linked glycosylations that contain N-acetylgalactosamine moieties in the attached
glycans, a unique structure only found in IgA1 and IgD (9,37,108,110–114). Together with
the N-linked glycans, they can contribute up to 15% of the molecular weight of an IgD
molecule. This high carbohydrate content and the differential degrees of glycosylation in
different IgD preparations had in fact led to discrepancies in the findings of several studies
in the 1970s and caused confusion as to whether the δ chain had three or four constant
domains (115). The second sub-region has a highly charged and hydrophilic stretch of
amino acids, a feature unique to IgD (Fig. 3A). Such a high degree of hydrophilicity in the
IgD hinge results from the presence of abundant charged amino acid residues, especially
lysine (K), glutamate (E), serine (S), and threonine (T). The sequence of this sub-region
might explain the very high sensitivity of IgD to proteolytic enzymes, as studies of IgD
myeloma proteins showed the presence of sites of ‘spontaneous’ proteolysis in this
glutamate- and lysine-rich sub-region (116–117). However, it was possible that the IgD
preparations in those studies were contaminated with plasmin, as IgD purified from serum
by a two-step procedure of ammonium sulfate precipitation and gel filtration was stable for
extended periods (118). Sites susceptible to proteolysis have also been found in the Cδ1
domain and in the lysine- and arginine-rich C-terminal portion of the Cδ3 domain.
Noteworthy, IgD is known to display significant heterogeneity in both size and charge not
only in healthy individuals but also in myeloma patients that have mostly monoclonal IgD
(35,37–38), highlighting the susceptibility of IgD to multiple post-translational
modifications and the complexity of the regulation of its metabolism and function.

The average structure of a myeloma IgD protein in solution has been predicted using
constrained X-ray scattering (119), which revealed some unique features of IgD. The hinge
of IgD adopts a semi-extended α-helical conformation in solution. The entire IgD molecule
adopts an overall flexible T shape rather than Y shape as predicted for other Ig isotypes. The
two Fab fragments are located primarily on the two sides of the Fc fragments and can swivel
about the Fc fragments owing to the flexibility of the semi-extended hinge. The Fc
fragments are thus shielded by the Fab fragments (Fig. 3B). There are two major
conclusions based on this structure model: (i) the antigen-binding part of the IgD molecule
is very flexible, and (ii) the Fc part of the IgD molecule is usually concealed by the motion
of the Fab part in solution. These two conclusions have several important functional
implications. (i) The co-expression of IgM and IgD as B-cell antigen receptors may optimize
the recognition of antigens at different antigen concentrations (120). IgM facilitates antigen
binding at high concentrations, while IgD facilitates antigen binding at lower concentrations
owing to its reach and flexibility. (ii) The Fab part of IgD may mask large regions of the
surface of the Fc part in solution, which might provide a mechanism to regulate the binding
of IgD to its potential receptor(s). The interaction of IgD with its receptor(s) might only be
possible when the motion of the Fab part is somewhat constrained by binding to antigen or
certain auxiliary molecules, or by proteolytic cleavage of the Fab part. Heavy O-
glycosylation in the first sub-region of the hinge may increase the rigidity of the hinge and
limit the movement of the Fab parts, thus facilitating the exposure of the Fc part and its
interaction with potential receptor(s); it may also restrict the access of proteolytic enzymes
to the second sub-region of the hinge. All these factors potentially contribute to the
complexity of the regulation of IgD’s function.
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Immunological functions of IgD
Transmembrane and GPI-anchored IgD as B-cell antigen receptors

IgD is found as an antigen receptor on the surface of the majority of human (121–123) and
murine B cells prior to antigenic stimulation and CSR (124–125). The advantage of having
both IgD and IgM with the same antigen specificity on the same cell is still not clear.
Initially, it was proposed that the two receptor classes deliver different signals to the B cell
(126–128). However, contradictory results were obtained. Engagement of IgM on immature
B cells in vivo and in IgM-transfected cells in vitro results in apoptosis, whereas engagement
of IgD failed to do so (129–130). Reverse results were obtained in another study, which
showed that a minimal stimulation with anti-IgD antibodies but not with anti-IgM antibodies
induced apoptosis of mature resting B cells (131). Reasons for the discrepancies in the
results might be that BCR signaling depends on the developmental stage of the B cell, the
type of B cell line used, as well as the receptor density on the cell surface (132–133).
Experiments involving transgenic mice showed that IgD could fully substitute the function
of IgM in early B-cell development (134), and BCR of one class could largely compensate
for the loss of the other because mice deficient for either the IgM or IgD heavy chain
showed only mild phenotypes (135–137). Mice deficient in IgD did not show apparent
abnormality in B-cell development and function, although the antibody response was
slightly delayed as compared to wildtype mice (136–137). IgD-deficient mice had 30–50%
reduction in the number of peripheral mature B cells, pointing to a role of IgD in B-cell
homeostasis (136–137).

In terms of signaling, transmembrane IgM and transmembrane IgD are associated with
different signaling molecules in human B cells (9). The cytoplasmic parts of IgM and IgD
are identical, consisting of only three amino acids. The association of different signaling
molecules may lead to different functional outcomes when the B cell is stimulated through
IgM as compared to through IgD or through both IgM and IgD. Geisberger and colleagues
(138) proposed that transmembrane IgD modulates the function of transmembrane IgM by
increasing the threshold of IgM signaling required for inducing cell activation, anergy, or
cell death; therefore, IgD delivers a negative or tolerogenic signal. This model is supported
by several studies using human and mouse B cells (139–142). Loset and colleagues(120),
however, have proposed another model that IgD and IgM are optimal for antigen capturing
at different concentrations of the antigen. This model is supported by the solved crystal
structure of IgD showing that IgD is a T-shaped molecule with flexible F(ab′)2 domains
owing to the long hinge region (119). IgD can also be post-translationally processed and
linked to the membrane lipids via a GPI anchor (143), initiating different signaling cascades
from the transmembrane IgD molecule. The GPI-anchored IgD selectively activates cyclic
adenosine monophosphate (cAMP)-dependent signaling pathways (144), which synergizes
with transmembrane IgM and transmembrane IgD in initiating Ca2+-dependent signaling.

Secreted IgD as an immunomodulator in immunity and inflammation
The function of secreted IgD is yet another mystery of IgD and has been a longstanding
puzzle in immunology. IgD secreted by IgD class-switched B cells was shown to be
frequently autoreactive (145). Secreted IgD can bind to many pathogenic microorganisms
and their products, many of which are virulence factors used in pathogenesis, such as rubella
virus, measles virus, diphtheria toxin, Escherichia coli, streptococci streptolysin O,
Moraxella catarrhalis and Haemophilus influenzae adhesin MID (also called Hag)
(53,64,146–152). The fact that many of the above-mentioned microorganisms are pathogens
found in the same anatomic location where IgD is abundant, i.e. the upper aerodigestive
MALTs, strongly supports the notion that IgD has protective functions against these
pathogens perhaps by contributing to immune exclusion or neutralization. Further evidence
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supporting this notion are the markedly increased numbers of IgD-producing B cells in these
locations in IgA deficiency (59) and frequently increased serum IgD levels during various
infections (153). Studies of immunosenescence also lend credence to this notion, as there is
an age-dependent drop of serum IgD concentration, which correlates with a gradual decline
of immunity in older people (154).

A careful scrutiny of the old literature reveals many intriguing connections of secreted IgD
with myeloid cells. Early studies showed that granulocytes, such as neutrophils and
eosinophils, could bind significant levels of IgD under certain pathological conditions, such
as skin allergy and inflammation (76–77), although they bound little IgD under
physiological conditions (73–75). IgD was the predominant Ig class present on neutrophils,
probably together with complement, in patients with allergic contact dermatitis (76). IgD on
the surface of neutrophils seemed to inhibit the release of oxygen free radicals, in contrast to
IgG and IgA, which stimulated the release of oxygen free radicals (155). More recently,
peripheral blood adherent monocytes were shown to produce pro-inflammatory cytokines
including tumor necrosis factor (TNF), IL-1β, and IL-1 receptor antagonist (IL-1RA) upon
incubation with IgD purified from serum, and this effect was not due to endotoxin
contamination present in the IgD preparation (78). Confounding findings do exist in the
literature regarding the binding of IgD to monocytes, neutrophils, and eosinophils. Several
studies employing different methodologies showed no binding of IgD to monocytes,
neutrophils, and eosinophils (73–75). Remarkably, Sjoberg isolated lymphocytes from
peripheral blood using Ficoll-Isopaque gradient (density 1.076 – 1.078 g/mL) (156–157) and
showed the presence of IgD receptor on T lymphocytes as well as many more non-T
lymphocytes that were not monocytes (79). Based on what we now know about the
composition of peripheral blood leukocytes isolated by Ficoll-Isopaque gradient, which
include T cells, B cells, NK cells, monocytes, and basophils, the cells seen by Sjoberg to
express IgD receptor could be basophils. Many studies have showed the presence of IgD on
the surface of basophils and basophillic cell lines (53,72,158–159). Crosslinking of surface
IgD on basophils using an anti-IgD antibody or incubation of the basophilic cell line KU812
with polymerized IgD prepared by glutaldehyde crosslinking could induce the release of
cytokines and chemokines without inducing degranulation and the release of histamine
(53,72). Studies on the ability of IgD to function as a chemotactic agent (the so-called
cytotaxigen or cytotaxinogen) found that IgD could induce the infiltration of myeloid cells,
mainly composed of neutrophils and low numbers of eosinophils but not lymphoid cells,
into skin at an early stage of inflammation in patients with contact dermatitis but not skin
ulcers (77). Increased infiltration of basophils was also observed in this study, but due to low
basophil number and large variations, statistical significance could not be determined. This
observation is in line with our finding showing massive infiltration of basophils and/or mast
cells in the tonsil of a patient with periodic fever, aphthous-stomatitis, pharyngitis, adenitis
(PFAPA) syndrome (53). In addition, crosslinking of surface IgD on basophils from healthy
donors in vitro induced the release of antimicrobial and B-cell-stimulating factors, such as
LL-37 and BAFF, that augmented microbial killing and B-cell antibody responses. The
ability to induce BAFF production, a B-cell homeostatic cytokine, by basophils may explain
the observation of peripheral B-cell deficiency observed in IgD−/− mice (136–137).
Basophils found in the tonsil of the patient with PFAPA syndrome also contained LL-37 and
BAFF. Findings suggesting the connection of IgD and basophils were also obtained in
mouse studies long time ago. Injection of a goat polyclonal antibody against mouse IgD
results in increased numbers of basophils that produced IL-4 in the bone marrow and spleen
(160–163). These studies collectively support the notion that IgD is an important
immunomodulatory molecule and that IgD promotes immune defense by inducing the
activation and infiltration of IgD-interacting cells into tissues and their production of
immune-activating factors, and overactivation of this pathway can cause inflammation and
tissue damage (Fig. 4).
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IgD in diseases
The wide range and high degree of variability of serum IgD concentration among different
individuals have rendered the exact role of IgD in various diseases poorly defined. Serum
IgD has been considered to be a valuable indicator only for IgD multiple myeloma (164). A
good review of the perturbation of serum IgD concentration was provided by Vladutiu
(153), and this article will therefore focus on the discussion of IgD’s role in diseases in the
context of B-cell and myeloid cell biology. Nonetheless, a careful examination of this body
of literature not only sheds light on the immunomodulatory functions of IgD but also
reinforces the idea that IgD’s functions may contribute to disease pathogenesis or may be
exploited to achieve disease amelioration.

Immunodeficiencies
Individuals with primary immunodeficiencies were found to have either increased or
decreased IgD production (165). These patients frequently have accompanying infections;
hence, it is unclear whether the perturbation of IgD production in these patients is a result of
immunodeficiency per se or a result of infections. Within the entire group of
immunodeficiencies, a positive correlation of IgD with IgA and IgE was noted. In human
immunodeficiency virus (HIV)-infected people, significantly increased IgD levels were
found in asymptomatic or mildly symptomatic individuals (166–169). This hyper-production
of IgD became progressively more pronounced in patients with increasingly severe infection
and reached its most marked level in patients with AIDS-related complex (ARC) (166),
suggesting a possible protective role of IgD in the body’s attempt to cope with severe
infection. Remarkably, the production of IgD in HIV-infected people is independent of T-
cell defects (167), highlighting the importance of T-cell independent pathways of IgD
production. Further indirect evidences of the possible protective role of IgD in
immunodeficiency and infection come from selective IgA deficiency, where there were
significantly increased numbers of IgD-producing B cells in the upper aerodigestive MALTs
(43,59). Secreted IgD may provide a layer of mucosal protection during IgA deficiency.
However, it is important to note that serum IgD concentration was found to be in the normal
range of children with selective IgA deficiency (50).

Infections
Many chronic infections can lead to the increase of serum IgD concentration (153,170),
which might suggest some protect roles of IgD in infection. Serum IgD was increased in
patients with leprosy (171), tuberculosis (172–173), salmonellosis, infectious hepatitis (174),
and malaria (175). IgD reactive to pathogens has been detected in patients with rubella (64)
and sub-acute sclerosing panencephalitis (146). It has also been found that IgD can react to
various virulence factors of pathogens, including diphtheria toxin, streptococci streptolysin
O, M. catarrhalis and H. influenzae adhesin MID (also called Hag), as well as whole
bacteria such as M. catarrhalis, H. influenzae, Escherichia coli, and streptococcus group A
(53,147–152,176). Many patients with elevated IgD had recurrent staphylococcal infections
(177), and increased values of serum IgD were found in some patients with viral infections
(64,178). The clinical significance of these specific IgD antibodies is to be determined.

B-cell malignancies
A well-known type of B-cell malignancy related to IgD is IgD multiple myeloma (MM).
MM is a cancer of plasma cells characterized by the neoplastic proliferation of a single clone
of plasma cells that usually produce a monoclonal Ig that can be found in blood and/or urine,
although there has been a longstanding controversy of whether the precursors of myeloma
cells are hematopoietic stem cells (179), pre-B cells (180), germinal center (GC) B cells
(181), circulating memory cells (182–183), or plasmablasts (184). IgD MM, as the name
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implies, is the MM of the IgD-producing plasma cells. It is a rare (< 2%) (83,185) but
aggressive form of MM. IgD in the serum of IgD MM patients is always increased and often
found to contain a monoclonal IgD protein (86). Sixty to 90% of IgD MM cases are of the λ
type (83,86), a manifestation of the IgD paradox discussed earlier. Although IgD MM cells
are suggested to have a GC origin and are frequently observed to have undergone SHM and
CSR to IgD (55,104–105,186), the exact precursor of the malignant IgD MM cells is not
known. The signals involved in the IgD CSR and sustained survival of IgD MM are also
poorly understood. Some cases of hairy cell leukemia, a type of mature B-cell neoplastic
disease, were also found to express only IgD on the cell surface, suggesting that these cells
had undergone CSR (187–189).

Allergic diseases
Elevation of serum IgD has been reported in patients with many allergic diseases, such as
atopic diseases, allergic asthma, rhinitis, allergic bronchopulmonary aspergillosis, and
antibiotic allergy (158–159,173,190–196). Notably, among asthmatic children, such
increases were mostly observed during first diagnosis and during disease attack (190,194).
There was evidence suggesting that allergen-specific IgD and allergen-specific IgE were
similarly regulated during allergic responses (191). These findings have led to the
postulation that the increase of IgD might represent an attempt of the host to block asthma
and that IgD might be a protective regulatory factor (190,194). Indeed, the ability to block
IgE-mediated responses has been documented for IgD (197).

Autoimmunity
Serum IgD is often increased in patients with autoimmune diseases, such as rheumatoid
arthritis (RA) and systemic lupus erythematosus (SLE) (174,198–201), consistent with the
observation that many mature B cells class switched to IgD are autoreactive in healthy
individuals (145). Anti-nuclear IgD antibodies were found in SLE patients (145,193,202–
206), and a slight increase of serum IgD was found in patients with Sjögren’s syndrome and
in a patient with autoimmune thyroiditis (207). In addition, elevated concentrations of
autoantibodies against IgD, mainly of the IgA and IgG classes, were detected in many
patients with rheumatoid diseases such as RA, SLE, and mixed connective tissue disease
(MCTD) syndrome (208). In mice, naturally occurring IgD that recognizes heat shock
proteins (HSPs), such as Hsp70 and gp96, has been found in the serum in an individual-
specific and strain-specific manner but does not seem to be related to autoimmunity, as no
HSP-reactive IgD was detected in the autoimmune lpr mouse model (209).

Hyper-IgD syndrome and other autoinflammatory syndromes
There is a group of hereditary syndromes called autoinflammatory syndromes or periodic
fever syndromes, which include hyper-IgD syndrome (HIDS), familial Mediterranean fever
(MFM), TNF receptor-associated periodic syndrome (TRAPS), Muckle-Wells syndrome
(MWS) or cryoprin-associated periodic syndrome, familial cold autoinflammatory syndrome
(FCAS), neonatal onset multisystem inflammatory disease (NOMID), and PFAPA syndrome
(210). These diseases involve recurrent attacks of fever and inflammation in the absence of
infection. Many patients also have elevated levels of serum IgD during attacks. Due to the
complex etiology of this group of syndromes, this section will limit the review to HIDS,
which more specifically and almost always involves the elevation of serum IgD.

Patients with HIDS have recurrent attacks of fever that usually start in infancy (211). During
the fever episodes, all patients have elevated serum IgD and frequently also have elevated
serum IgA, while between attacks serum IgD level can be normal (211–212). The attacks
generally recur every four to six weeks (213–214). HIDS is caused by a deficiency of
mevalonate kinase (MvK), a key enzyme in the cholesterol biosynthetic pathway (213,215).
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Multiple mutations in the MvK gene have been found in HIDS patients whose MvK activity
is reduced to 5% to 15% of the normal level. MvK is located predominantly in peroxisomes
(216). It is intriguing why the deficiency of a metabolic enzyme leads to the hyper-
production of an Ig and inflammation. There are hypotheses proposing that MvK deficiency
leads to the defects in the production of certain downstream metabolites, such as
isoprenoids, that are involved in the regulation of immunity and inflammation (217). There
have been reports showing exaggerated macrophage activation and dysregulated innate
immune responses in HIDS patients (218–219). There are often increased levels of many
pro-inflammatory cytokines and acute phage proteins during attacks, such as TNF, IL-6, C-
reactive protein (CRP), IL-1β, IL-8, monocyte chemoattractant protein-1 (MCP-1), and IFN-
γ during fever attacks. We have observed increased number of IgD class-switched B cells
not only in the upper aerodigestive mucosa but also systemic lymphoid organs, such as the
spleen, of HIDS patients (Chen and Cerutti, unpublished data). It is important to note the
distinction of HIDS and selective IgA deficiency, both of which have increased numbers of
IgD-producing B cells in upper aerodigestive mucosal districts. In HIDS, inflammation and
fever may be further contributed to by an increase of IgD-producing B cells in the systemic
immune system, which is not seen in selective IgA deficiency, a condition with very
different clinical presentation (50). These clinical data are consistent with the observation of
IgD’s inflammation-inducing capacities, which include its ability to bind to cells of the
myeloid lineage in the systemic circulation, such as basophils, and its ability to activate
these cells to produce pro-inflammatory cytokines upon cross-linking (53). A mouse model
of HIDS was created recently with the deletion of one allele of the MvK gene (220).
Multiple matings failed to produce an MvK−/− mouse, probably due to embryonic lethality.
MvK+/− mice had significantly elevated levels of serum IgD. Serum TNF levels were also
increased, though not statistically significant, and cholesterol levels in tissues and blood and
isoprenoids in tissues were normal. This model should prove invaluable in understanding the
pathogenesis of HIDS.

Concluding remarks
Having both seen the limelight and been left in oblivion since its discovery almost 50 years
ago, IgD still remains an enigmatic player in the immune system. Its perpetuation through
hundreds of millions of years of evolution from fish to human clearly evinces its important
functions, which remain to be addressed by future research. Clearer pictures of the function
of IgD in health and disease will depend on further breakthroughs such as understanding
more detailed signals that promote IgD CSR and production in vivo, the B-cell precursors
that preferentially switch to IgD under physiological and pathological conditions, as well as
the isolation of the IgD receptor and delineation of its signaling pathways in myeloid cells.
To that end, we should be able to harness the functions of IgD in order to better combat
infection and regulate immunity.
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Fig. 1. Protein sequence alignment of mammalian IgD heavy chain hinge region
Sequences, with accession numbers in brackets, were downloaded from NCBI GenBank:
human (P01880.2), chimpanzee (AAB89456.1), baboon (ABB89458.1), macaque
(ABB89463.1), mangabey (ABB89466.1), pig (AAN03672.1), horse (AAU09794.1), cattle
(AAN03673.1), sheep (AAN03671.1), dog (ABB89467.1), giant panda (AAX73311.1),
mouse (P01881.2), and rat (P01883.1). Sequences were aligned using VectorNTI
(Invitrogen Corporation). Hinge regions are divided into two sub-regions, with the second
sub-region containing the conserved stretch of charged amino acids in primates. Hinge
region boundary is based on the peptides encoded by the two hinge exons of human IgD.
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Fig. 2. Expression of human IgD by alternative splicing and CSR
(A) Ig isotype expression during human B-cell development. Pre-B cells and immature B
cells developing in the bone marrow express μ heavy chain associated with either surrogate
light chains VpreB and Vλ5 before light chain rearrangement or rearranged L chain after L
chain rearrangement. Upon exiting the bone marrow, transitional and mature B cells co-
express IgM and IgD through alternative splicing. IgD is expressed at a higher level on the
cell surface than IgM. After antigenic stimulation, most mature B cells rapidly downregulate
IgD expression and undergo class switch recombination (CSR) to express either IgG, IgA, or
IgE in response to the antigenic signals encountered. Some human B cells also undergo CSR
to IgD. Class-switched B cells can further differentiate into plasmablasts or plasma cells
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(PCs) that secrete the respective Ig isotype. Some mature B cells can downregulate IgD and
develop into IgM-secreting PCs perhaps either without undergoing CSR or by undergoing
‘silent CSR’ involving intra-Sμ region DNA recombination (Chen and Cerutti, unpublished
data). (B) Expression of IgD and IgM by alternative splicing in mature B cell. Exons
encoding the rearranged VDJ region and the various domains (including the membrane and
secreted portions) of IgM and IgD are shown in boxes. Dotted gray lines show the various
splicing configurations of primary transcripts to yield secreted and transmembrane forms of
IgM and IgD. (C) IgD and IgM expression in follicular mantle and germinal center B cells.
A lymphoid follicle in human tonsil is shown. Mature B cells located in the follicular mantle
zone prior to antigen encounter express more IgD (green) than IgM (red) on the surface due
to the higher stability and translation efficiency of δ mRNA than μ mRNA. After antigenic
stimulation, they enter the germinal center, where IgD is rapidly downregulated at
transcriptional level and IgM is transcriptionally upregulated and the half-life of μ mRNA is
significantly prolonged, as evidenced by the drastic reduction of IgD and increase in IgM in
the germinal center. Cells that stain strongly with IgD in the germinal center are class
switched IgD-secreting cells. Some IgM staining in the germinal center is contributed by
follicular dendritic cells that capture IgM-containing immune complexes. DAPI (blue) stains
cell nuclei. Original magnification, ×40. (D) Expression of IgD by CSR. Schematic
representation of Cμ-to-Cδ CSR in human, which has been found to occur between Sμ and σδ
regions (left) and between Iμ and Σμ regions (right) in normal and malignant B cells. The
intervening DNA is looped out after CSR and forms a switch circle.
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Fig. 3. Human IgD hinge region contains a sequence resembling that of consensus ligand of
heparin
(A) Hydrophobicity indices of human Ig isotypes at pH 3.4 determined in silico using the
VectorNTI software. The region of high hydrophilicity in IgD is demarcated by a rectangle.
Sequences of these proteins were downloaded from NCBI GenBank, with GenBank ID in
brackets: IgD (P01880.2), IgE (P01854.1), IgG1 (AAH73782), IgG2 (AAH62335), IgG3
(AAH33178), IgG4 (AAh25985), IgM, (AAH89412), IgA1 (AAH87841), IgA2
(AAH73765). (B) Three-dimensional motions of the IgD Fab parts around the Fc part. The
Fab parts are colored in pink and the Fc part is colored in green. The length and the semi-
extended flexible conformation of the IgD hinge allow the Fab parts to swivel around the Fc
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part in three dimensions in solution. This motion gives the Fab parts extraordinary flexibility
in capturing antigens, as well as renders the Fc part shielded by the Fab parts in solution.
The Protein Data Bank (PDB) ID of the best-fit IgD structure predicted in this study is
1ZVO. Modified from (119) with permission. [Permission from Elsevier to use the figure
shown in Fig. 3B, modified from (119), can be found at
https://s100.copyright.com/CustomerAdmin/PLF.jsp?lID=2010031_1268678952456.]
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Fig. 4. Model of human IgD regulation and function
B cells from the upper aerodigestive mucosa undergo CSR from Cμ to Cδ through local T-
dependent (TD) and T-indepdent (TI) pathways involving CD40L, BAFF, or APRIL
together with a unique cocktail of cytokines, including IL-2 and IL-21 or IL-15 and IL-21.
CSR requires AID and generates mucosal and circulating IgD plasmablasts that secrete IgD
reactive against respiratory bacteria. Mucosal IgD might enhance local immunity after
translocating across epithelial cells, whereas circulating IgD binds to basophils. In addition
to delivering rapid innate immune signals and alerting the immune system as to the presence
of invading bacteria, basophils exposed to IgD-reactive antigens migrate to systemic and
mucosal lymphoid organs, perhaps in response to chemotactic factors released by IgD-

Chen and Cerutti Page 31

Immunol Rev. Author manuscript; available in PMC 2011 September 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



stimulated mast cells. Tissue-based basophils enhance immune protection by releasing
antimicrobial, opsonizing, B-cell-stimulating, chemotactic and pro-inflammatory mediators
such as cathelicidin, IL-1β, IL-4, IL-8, IL-13, CD40L, BAFF, APRIL, TNF, and CXCL10,
but not histamine. Finally, IgD-armed basophils may regulate B-cell homeostasis through
tonic release of the obligatory B cell survival factor BAFF in response to IgD-reactive
foreign or autologous antigens.
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