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Abstract
Background—The PREDICT-HD study seeks to identify clinical and biological markers of
Huntington’s disease in premanifest individuals who have undergone predictive genetic testing.

Methods—We compared baseline motor data between gene-expansion carriers (cases) and non
gene-expansion carriers (controls) using T-tests and Chi-Square. Cases were categorized as near,
mid or far from diagnosis using a CAG-based formula. Striatal volumes were calculated using
volumetric MRI measurements. Multiple linear regression associated total motor score, motor
domains and individual motor items with estimated diagnosis and striatal volumes.

Results—Elevated total motor scores at baseline were associated with higher genetic probability
of disease diagnosis in the near future (partial R2 0.14, p<0.0001) and smaller striatal volumes
(partial R2 0.15, p<0.0001). Nearly all motor domain scores showed greater abnormality with
increasing proximity to diagnosis, although bradykinesia and chorea were most highly associated
with diagnostic immediacy. Among individual motor items, worse scores on finger tapping,
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tandem gait, Luria, saccade initiation, and chorea show unique association with diagnosis
probability.

Conclusions—Even in this premanifest population subtle motor abnormalities were associated
with a higher probability of disease diagnosis and smaller striatal volumes. Longitudinal
assessment will help inform whether motor items will be useful measures in preventive clinical
trials.
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Introduction
Huntington’s disease (HD) is typically an adult-onset, progressive and fatal
neurodegenerative disease characterized by the clinical triad of a movement disorder,
cognitive decline, and behavioral disturbances. It is autosomal dominant, caused by an
expansion of a trinucleotide cytosine-adenine-guanine (CAG) in the 5′-translated region of
the IT-15 gene on the short arm of chromosome 4.1 The length of CAG expansion is
inversely correlated with age at diagnosis.1, 2 However, the precise point of disease
diagnosis is poorly characterized, with clinical abnormalities emerging gradually over many
years during a “premanifest” prodromal phase. 3, 7–10 Increasing evidence suggests that
neuropathological changes may occur many years prior to the development of clinical
changes.4–6 Additionally, the degree of striatal atrophy correlates not only with disease
severity in manifest patients11, but also with estimated years to diagnosis in premanifest
populations.12–14

The Neurobiological Predictors of Huntington’s Disease (PREDICT-HD) study is designed
to prospectively characterize refined clinical, neurobiological and neurobehavioral markers
of Huntington’s disease prior to the point of traditional clinical diagnosis in a population
known to carry the HD CAG expansion15. Findings from the PREDICT study will identify
critically important candidate outcome measures used in clinical trials aimed at delaying the
diagnosis of illness. We have recently shown that most clinical indicators in the PREDICT
cohort, including motor and neuroimaging markers, show subtle changes one to two decades
prior to expected disease diagnosis.16 The present analysis of the PREDICT cohort details
the relationship of motor function, probability of disease diagnosis in the near future (based
on CAG length and age) and striatal volumes.

Methods
Participant Eligibility

Participants were recruited from 30 sites in the United States, Canada, Australia and Europe.
All participants were required to have voluntarily undergone genetic testing for the HD
CAG expansion independent from the study. Institutional review boards at each
participating site approved the study and each participant signed an informed consent. The
Unified Huntington Disease Rating Scale (UHDRS) was used to determine whether each
participant met criteria for a diagnosis of HD and only subjects considered premanifest by
virtue of scoring a 3 or less on question 17 of the UHDRS (diagnostic confidence) were
included in this paper. The diagnostic confidence question asks investigators to rate how
confident they are that an individual at-risk for HD meets the definition of the unequivocal
presence of an otherwise unexplained movement disorder on a scale from 0 (no
abnormalities) to 4 (unequivocal signs of HD, ≥99% confident). Control subjects were
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individuals who had tested negative for the HD CAG expansion, but were offspring of a
parent with HD. Further details of the study have been previously reported.15, 16

Clinical Assessments
All participants underwent detailed motor, cognitive and psychiatric evaluations at baseline.
15 Neither participants nor raters were systematically blinded to gene status. The Motor
section of the UHDRS was used to assess motor features at baseline and annually thereafter.
17 The motor UHDRS is a standardized assessment consisting of 31 items rated on a scale
from 0 to 4 with a score of 0 indicating no abnormalities and 4 indicating severe impairment.
The maximum possible total score is 124. Based on a factor analysis of the total UHDRS in
patients with manifest HD, the motor items have previously been grouped into five factors;
oculomotor, bradykinesia, rigidity, dystonia, and chorea.18

Probability of Diagnosis
Estimated years to diagnosis were calculated using a CAG and age based predictive model
derived by Langbehn et al. and based on an analysis of 2913 individuals from 40 centers
worldwide.19 Consistent with previous reports involving the PREDICT cohort, cases were
considered far from diagnosis if their estimated diagnosis was greater than 15 years, mid to
diagnosis if their estimated diagnosis was 9–15 years, and near to diagnosis if their
estimated diagnosis was less than 9 years. These definitions correspond roughly to tertiles of
risk among our participants. The survival formula of Langbehn et al. can also be
transformed to a probability of diagnosis within a given future time, based on a participant’s
CAG expansion length and current age.16

Magnetic Resonance Imaging
All scans for this project were obtained using a standard multi-mode protocol that included
an axial 3D volumetric spoiled gradient echo series (~1×1×1.5 mm voxels) and a dual echo
PDT2 (~1×1×3 mm voxels) series. All sites used a General Electric 1.5 Tesla scanner (with
the exception of two sites: one using a 1.5 Tesla Siemens and one using a 1.5 Tesla Phillips
scanner). Striatal volumes were expressed as percentage of total intracranial volume to
control for variation in size.

To obtain measures of brain structure, first an approximate rough brain tissue region was
obtained using the 3dskull from the AFNI tool suite20. Spatial intensity inhomogeneity
correction fields were estimated over the brain tissue region and applied using tools
described in Styner et al.21 for each modality. An automated procedure rigidly aligned and
resampled the 3 modes of each dataset into a 1mm3 isotropic voxel lattice where a line
passing through the anterior commissure (AC) and posterior commissure (PC) is parallel to
the horizontal voxel lattice, the inter-hemispheric fissure is aligned with vertical voxel
lattice, and the AC point is located at the center of the voxel lattice.

Tissue classification22 is performed using the BRAINS software suite23. Exemplars
(2×2×2mm plugs) for grey matter, white matter and cerebrospinal fluid (CSF) are selected
by randomly sampling the images and keeping those plugs with low variance under the
assumption that they represent a single tissue type. The selected plugs are then assigned to a
compartment using k-means clustering. The labeled plugs are then used to define
discriminant functions. The discriminant functions are used to classify the multi-modal data,
producing an image where each voxel location is labeled with a code representing the grey,
white, and CSF composition. The intracranial volume (ICV) measure is composed of all
tissue (grey and white matter) and CSF within the cranium, from just under the dura mater
and below. Subcortical measures of the caudate, putamen, and thalamus are calculated using
the automated neural network segmentation24 tool from the BRAINS package.
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The results of this procedure were visually inspected to verify that each stage was completed
successfully. Greater than 90% of the scans analyzed passed all stages successfully. Scan
failure was not significantly predicted by any of the variables (i.e., HD gene-expansion
status or motor severity) that are the subject of this report.

Statistical Analyses—Comparisons between cases and controls were performed using T-
tests and Chi-Square. All analyses were adjusted for age and gender. Linear regression
models assessed the relationship between either total motor scores, motor domain scores or
individual motor items and estimated diagnosis probability or striatal volume. We used
diagnosis probability within 5 years rather than estimated years to diagnosis because
diagnosis probability has consistently demonstrated approximately linear relationships
whereas relationships involving estimated years to diagnosis are generally non-linear and
require more complicated statistical models16. To control for starting morphological
variability, we used the ratio of striatal volume (caudate plus putamen) to total intracranial
volume in analyses involving those measures. Age and gender-adjusted associations with
individual motor score components were calculated as partial R2 statistics, derived from the
corresponding regression models. We constructed multivariate regression models of the
most important motor exam predictors of both diagnosis probability and striatal volume by
using backwards selection techniques. Finally, Mantel-Haenszel Chi Square tests were used
to assess monotonic trends between motor scores and proximity-to-diagnosis classification
groups (far, mid, near). When relevant data were missing, participants were excluded from
the analysis (7% of observations). An alpha level of 5% was used for significance testing.

Results
Baseline Characteristics

From October 2002 until October 2007, 929 participants were enrolled and had relevant
baseline data available. Of these participants, 733 (79%) were expansion positive (cases),
and 196 (21%) were expansion negative (controls). The majority (82%) of the cases were
deemed to be either normal or have non-specific motor signs (diagnostic confidence level 0
or 1), 12% had diagnostic confidence level 2, and 6% had diagnostic confidence level 3 on
examination at baseline. An additional 30 cases were excluded from analysis because of
uncertain specific CAG length information at the time of analysis. For the 733 cases, 277
(38%) were predicted far, 252 (37%) mid, and 184 (25%) being near to estimated age of
diagnosis. At the time of data analysis, MRI data were available on 500 cases and 150
controls.

Table 1 summarizes the baseline demographics, motor scores, probability of disease
diagnosis and striatal volumes of cases and controls. In addition, demographic data
separated by estimated diagnosis categories are given. Cases were slightly younger, had an
older age of parental disease diagnosis, had worse total motor scores and worse motor
domain scores and smaller striatal volumes than controls (p<0.0001 for all). Worse total
motor scores (p<0.0001), worse motor domain scores (p≤0.001 for all domains, except
rigidity) and greater striatal atrophy (p<0.001) were associated with closer proximity to age
of diagnosis in cases. Younger parental age of diagnosis (p=0.015) and male gender (p = .
04) were also associated with closer proximity to age of diagnosis. As a consequence of the
group definitions, older age (p<0.0001) and longer CAG repeat length (p<0.0001) were
associated with closer proximity to diagnosis. Mean estimated probability of disease
diagnosis ranged from 5% in the far from diagnosis group to 20% in the mid to diagnosis
group and 46% in the near to diagnosis group.

Figure 1 shows the box plots of total motor score for controls and cases by proximity to
diagnosis categories (far, mid, near).
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Motor Assessments and Probability of Diagnosis
Table 2 shows the multivariate regression of total motor scores on probability of disease
diagnosis. Worse total motor score at baseline was associated with a greater probability of
disease diagnosis (p<0.0001) and accounted for 14% of the variance in the probability of
diagnosis.

When evaluating each motor domain individually, bradykinesia accounts for 14%, chorea
for 6% and oculomotor for 7% of the variance in the probability of diagnosis (see Table 3).
If, as an additional step, we simultaneously adjust for all motor domains, only worse scores
on the bradykinesia and chorea domains are uniquely associated with a greater probability of
diagnosis. Allowing these domains to compete in a backwards-selected reduced model,
bradykinesia (p< .0001) and chorea (p = .0005) remain significantly associated with
probability of diagnosis. Oculomotor signs were the third most important domain, but were
not significant.

Table 4 shows the simultaneous multivariate regression of all motor items on probability of
diagnosis. Bradykinesia and oculomotor domains are broken into their component motor
items. In this analysis where all motor items are included, worse scores on finger tapping,
tandem gait, Luria, saccade initiation, and chorea show unique positive association with a
greater probability of diagnosis. Controlling for all other motor signs, ocular pursuit had
some negative association (p = .01) with diagnosis probability. No changes were noted with
backwards variable selection.

Motor Assessments and Striatal Volume
Table 2 shows the regression of total motor scores on striatal volumes. Worse total motor
score at baseline was associated with smaller striatal volume (p<0.0001) and accounted for
15% of the variance in striatal volume.

Table 3 shows the regressions of individual motor domains on striatal volume. Similar to the
analysis of probability of diagnosis, worse scores on the bradykinesia and chorea domains
were associated with smaller striatal volumes, individually accounting for 11%
(bradykinesia) and 7% (chorea) of the variance. Oculomotor abnormalities were more
closely associated with smaller striatal volumes than probability of diagnosis and accounted
for 9% of variance. These domain-striatum associations were unchanged when a
multivariate model was chosen by backward selection. Worse scores on oculomotor
(p=0.005), bradykinesia (p<0.0001) and chorea (p=0.004) domains were uniquely associated
with smaller striatal volumes.

Table 4 shows the simultaneous multivariate regression of the motor items on striatal
volume where the bradykinesia and oculomotor domains are broken into their component
motor items. In this analysis, worse scores on saccade velocity, finger tapping, tandem gait
and chorea are associated with smaller striatal volumes. The reduced model is similar to the
full model with only tongue protrusion additionally emerging as potentially significant (p = .
04), in addition to saccade velocity (p=0.0004), finger tapping (p=0.001), tandem gait
(p=0.02) and chorea (p=0.003).

Discussion
In this cross sectional analysis of premanifest HD CAG-expansion-positive participants and
expansion-negative controls enrolled in the PREDICT-HD study, total motor ratings
distinguished cases from controls. This is despite only slight abnormalities detected on
examination in cases (mean total motor of 4.98 +/−5.23 out of a total possible score of 124).
These differences appear to be driven largely by the group that was near to their estimated
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diagnosis, with the vast majority of other cases having normal to near normal motor
examinations. These findings confirm previous smaller studies that have shown that subtle
motor abnormalities distinguish expansion positive premanifest HD individuals from
controls.7, 25–27

Cases with closer estimated proximity to diagnosis had worse total motor scores and worse
scores on the motor domains than individuals further from estimated diagnosis. This was
most apparent for total motor scores, the chorea domain, the bradykinesia domain and the
oculomotor domain. Consistent with our findings is evidence suggesting that chorea26 and
quantitative measures of oculomotility may be sensitive in premanifest HD.9, 28, 29

Although dystonia was also associated with proximity to diagnosis, it was uncommon in all
premanifest groups, consistent with the literature30. Although rigidity was not a sensitive
measure of premanifest disease in our cohort, it may warrant further investigation in a
young-diagnosis sample.31

Striatal volumes were smaller in cases than controls, with increasing atrophy associated with
closer proximity to diagnosis. This confirms previous findings that striatal atrophy occurs
early and may predate diagnosis by years.14, 32, 33

Similarly, among premanifest gene expansion carriers, higher (worse) total motor scores at
baseline were predictive of a greater probability of diagnosis and smaller striatal volumes.
Despite significant univariate relationships between all domains and proximity to diagnosis,
however, only worse bradykinesia and chorea domain scores were uniquely associated with
a greater probability of diagnosis and smaller striatal volumes. More specifically, chorea and
greater impairment on the bradykinesia items of tongue protrusion, finger tapping, and
tandem gait were separately associated with a greater probability of diagnosis in cases after
accounting for all other aspects of the motor exam. Although the domain score for
oculomotor items was not significant, other investigators have purported difficulty with
clinically assessing ocular motility9, 28.

In regards to the association of individual motor items and striatal volumes, only finger
tapping and tandem gait (amongst the Bradykinesia items), saccade velocity (amongst the
Oculomotor items) and chorea scores were inversely associated with striatal volume. These
findings suggest that striatal volumes and probability of diagnosis may reflect slightly
different aspects of the motor exam.

Although the sample volunteered from among the population of gene-tested, premanifest
persons at risk for HD, there may be a slight selection bias because persons at risk for a
young age of diagnosis may be less able to participate. While it may be that younger
individuals with earlier diagnosis may be systematically different than the population
enrolled in PREDICT-HD, this cohort is similar to the population at-risk and will likely be
representative of individuals enrolled in preventive trials. (It is unknown whether data from
clinical studies and trials in adults will generalize to the juvenile form of HD.)

A limitation is a lack of prospective validation of diagnosis probabilities derived from the
Langbehn et al. formula (or any other HD age-of onset formula). Continued longitudinal
assessment of this cohort will ultimately address the validity of the estimated diagnosis
formula and the relationship of motor abnormalities to actual disease diagnosis.

In this cross-sectional analysis of the PREDICT cohort, subtle motor abnormalities are
present in premanifest HD gene expansion carriers. These motor abnormalities distinguish
cases from controls and, among cases, are associated with closer proximity to estimated
disease diagnosis and greater striatal atrophy. These findings suggest that the UHDRS motor
examination may be a useful outcome measure in clinical trials aimed at delaying diagnosis
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of illness (i.e. disease onset) in premanifest HD. Continued longitudinal follow-up of the
PREDICT cohort through disease diagnosis will be necessary to better determine which
motor domains and items are sensitive to change over time and are predictive of actual
diagnosis. Ultimately, multidimensional outcomes including motor, cognitive, behavioral
and imaging domains may be necessary in preventive trials.
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Figure 1.
Total Motor Scores for Controls and Cases by Proximity to Diagnosis*
*p<0.0001 for trend by proximity to diagnosis; Multiple horizontal lines are outlying
individual values. The box represent the 25–75 percentile (“inter-quartile”) range. The white
stripe in the middle of each box is the median.
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Table 2

Relationship of Total Motor UHDRS to Probability of Diagnosis (n=732) and Striatal Volumes (n=500) in
Cases*

Variable Parameter Estimate (Standard Error) Partial R2 p-value

Probability of diagnosis 0.011 (0.001) 0.15 <0.0001

Total striatal volume† −0.010 (0.001) 0.15 <0.0001

*
Controlling for Age and Gender in the linear regression model

†
Percent of total of intracranial volume
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Table 3

Relationship of UHDRS Motor Domains* and Probability of Diagnosis and Striatal Volumes in Cases.‡

Variable

Probability of diagnosis Striatal Volume†

Partial R2ψ (n=732) p-value Partial R2ψ (n=490) p-value

Oculomotor 0.07 <0.0001 0.09 <0.0001

Bradykinesia 0.14 <0.0001 0.11 <0.0001

Rigidity 0.01 0.05 0.01 0.02

Dystonia 0.02 0.0001 0.02 0.002

Chorea 0.06 <0.0001 0.07 <0.0001

*
Groupings based on factors by Marder et al. (2000).(19)

‡
Controlling for age and gender in the model.

†
Percent of total of intracranial volume.

ψ
Considering variables one at a time controlling for age and gender.
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