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Abstract

Background—CAG-repeat length in the gene for HD is inversely correlated with age of onset
(AOQ). A number of statistical models elucidating the relationship between CAG length and AOO
have recently been published. In the present article, we review the published formulae, summarize
essential differences in subject sources, statistical methodologies, and predictive results. We argue
that unrepresentative sampling and failure to use appropriate survival analysis methodology may
have substantially biased much of the literature. We also explain why the survival analysis
perspective is necessary if any such model is to undergo prospective validation.

Methods—We use prospective diagnostic data from the PREDICT-HD longitudinal study of
CAG-expanded participants to test conditional predictions derived from two survival models of
age of onset of HD.

Principal Findings—A prior model of the relationship of CAG and AOO originally published
by Langbehn et al. yields reasonably accurate predictions, while a similar model by Gutierrez and
MacDonald substantially overestimates diagnosis risk for all but the highest risk subjects in this
sample.

Conclusions/Significance—The Langbehn et al model appears accurate enough to have
substantial utility in various research contexts. We also emphasize remaining caveats, many of
which are relevant for any direct application to genetic counseling.
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Introduction

Huntington Disease (HD) is an inherited neuropsychiatric illness caused by polyglutamine
expansion in the gene for the protein huntingtin (HTT),. (Huntington’s Disease Collaborative
Research Group 1993). Almost immediately upon discovery of this gene, it was recognized
that the mean age of clinical onset was strongly related to length of the CAG trinucleotide
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expansion that codes for the polyglutamine repeat (Duyao et al., 1993; Stine et al., 1993).
Since then, numerous statistical models have been published that fit relationships between
CAG length and clinical onset. We begin by reviewing the various published models,
focusing on substantive differences between these studies and potential methodological
explanations for those differences. We then test the prospective validity of two models that
lend themselves to such examination, focusing on a model previously reported by Langbehn
et al.(Langbehn et al., 2004). We do this using data from a prospective longitudinal study of
the development of HD, PREDICT-HD (Paulsen et al., 2006; Paulsen et al., 2008).

Methodological Issues for Regression Formulae of CAG length and HD onset

The majority of published models (Andresen et al., 2007b; Andrew et al., 1993; Aylward et
al., 1996; Lucotte et al., 1995; Squitieri et al., 2000; Stine et al., 1993) have been based on
some form of linear regression. A sample of people with previously diagnosed HD have
been used and their age of onset has been fit by least-squares regression to CAG repeat
length. In many cases, (Andrew et al., 1993; Lucotte et al., 1995; Ranen et al., 1995;
Rubinsztein et al., 1997; Squitieri et al., 2000) researchers have noted a better model fit if
the logarithm of onset age is fit, and in one recent report (Andresen et al., 2007b), further
piece-wise fitting of log(age) 1 provided a better description of onset for extremely long
(and rare) CAG lengths. (Note that fitting logarithms in a linear regression results in
exponential functions for predicting the original outcome variable.)

These regression models suffer from a significant potential weakness, well-described in the
introductory chapters of survival analysis texts (Cox and Oakes 1984; Kalbfleisch and
Prentice 2002; Lawless 2003). Unless a well-defined sample is completely followed until the
point where all members have “failed” (i.e., in the context of this paper, “failure” means
manifesting with HD), conventional regression models based only on the failures will
provide a biased and generally inappropriate estimate of the true distribution of failure
times. This defect chiefly arises for two closely related reasons. First, members of a sample
who do not fail (or who are lost to follow-up) are not accounted for in such an analysis. If
subjects do not reach the point of onset of HD diagnosis, they are ignored. Such subjects
will typically have a later onset age than those whose ages are recorded. Second, there may
have been no provision for observation of such non-failing subjects in the first place. If a
model is based only on cases with onset that have come to clinical attention, then it cannot
be expected to generalize well to a broader population that may also include longer-term
survivors. These issues are of critical practical importance because an important (although
controversial) application of such models has been provision of healthy-life expectations to
those who are known to carry the HD mutation. The above biases have a substantial
potential to provide unduly pessimistic estimates of age of onset. This is especially relevant
for shorter CAG repeat lengths, where onset may be quite late or not occur at all during a
normal lifespan (Brinkman et al., 1997; Falush et al., 2001; Langbehn et al., 2004; Maat-
Kievit et al., 2002; Rubinsztein et al., 1996).

Survival Analysis

The mathematical modeling techniques particular to Survival Analysis address one of the
two biases discussed above. Subjects who are part of the sample but who are not observed to
fail are accounted for . Such subjects are said to be “censored”. By various mathematical
approaches, we may operationalize this concept in HD research so that it applies to a person
who is known to have reached at least their age of last observation without yet having onset
of HD. The second bias source, failure to include such subjects in the sample when they
represent a significant part of the target population, is ideally addressed by more

I\we use “log” to represent the natural logarithm throughout this paper.
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representative sampling. This is a difficult issue in HD research. Population genetic models
(Falush et al., 2001; Warby et al., 2009) strongly suggest a relatively widespread prevalence
of nonsymptomatic CAG expansions in the 36 to 40 range, but subjects in this range are rare
in clinical samples. Pedigree sampling from index cases would probably not solve this
problem, as a substantial portion of these cases are thought to arise from earlier generations
with intermediate (27-35) CAG expansions and no previous family HD history (Almqyvist et
al., 2001). An alternative to modeling biased clinical samples of such subjects is
extrapolation from CAG repeat ranges where ascertainment is arguably nearly complete.
The validity of doing so is of course subject to a strong assumption that the relationships can
be extended to this under-observed CAG range.

We are aware of four research reports that have used survival analysis to estimate HD onset
distributions: Brinkman et al. (Brinkman et al., 1997), Gutierrez and MacDonald (Gutierrez
and Macdonald 2002; Gutierrez and Macdonald 2004), Langbehn et al. (Langbehn et al.,
2004) and Maat-Kievit et al. (Maat-Kievit et al., 2002). Brinkman et al. modeled a subset of
the data described below that was eventually used in Langbehn et al. They reported separate,
nonparametric survival models for each CAG length, but no mathematical formulation
linking CAG-length influences together in a parametric relationship. Gutierrez and
MacDonald fit gamma distributions (using least squares criteria) to the nonparametric
survival curves reported by Brinkman et al. The parameters of the Gamma distribution were
functions of CAG length.

Our previously reported model (the Langbehn et al model) (Langbehn et al., 2004) was
developed using a database of 2,913 subjects (2,298 who had received a diagnosis and 615
who had not) contributed by 40 HD centers worldwide. Many of these centers followed HD
families and provided genetic testing services and therefore could provide data for those
with and without a diagnosis. We directly modeled onset age distribution for CAG lengths
41-56 using a nonstandard parametric Survival model and offered extrapolations for the 36
to 40 range. We review additional details of the Langbehn et al and Gutierrez and
MacDonald models, relevant to prospective validation, in the Methods section.

Maat-Kievit et al. was based on a national Dutch register of CAG-tested subjects from HD
families. They performed Kaplan-Meir nonparametric survival analyses for individual CAG
lengths and Cox proportional hazards modeling to estimate the CAG-length hazard ratio.
They did not report the actual estimated survival functions from their analysis. In contrast,
such linking formulae were estimated in Langbehn et al. (Langbehn et al., 2004) and
Gutierrez and MacDonald (Gutierrez and Macdonald 2004).

The importance of modeling CAG-length-dependent shape and variance of age of onset

distribution

Explicit modeling of the standard deviation of diagnosis age is a novel feature of the
Langbehn et al. and Gutierrez and MacDonald models. Langbehn et al. found the lifetime
distributions to be symmetrical and with wider variance for shorter CAG expansions. Both
considerations play an influential role in translating lifetime models to age-conditional
expectations of time to onset. Gutierrez and MacDonald (Gutierrez and Macdonald 2004)
also imbedded a CAG-dependent variance function in the gamma distribution adopted for
their model. They too explicitly considered symmetry of onset age and concluded that, for
the data from Brinkman et al. (Brinkman et al., 1997), the slight asymmetry associated with
these gamma distributions provided the best empirical fit. In contrast, linear regression
models of age have assumed a constant, symmetrical variance of onset ages around the
estimated means. The constancy appears clearly contrary to published data (Andresen et al.,
2007b; Brinkman et al., 1997; Duyao et al., 1993; Langbehn et al., 2007; Lucotte et al.,
1995; Maat-Kievit et al., 2002; Ranen et al., 1995; Snell et al., 1993; Squitieri et al., 2000;
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Stine et al., 1993; Trottier et al., 1994). In simple regression models using the logarithmic
transformation, there is an implicit assumption that the variance decreases as the mean age
of onset decreases. This was noted by both Lucotte et al. (Lucotte et al., 1995) and Andrew
et al. (Andrew et al., 1993). However, no attempt to explicitly estimate this variability is
evident in the reports of these log-transformed models. Further, the assumed symmetry of
log transformed variance implies an asymmetrical distribution of diagnosis on the
untransformed age scale. This implication does not seem to have been addressed as those
models were developed.

Comparative Review of Mean Diagnosis Ages from the Various Formulae

In Figure 1, we illustrate mean onset ages predicted by the various published formulae. The
formulae and reported CAG ranges used in their estimation are summarized in Table 1. We
have excluded most published reports where either no overall CAG formula was estimated
(Brinkman et al., 1997) or, if estimated, not explicitly published (Ranen et al., 1995). We
also exclude a formula reported by Aylward et al. (Aylward et al., 1996). This formula,
onset age = 54.87 — 0.81*CAG + 0.51*(Parent’s onset age), defies direct comparison
because of the need for parent age. We note that it was derived using linear regression and
subject to the limitations and potential bias from that approach discussed earlier.

For CAG lengths of 43 to 46, Figure 1 reveals fairly good agreement among all formulae,
with the exception of Maat-Kievit. Differences are more substantial outside of this range.
For shorter CAG lengths, the regression formulae from Stine et al. (Stine et al., 1993),
Lucotte et al. (Lucotte et al., 1995), Andrew et al. (Andrew et al., 1993), and Squitieri et al.
(Squitieri et al., 2000) provide similar estimates that are substantially lower than those from
the survival models?. This is quite plausibly due to incomplete ascertainment. Models fit
only to data that are known because onset has occurred may be substantially biased. These
four models were fit using data extending down to 36 or 37 repeats. Therefore, inaccurate
extrapolation from longer CAG lengths does not seem to be an alternative or additional
explanation.

The argument that these estimates are too low may appear weakened by the fact that all
survival analysis-based formulae extrapolate for CAG lengths of 40 or less. However, within
this range, the data that was available and eventually rejected for probable bias in Langbehn
et al. (Langbehn et al., 2004) yielded estimates from survival analyses that were still higher
than those from any regression formulae except Andresen et al. (Andresen et al., 2007b) or
Rubinsztein et al. (Rubinsztein et al., 1997)

The median CAG repeat length in most samples was around 44 (Table 1). Therefore, use of
any of these biased formulae for genetic counseling means that ages-of-onset that are
substantially too early would be predicted for nearly half of those potentially seeking such
information. (This is even before considering the additional potential underestimate from
failing to consider a person’s current age.) The negative impact of such seemingly
authoritative misinformation is self-evident.

The point of best formulae agreement is CAG length 44. Interestingly, this is the minimum
length at which Falush et al., (Falush et al., 2001), based on population models of mutation
flow, felt confident that clinical ascertainment of the disease was typically close to 100%.
For longer CAG lengths, the Stine et al., Lucotte et al., and Andrew et al. formulae estimate
the highest mean onset ages. These relatively mild discrepancies may actually be due to a
combination of biased observation in the shorter CAG lengths and the relative inflexibility

LAlso note in Figure 1 that, despite their exponential form, the nonlinearity of the Lucotte et al, Squitieri et al, and Andrew et al.
formulae are barely appreciable over the CAG repeat range in question.
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of the mathematical functions (linear or log-linear) in these models. Biased early onset ages
at low CAG repeat lengths have a “leverage” effect on fitting the entire line—not only
pushing down estimated age of onset at low CAG lengths, but pushing upward the estimates
for CAG lengths larger than the mean of the data (Neter et al., 1990).

The Andresen et al. and Langbehn et al. formulae show remarkable agreement for CAG
lengths of 43 or greater. Divergence of the estimates for shorter CAG lengths (with
Andresen et al. lower) is again possibly attributable to biased ascertainment in the clinical
Andresen et al. data. Somewhat similarly, the Squitieri et al. and Rubinsztein et al. formulae
also converge to very similar estimates for CAG lengths of 47 and above.

The CAG-age plot from the Gutierrez-MacDonald survival formula has a very similar shape
to that from Langbehn et al (Figure 1). However, estimated means are lower in Gutierrez-
MacDonald. Their model is based on the data from Brinkman et al. (Brinkman et al., 1997),
which was also a subset of data used for Langbehn et al. We have therefore been able to
examine the discrepancy is detail. The Langbehn et al. model is more flexible, but only
because we found that it needed to be in order to fit our entire data well. The gamma-model
approach used by Gutierrez-MacDonald does indeed fit the Brinkman et al. subset
accurately. Different ranges of CAG lengths were used in the two analyses. Gutierrez and
MacDonald used lengths of 40 to 50 (Gutierrez and Macdonald 2002) and Langbehn et al.
used a range of 41 to 56, excluding 40 because of suspected underascertainment and
including longer repeats because of additional data subsequently collected in that extended
range. Despite these differences, inconsistencies between the two models appear primarily
due to systematically lower diagnosis ages in the subset of data available to Gutierrez and
MacDonald. The reason for this is unknown. We can not distinguish among differences in
subjective thresholds of assessment of onset at the source sites, true differences in the source
populations (perhaps from unknown secondary disease modifiers), or relatively biased
sampling at these sites.

The Maat-Kievit et al. estimates, based on a Dutch population registry, show notably later
onset ages for CAG lengths of 46 or less (Figure 1). This inconsistency also appears to be
due to differences in the raw data. Possible reasons for the difference include those just
mentioned above. These possibilities were discussed in detail but unresolved with the
original report of that model (Maat-Kievit et al., 2002)

Age-Conditional Estimates of Time Until Future Onset

Thus far, we have discussed estimates based on the lifetime distribution of onset of HD. In
practice, mutation expanded research volunteers are not followed from birth. Research for
studies like PREDICT typically entails an entry requirement that an adult volunteer has not
been diagnosed with HD, despite being at risk. We assume that these volunteers have further
been tested and verified to have expanded CAG lengths. Thus they are known not to be
“immune” to the outcome in question. (Potential immunity, if present, poses another
significant obstacle to accurate modeling (Maller and Zhou 1996). This is relevant in studies
of HD family members in the absence of mutation testing.) Under these circumstances, it is
vital that we additionally account for the fact that the volunteer has reached his or her age at
research entry without yet experiencing an onset. A lifetime distribution formula yields the
probability that onset could have occurred. (Integrate over the probability distribution from
birth to current age.) Via the calculus of conditional probability, we account for the fact that
such earlier onset ages have become impossible events. We can then derive quantities such
as the expected age of future onset, given that a subject has a certain CAG length and has
not yet had onset of illness (Paulsen et al., 2008), or the probability that such a subject will
have onset within some fixed future time period. Such calculations, conditional on both
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CAG length and current age are relevant to most issues in research and genetic counseling.
These are also the types of estimates that can be checked prospectively 1

Prospective Validation

Results

Despite the above-argued strengths of survival analysis estimates, there are nevertheless
reasons to question the generalizability of formulae such as Langbehn et al. and Gutierrez
and MacDonald. The data used were unlikely to have represented the whole CAG-expanded
population. Only those electing to receive CAG tests were included. Appropriate balance of
subjects with or without onset was ultimately a matter of conjecture. Familial data was not
available that could potentially control atypical but correlated features within linked
pedigrees (due, for example, to unknown secondary genetic or environmental factors).
Further, in Langbehn et al,, it was not technically feasible to incorporate potential site-
specific effects into the form of statistical model that we chose. (The only published survival
model using such a correction is Maat-Kievit et al. (Maat-Kievit et al., 2002). All of these
factors are potential sources of significant bias. Regarding sample representation, it might be
better to argue that the data were representative of the population likely to come to attention
for clinical research and eventual HD clinical trials—both for treatment and prevention. We
would argue that generalization to even this more restricted population is of clinical and
scientific relevance. In any event, these considerations support the need to prospectively test
the validity of these formulae.

PREDICT-HD is an ongoing longitudinal observational study of volunteers known to have
the HD CAG expansion but who, at study entry, have not received a diagnosis of HD
(Paulsen et al., 2006; Paulsen et al., 2008). This international study, so far involving 1,003
participants, aims to develop a comprehensive, interrelated description of the early
neurobiological phenotype of HD. A key goal is identification and development of
quantifiable outcome measures for eventual clinical trial use. During annual follow-ups (up
to 5 years at present), 81 of the volunteers have received HD diagnoses. We judged this to
be an adequate number to conduct a validating test of key predictions derivable from the
Langbehn et al. and Gutierrez and MacDonald formulae. (None of the other formulae
reviewed here have been published with adequate detail to derive testable predictions of
short-term onset probability.)

Table 2 summarizes distribution information from the prospective PREDICT-HD data for
Langbehn et al. and Gutierrez and MacDonald estimates of 2-year onset probability. It is
helpful to bear these distributions in mind as we assess regions of relatively good and poor
fit for the validation survival models. Median onset probability from the Langbehn et al.
formula was 7.6%, whereas from the Gutierrez and MacDonald formula it was 11.9%. The
Gutierrez and MacDonald formula generally yields higher estimated onset probabilities.

As described in the methods, we checked the calibration of these formulae by fitting log-
logistic survival models to the prospective onset experience in the PREDICT-HD data. We
fit separate models for each predictive formula, and in each model the logit transform of
predicted onset probability was the only fixed—effect predictor. Table 3 lists the parameter
estimates from these prospective models. Under perfect calibration, it can be shown that
these estimates would have the following identities: intercept = log(2) ~ 0.69 and the 2-year-
logit coefficient/scale = — 1. The corresponding calibration plot of diagnosis probabilities

1The authors provide researchers with an online resource for calculating these estimates from the Langbehn et al model at
www.hdni.org:8080/gridsphere/gridsphere?cid=HDcalculator. Computer code for the calculations is also available via this site.
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would simply be a diagonal line through the intercept with slope 1 (i.e., predicted
probability = observed probability). The joint deviation of the intercept and logit coefficient/
scale parameters from their ideal values can be tested using the delta method transformations
of the parameter estimate covariance matrix from the calibration fit. These tests give Chi
Square = 7.36 (2 .d.f, p = .025) for the Langbehn et al. model and Chi Square = 20.83 (2 d.f.,
p < .0001) for the Gutierrez-MacDonald model. Thus Langbehn et al. predictions come
closer to fitting the ideal calibration diagonal, but we would reject ideal calibration for both
models at the p = .05 level.

The actual fitted relationships for each formula versus observed onset probability are plotted
in Figure 2. The x-axis range of 0 to 35% predicted probability includes nearly the whole
range of observed data (Table 2). For the Langbehn et al. formula, the mild curvature of the
fitted line indicates that observed onset rates are higher than predicted for those with the
highest formula-estimated probabilities and slightly lower than predicted for those with the
lowest predicted risk, up to about 16%. Nonetheless, the confidence intervals demonstrate
that, allowing for a reasonable degree of statistical uncertainty, the 2-year onset estimates
from Langbehn et al. are consistent with experience thus far in the PREDICT-HD study.

In Figure 2, the plot for the Gutierrez and MacDonald formula forms a convex function with
values substantially lower than the ideal fit throughout most of the observed data range. The
corresponding 95% confidence interval excluded the ideal diagonal throughout much of the
observed data range. This indicates that this formula consistently overestimates the observed
2-year probability of onset in our data. However, at the highest predicted onset probabilities
(approximately 24% or greater, the 85t percentile of predicted probabilities from this
formula), the overestimate from Gutierrez and MacDonald was less severe and the
confidence interval was consistent with the prospective data.

For fixed values on the x-axis of Figure 2, the Gutierrez and MacDonald plot has narrower
confidence intervals than the Langbehn et al. plot. This may give the impression that
Gutierrez and MacDonald could be calibrated more precisely. However, the narrower
regions are due to the recalibrated probabilities (the y-axis) having lower values for
Gutierrez and MacDonald. Roughly analogous to the situation with a simple Bernoulli or
Binomial estimate, lower estimated probabilities have lower variances, all other things
equal. The appropriate comparison is for predicted values from the two models that yield the
same probabilities on the y-axis of Figure 2. Inspection of the figure then reveals that
confidence intervals are similar for both models.

Discussion

The substantive question of this manuscript is whether observation and theory are in
reasonable agreement for estimation of age of onset. We believe that the theoretical
predictions from Langbehn et al. are usefully consistent with observations to date, and that
this empirical verification is especially necessary and important, given the additional
assumptions required to convert estimates of a lifetime distribution of onset to conditional
estimates over a relatively short period of follow-up. As we have argued in the introduction,
it is these conditional estimates that are of greatest relevance for most research applications.
Further, they will frequently be more germane to the concerns of affected individuals,
should these formulae be employed in genetic counseling.

The Gutierrez and MacDonald model also appears to provide reasonable estimates for those
at highest risk. However, estimates from this model substantially overestimated the
prospective rate of onset for 85% of the PREDICT-HD subjects at lower risk.

Am J Med Genet B Neuropsychiatr Genet. Author manuscript; available in PMC 2011 March 4.
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With regard to genetic counseling applications, we still have not shown the model to be free
of referral and observation biases such that it is applicable to the general population. As
evidence for this possibility, we note that we currently have no explanation to resolve the
later ages of diagnosis seen in the Dutch register (Maat-Kievit et al., 2002). In addition to
observation bias and variable diagnostic standards, we cannot discount the possible impact
of secondary genetic factors, which in turn may have peculiar, specific population
distributions. It has become clear that the huntingtin protein has diffuse biological
interaction with additional proteins regarding, for example, multiple gene-transcription
pathways (Cha 2007) and metabolism of the mutant huntingtin itself (Raychaudhuri et al.,
2008). Genotypic variability in these other proteins may have an important influence on the
distribution of diagnosis ages (Andresen et al., 2007a; Li et al., 2003; MacDonald et al.,
1999; Metzger et al., 2008; Rubinsztein et al., 1996). Further, there are reports claiming
possible effects from additional variation in the huntingtin protein itself, such as repeat
variation in the CAG length of the non-expanded huntingtin allele (Djousse et al., 2003,) and
CCG-repeat (Chattopadhyay et al., 2003) and A2642 polymorphisms (Vuillaume et al.,
1998) adjacent to the CAG-repeat region in the affected allele.

Our model is in agreement with prospective data on subjects volunteering for HD research
in North America, Australia, and parts of Europe. Further, we must emphasize that, while
we can predict the future with some increased precision, we are still estimating probability
distributions over which an event may occur. We can not use this information to predict any
individual’s age of onset with certainty. However this data can be used to provide overall
ranges and expected ranges of onset for any individual at a particular age.

This probabilistic prognosis has clear research utility. In the PREDICT-HD study, it serves
as an independent benchmark by which candidate clinical measures of prognosis can
initially be compared cross-sectionally. While no substitute for true longitudinal follow-up,
it allows provisional identification of preclinical markers deserving greater scrutiny (Paulsen
et al., 2008). It provides a relatively simple mechanism to incorporate both CAG length and
age into structural equation models looking for possible biological mediators of the
quantitative aspect of CAG repeat length risk. Finally, it allows the possibility for targeted
enrollment of various prognostic groups (e.g., high risk vs. low-risk for onset within the next
5 years), should such targeting be deemed scientifically appropriate.

Generally, only models based on survival analyses can provide the age-conditional
predictions appropriate for such applications. Similarly, the survival analysis paradigm is
necessary for prospective validation of any such model. The longitudinal PREDICT-HD
data have now provided a rare opportunity for such prospective validation, and our
confidence in recommending the Langbehn et al. formula is substantially reinforced by the
results.

Materials and Methods

Details of the Langbehn et al. Model

The mathematical form of the Langbehn et al model does not fall into a standard family of
parametric survival models (Cox and Oakes 1984; Lawless 2003). Nonetheless, its
derivation was straightforward. We began with three observations: (1) For all fixed CAG
length between 41 and 56, the scatter of diagnosis ages was well-described by the logistic
distribution (Kalbfleisch and Prentice 2002; Lawless 2003; Marshall and Olkin 2007). (2)
The means of those distributions were closely approximated by an exponential function of
CAG length. (3) The variances of the distributions were also described by a similar
exponential function of CAG length. A synthesis of these assumptions leads to the model:
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Let M[CAG] represent mean age of diagnosis, given CAG length. Let S[CAG] be the
corresponding standard deviation. The lifetime probability distribution of diagnosis age for a
given CAG length has a logistic density with

M[CAG]=21.54+Exp(9.556 — 0.1460 CAG)
S[CAG]=Sqrt[ 35.55+Exp(17.72 — 0.3269 CAG)]

where Exp(X) is the exponential function and Sqrt(x) is the positive square root function. As
CAG length increases, there is not only a lower mean age of diagnosis, but also a narrowing
in the standard deviation of diagnosis ages.

Details of the Gutierrez-MacDonald Model

This model was not derived from a direct parametric survival analysis of raw data, but rather
results from least squares smoothing of a family of Gamma distributions to the
nonparametric survival curves reported by Brinkman et al. (Brinkman et al., 1997). Within
the CAG range of 40 to 50, the fitted gamma distribution (with 0 as the scale parameter) was
reported as

6=48.1685 — 0.376508*CAG, a=0.051744"CAG — 1.49681.

Prospective Validation

The current report is based on 610 subjects (36% male and 64% female), all with at least one
year of follow-up in the PREDICT-HD study. Mean age at study entry was 41.4 years (s.d. =
9.75, median = 41.0, range 20-75). Mean CAG length was 42.4 (s.d. = 2.5). The median
CAG length was 42 and all but two subjects fell in the range 38-51. The other two subjects
had lengths in the 52—70 range and we did not judge them to be unduly influential outliers.
As of October 2007 (the biannual data cut used in this analysis), there were 81 subjects who
had received a HD diagnosis at some point in follow-up. However, in 12 of these cases
(discussed below), the diagnostic rating reverted to a lesser category on the next follow-up
visit.

All subjects gave informed consent for participation in PREDICT-HD, and the research
methods were approved by the Human Subjects IRB at the University of lowa and all local
site institutions.

PREDICT -HD diagnostic methods

The Modified Unified Huntington’s Disease rating Scale (UHDRS99) is a detailed
instrument widely used as a centerpiece in clinical HD research (Huntington Study Group
Investigators 1996), including the PREDICT -HD study, where it is administered at each
annual visit. The 17th item on this scale asks the clinician, after a detailed motor exam, to
what degree he or she is confident that the research subject at risk for HD displays an
unequivocal, otherwise unexplained extrapyramidal movement disorder. By standard
convention, HD “diagnosis” is defined as the point at which the most severe score of 4
(“motor abnormalities that are unequivocal signs of HD, as least 99% confidence”) is first
assigned.

Presumably, a given rater is unlikely to revise this diagnostic opinion on subsequent visits.
However, we occasionally encountered inconsistent opinions regarding diagnosis on further
follow-up. We describe statistical down-weighting of such diagnoses as part of the survival
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analysis methods below. A perhaps more substantial issue is the consistency among raters in
calibrating the point at which an unequivocal diagnosis is called, given that HD is an
insidiously developing disease. Preliminary analyses, beyond the scope of this paper,
strongly suggested some notable rater inconsistency in this matter, and we will also describe
our approximate statistical corrections for these inconsistencies shortly.

CAG length determination

Participation in PREDICT -HD requires that subjects have previously and voluntarily
undergone HD gene testing for other purposes. No one is encouraged to receive the gene test
so that they can participate in HD research, and the Huntington Study Group (HSG) makes
alternative research opportunities available to those who do not wish gene testing. At study
entry, all participants self-report the length of their CAG expansion based on previous
testing. Additionally, subjects provide blood samples used to verify the CAG length. This
verification is performed by Dr. Marcy MacDonald’s laboratory at Harvard University using
quantitative autoradiograms of amplified CAG-repeat oligonucleotides (Warner et al.,
1993). Verification data were unavailable for 101 (15.7%) of the sample used for these
analyses and self-reported CAG length was used in these cases. We justify this on the basis
of high concordance when both measures are available. (Lengths agree in 66.1% of verified
cases, are within 1 repeat in 90.4%, and within 2 repeats in 95.5% of such cases.
Disagreement directions are symmetrically distributed.)

Probability of diagnosis calculation

We discussed both the general principles of and the reasons for age- and CAG-conditional
calculations in the introduction. The analyses here depend specifically on probabilities of
diagnosis over a fixed future period of time, conditional on the fact that the subject has
already reached their current age without receiving a HD diagnosis. Mathematically, this is
expressed by a standard conditional probability identity. Let f(age| c) represent the lifetime
probability distribution (density) of diagnosis age for a given CAG length ¢. Then

a+t

f f(age|c)d age
probability of diagnosis in  years, given age « and CAG length c= Ti—_—
ff(agelc)(') age

This formula may be interpreted as follows: The probability, calculated at birth, that a
subject would receive a diagnosis at some point between their age at study entry (a) and,
say, t = 2 years in the future, is found by finding the area under the probability curve f(age|
c) between age = a and age = (a + 2). To account for the additional fact that the subject is
known to have reached age a without receiving a diagnosis, we divide this result by the total
remaining area under the lifetime probability-of-diagnosis curve, given that their current age
is a. (This represents the remaining theoretical sample space in which diagnosis may occur
and we are renormalizing our probability calculation to this sample space. Inclusion of an
infinite upper age limit may seem strange. However, we simply interpret this to mean that
we are modeling the age of diagnosis of HD, assuming that a person lives long enough to
acquire the disorder.)

Statistical analysis

The number and inter-correlation of parameters in the Langbehn et al. and Gutierrez-
MacDonald models are such that far more prospective diagnoses than are currently available
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would be needed to test the original mathematical forms to any meaningful precision.
Instead, we focus on simpler survival models that yield checks on age-conditioned
probability of diagnosis derivable from both models.

After satisfying ourselves that reasonable goodness-of-fit was achievable, we chose to
conduct this study using the standard family of parametric survival analysis distributions
available in software packages such as SAS (Allison and SAS Institute 1995; Clark and SAS
Institute 2004), S-Plus (Insightful Corporation 2007) and R (Venables et al., 2002). We fit
our models using the S-Plus “survReg” method because of the availability of random effect
(“frailty™) options for rater-specific effects on the diagnostic threshold (Therneau and
Grambsch 2000). (Identical methods are also available in R.) We chose parametric families
because the survival function for the “average” rater can be readily derived by setting the
random rater effect to 0 in the estimated model. This is needed for model validation.

The survival regression models contained a transform of the CAG and age-based a priori
probability of diagnosis, derived from either Langbehn et al. for Gutierrez-MacDonald, as
the only fixed predictor. We determined the appropriate transform for each candidate model
such that ideal validation would yield a linear plot of the a priori probability versus the
observed probabilities with intercept 0 and slope of 1. (That is, the plot would reveal the two
probabilities to be identical.) Using Aikake’s AIC criteria, we ultimately chose the log-
logistic model from among candidate models (Akaike 1973; Akaike 1992; Burnham and
Anderson 1998). For this model, the appropriate linear transformation of a priori diagnostic
probability p is the logit function, log[p/(1 — p)]. We derived estimates of the corresponding
standard errors from the covariance matrix of the survival regression parameters via the
delta method (Knight 2000; Sen and Singer 1993), and used these standard errors to
calculate normal theory point-wise confidence intervals for the logit of the fitted survival
function (Lawless 2003; Marshall and Olkin 2007). Finally, we transformed these
confidence intervals from the logit scale, where normality approximations have good
accuracy, to the probability scale.

We present models based on 2-year diagnosis probabilities because this is the median
follow-up time in the sample. Use of other time periods between 1 and 4 years yielded
essentially identical conclusions.

Rater-specific diagnostic variability was treated as a normally distributed random (frailty)
effect. This was estimated using the AIC option in S-Plus. Other possible distribution
assumptions had trivial impact on the results. This random effect accommodated our
assumption that the raters’ individual criteria for assigning diagnoses form a random
distribution with non-negligible variance around a true (or at least an average) criterion for
diagnosis. We also assume that the transition to a state that the rater would consider as
“diagnosed” occurs at an unknown point between visits. To accommodate this, we adopted
the technical assumption that diagnosis times were interval censored between visit dates
(Kalbfleisch and Prentice 2002). The time scale for modeling was measured to the day, with
0 being the date of first PREDICT-HD evaluation.

In 12 cases, subjects subsequently reverted from a diagnosis in the opinion of the
diagnostician. Among 27 instances of 2+ year follow-up after diagnosis (7.4%), there were 2
instances (7.4%) where this reversion occurred two years after the initial diagnosis. All other
diagnostic reversions occurred at the next annual follow-up. In these 12 cases, we assumed
that the initial diagnoses were possibly correct. For example, one could imagine an
underlying threshold model where severity reaches a point that a given examiner might
make the diagnosis on, say, 50% of possible visit days. We duplicated the data for each of
these subjects. Only one of the two copies was considered diagnosed, and each copy was
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given an observation weight of 0.5 (Harrell 2001). Informally, we interpret this to mean that
we assign a 50% probability of “true” diagnosis to these subjects at this point. While more
detailed measurement error models can be formulated, this partial weighting scheme is an
approximation that allows a much more straightforward presentation of results. Simulations
incorporating a diagnostic measurement error model (which we do not present) suggested
this approximation is sufficiently accurate for our purposes.
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Figure 1.
Mean Onset Age as Estimated by Various Published Formulae
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Figure 2.
Two-Year Probability of Onset, Predictions from Langbehn et al and Gutierrez and

MacDonald versus Prospective Observed Results
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Various Proposed Formulae and Source Sample Characteristics for Age of onset of HD

Table 1

Page 21

Study N | CAG Range | CAG Median Formula for Mean Diagnosis Age
Stine et al. 114 36-82 4841 83.1-0.927*CAG
Lucotte et al. 72 36-60 46 Exp(5.095-0.031*CAG)
Andrew et al. 360 38-121 44 Exp(5.3379-0.0363*CAG)
Rubinsztein et al 293 36-73 - Exp(6.15-0.053*CAG)
Squitieri et al. 319 37-97 45 Exp(5.5413-0.0421*CAG)
Andresen et al. (HD 692 36-80 - CAG < 50: Exp[4.046-(CAG-40)*0.067]
MAPS )2 CAG > 50: Exp[3.443-(CAG-49)*0.032]
Gutierrez & MacDonald3 845 40-50 43 (48.1685-0.376508*CAG)/(—1.49681+0.051744*CAG)
Langbehn et al. 2913 41-56 44 21.54 + Exp(9.556 — 0.1460 CAG)
Maat-Kievit et al. 755 38-71 45 Means estimated individually for each CAG length. N? overzlall

ormula.

Notes: See text for full references. All formulae given to published precisions. Some formulae mathematically transformed for simplicity and

uniformity of presentation.

1. . .
This is themean CAG length. The median was not reported.

2For Andresen et al. (2007a), intercepts were estimated from published graphs.

3., . . .
Gutierrez & MacDonald sample characteristics determined by cross reference to Brinkman et al (1997).
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Table 2
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Distribution of estimated 2-year onset probability (%) in Predict-HD data (N = 610): Langbehn et al. and
Gutierrez and MacDonald Formulae.

Quantile Langbehnetal | Gutierrez & MacDonald
Minimum 0.1 0.1
25 2.7 4.4
50 7.6 11.9
75 16.0 20.1
95 28.6 322
Maximum 43.9 84.3
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