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Abstract

Mucopolysaccharidosis VII (MPS VII; Sly syndrome) is an autosomal recessive disorder caused
by a deficiency of B-glucuronidase (GUS, EC 3.2.1.31; GUSB). GUS is required to degrade
glycosaminoglycans (GAGSs), including heparan sulfate (HS), dermatan sulfate (DS), and
chondroitin-4,6-sulfate (CS). Accumulation of undegraded GAGs in lysosomes of affected tissues
leads to mental retardation, short stature, hepatosplenomegaly, bone dysplasia, and hydrops fetalis.
We summarize information on the 49 unique, disease-causing mutations determined so far in the
GUS gene, including nine novel mutations (eight missense and one splice-site). This heterogeneity
in GUS gene mutations contributes to the extensive clinical variability among patients with MPS
VII. One pseudodeficiency allele, one polymorphism causing an amino acid change, and one silent
variant in the coding region are also described. Among the 103 analyzed mutant alleles, missense
mutations accounted for 78.6%; nonsense mutations, 12.6%; deletions, 5.8%; and splice-site
mutations, 2.9%. Transitional mutations at CpG dinucleotides made up 40.8% of all the described
mutations. The five most frequent mutations (accounting for 44/103 alleles) were exonic point
mutations, p.L176F, p.R357X, p.P408S, p.P415L, and p.A619 V. Genotype/phenotype correlation
was attempted by correlating the effects of certain missense mutations or enzyme activity and
stability within phenotypes. These were in turn correlated with the location of the mutation in the
tertiary structure of GUS. A total of seven murine, one feline, and one canine model of MPS VII
have been characterized for phenotype and genotype.
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Introduction

Mucopolysaccharidosis VII (Sly Syndrome; MPS VII) is an autosomal recessive disease
classified in the group of mucopoly-saccharide storage diseases. MPS VII (MIM 253220) is
characterized by the deficiency of activity of the enzyme B-glucuronidase (GUS: B-D-
glucuronoside glucuronosohydrolase, EC 3.2.1.31; GUSB; MIM 611499) [Sly et al., 1973].
It is one of a class of diseases due to a deficiency of one of the dozen enzymes involved in
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the stepwise degradation of glycosaminoglycans (GAGS). In the absence of GUS,
chondroitin sulfate (CS), dermatan sulfate (DS), and heparan sulfate (HS) are only partially
degraded and accumulate in the lysosomes of many tissues, eventually leading to cellular
and organ dysfunction. MPS VII is a rare disorder, and precise epidemiologic data are
scarce. MPS VII causes mental retardation, hepatosplenomegaly, and skeletal dysplasia.
MPS VII patients displayed a wide range of clinical variability, from the most severe type
with hydrops fetalis to a milder phenotype with later onset and normal intelligence. MPS VII
patients with the most severe phenotype have hydrops fetalis at birth and often do not
survive beyond a few months. Patients with mild manifestations of MPS VII have survived
into the fifth decade of life. MPS VII has also been reported in canine, feline, and murine
species [Haskins et al., 1984; Birkenmeier et al., 1989; Sands and Birkenmeier, 1993;
Gitzelmann et al., 1994; Gwynn et al., 1998; Ray et al., 1998; Fyfe et al., 1999; Sly et al.,
2001; Vogler et al., 2001; Tomatsu et al., 2002b, 2003]. The initially described, natural MPS
V11 mice (gus™PS/MPs) have a 1-bp deletion in exon 10 and have similar morphologic,
genetic, and biochemical characteristics to human MPS VII patients, showing degenerative
disease with progressive disability, widespread organ dysfunction, facial dysmorphism,
growth retardation, deafness, behavioral deficits, and shortened lifespan [Birkenmeier et al.,
1989; Sands and Birkenmeier, 1993]. We produced mL175F (corresponding to p.L176F, the
most common human mutation), mE536A, and mE536Q (active site nucleophile
replacements, corresponding to p.E540A and p.E540Q in humans) knock-in mice [Tomatsu
et al., 2002b]. These models reflect the various clinical phenotypes of human MPS VII (Sly
syndrome). Advanced treatments such as enzyme replacement therapy (ERT) and gene
therapy for MPS VI are currently being developed using these models. We have recently
created MPS VII mouse models tolerant to infused human GUS enzyme to test various
treatment protocols using the human gene product [Sly et al., 2001; Tomatsu et al., 2003].

Characterization of GUS protein by X-ray crystallography and homology comparisons
among several species of GUS and bacterial B-galactosidases suggested R382, E451, and
E540 asactive site residues [Jain et al., 1996; Islam et al., 1999]. These three residues of
human GUS are conserved among GUS and B-galactosidase proteins from bacterial species
[Henrissat, 1991]. E540 was identified experimentally as the active site nucleophile of the
human enzyme [Wong et al., 1998].

Isolation and characterization of the human cDNA and genomic gene made investigation of
molecular lesions in the GUS gene of MPS VII patients feasible [Oshima et al., 1987; Miller
et al., 1990; Shipley et al., 1991]. The GUS gene is located on chromosome arm 7
[Speleman et al., 1996] and spans approximately 20 kb containing 11 introns and 12 exons.
The 1,953-bp GUS mRNA encodes a 651-amino acid precursor. After cleavage of a 22—
amino acid N-terminal signal peptide and glycosylation, the 78-kDa monomer is transported
to lysosomes and cleaved in the lysosome to become the 60-kDa and 18-kDa subunits of the
mature active enzyme [Brot et al., 1978; Oshima et al., 1987].

MPS VII Mutations and their Biological Relevance

To date, 49 different mutations including nine novel mutations in the GUS gene have been
found in MPS VII patients. These mutations have been identified in 103 mutant alleles in a
total group of 56 patients by a variety of molecular techniques (92.0% of total investigated
alleles) (Table 1). The numbers for the nucleotide changes are reported in accordance with
GenBank entry NM_010368.1. Three nonpathogenic variants within the coding sequence of
the GUS gene have been also identified (one pseudodeficiency, one benign amino acid
change, one silent change) (Table 2). The DNA mutation numbering is based on cDNA
sequence. For cONA numbering, +1 corresponds to the A of the ATG translation initiation
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codon in the reference sequence. The MPS VI patients were defined as attenuated if they
did not have hydrops fetalis and severe mental retardation leading to death within a year.

The mutations are distributed along the whole gene and all types of mutations except
insertion and rearrangement were found. The total of 49 mutations includes 36 missense
mutations, six nonsense, two splice site mutations, and five deletions. The number of each
type of mutation in a total of 103 mutant alleles was 81 alleles for missense mutations
(78.6%), 13 for nonsense (12.6%), six for deletions (5.8%), and three for splice-site
mutations (2.9%). Thus, missense mutations are the most prevalent among GUS mutations.
The five most frequent mutations (Table 1) are represented by single nucleotide changes.
Together, they make up 36.9% of all described mutant alleles. The remaining 63.1% of
mutations each occur less than four times in the mutant population, indicating extensive
molecular heterogeneity in GUS mutations.

Relation Between Transitions at CpG Sites and the Methylation Status of CpG Sites in the

GUSB Gene

The variety, frequency, and location of point mutations causing human genetic disease are
highly nonrandom. One important factor contributing to the nonrandomness at the DNA
level is the local DNA sequence environment, especially CpG dinucleotides. DNA
methylation at the cytosine residue of CpG dinucleotides produces 5-methylcytosine, which
results in a C-to-T transitional change following deamination. The importance of CpG
methylation in the etiology of genetic diseases was deduced from the evidence that 10 to
60% of point mutations causing human diseases in different genes result from transitions at
CpG dinucleotides [Krawczak et al., 1998; Antonarakis et al., 2001].

There are 17 transitional mutations at CpG sites in the GUS gene. Transitions at CpG
dinucleotides account for 40.8% of described mutant alleles and 44.7% of exonic point
mutations that cause MPS VII. This percentage is higher than that compiled from many
genes described previously [Krawczak et al., 1998; Antonarakis et al., 2001] and represents
around a 30-fold higher probability of a transitional mutation at a CpG dinucleotide than
expected. These findings explain why many transitional mutations at CpG sites are
recurrent. No transitional mutation at CpG sites has been detected in exon 1. To explain this
discrepancy, we analyzed the methylation pattern of the GUS coding region by a sensitive
bisulfite-based technique [Tomatsu et al., 2002a]. We found that methylation of the 67
individual CpG cytosines within exons 2 to 12 was extensive while 24 CpG cytosines in
exon 1 were completely unmethylated. All of the 17 transitional mutations at CpG sites out
of the 42 exonic point mutations were located between exons 2 and 12, demonstrating the
correlation of nonmethylation of exon 1 with the absence of transitional mutations at CpG
sites in exon 1 and the reverse for exons 2 to 12. One pseudodeficiency allele (p.D152N)
and one benign polymorphism allele (p.P649L), both of which change an amino acid
residue, are also derived from G-to-A or C-to-T transition at CpG dinucleotides, respectively
[Tomatsu et al., 1991; Vervoort et al., 1995].

Missense Mutations

This is the most frequent group of GUS mutations, with 36 changes including eight novel
amino acid substitutions reported here (Tables 1 and 3; Fig. 1). Correlation of individual
mutation with disease severity is based on phenotype of the homozygotes, predicted change
of tertiary structure of the protein, and the observed level of enzyme activity on in vitro
expression.

Several mutations are recurrent. Among the recurrent mutations, the most prevalent are: c.
526C>T (p.L176F), ¢.1244C>T (p.P415L), ¢.1222C>T (p.P408S), ¢.1856C>T (p.A619 V),
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€.646C>T (p.R216W), ¢.1144C>T (p.R382C), and ¢.1429C>T (p.R477W), accounting for
20.4,4.9,4.9,4.9, 3.9, 3.9, and 3.9%, respectively [Tomatsu et al., 1990,1991;Fukuda et al.,
1991;Vervoort et al., 1993;Wu et al., 1994; Islam et al., 1996,1998; Vervoort et al.,
1996,1997;Schwartz et al., 2003]. The p.L176F mutation has been identified in diverse
ethnic populations while the p.P415L mutation and p.P415L/P408S double mutation, and
the p.A619 V mutation have been detected only in Mexican and Japanese populations,
respectively.

The most prevalent ¢.526C>T transitional mutation (p.L176F), originally found in two
Mennonite siblings, was identified in 21 alleles of 11 patients from American (Caucasian),
Brazilian, British, Chilean, French, Mexican, Polish, Spanish, and Turkish origins [Wu et
al., 1994; Vervoort et al., 1996; Schwartz et al., 2003] (Sly, unpublished results). A total of
10 of 11 patients were homozygous for the mutation. Those homozygous patients developed
an attenuated type of MPS VII with similar clinical symptoms and signs. The p.L176F
conservative amino acid change generates a subtle structural alteration of GUS protein [Wu
et al., 1994]. Although the cultured fibroblasts homozygous with p.L176F contained only
1.5 to 2.2% of normal GUS activity, overexpression of the p.L176F cDNA in COS cells
produced 84% as much enzyme as the wild-type control cDNA. These findings suggested
that overexpression can drive the folding reaction or the self-association of mutant
monomers to formactive tetramers [Wu et al., 1994]. The mouse model corresponding with
p.L176F was established and also showed an attenuated phenotype [Tomatsu et al., 2002b].

The p.P415L/p.P408S double point mutation and the p.A619 V mutation are of great interest
since these mutations were specific to Mexican and Japanese populations, respectively
[Tomatsu et al.,1990,1991; Islam et al., 1996,1998] (Sly, unpublished results). Both founder
mutations are associated with an attenuated phenotype. The double mutant allele containing
two C-to-T transitions resulting in p.P408S and p.P415L alterations was present in
homozygous state in one Mexican patient and in heterozygous state in four. Expression of
either of the mutations individually showed only modest effects on the properties of the
enzyme. However, expression of the doubly mutant allele resulted in markedly reduced
activity and rapid degradation in an early biosynthetic compartment (Table 4) [Islam et al.,
1996]. Neither p.P408S nor p.P415L mutation was present alone in a normal Mexican
population [Islam et al., 1998]. The p.A619 V mutation expressed 9.1% of normal cDNA in
transfected COS cells. The residual activity of these expressed mutant proteins correlated
with the attenuated phenotype for those mutations.

The X-ray structure of the homotetrameric human GUS (332,000 Mr) was determined at
2.6-A resolution [Jain et al., 1996]. The tetramer had approximate dihedral symmetry and
each protomer consisted of three structural domains with topologies similar to a jelly roll
barrel, an immunoglobulin constant domain and a triosephosphateisomerase (T1M) barrel,
respectively. Residues 179-204 formed a beta-hairpin motif similar to the putative
lysosomal targeting motif of cathepsin D. The active site of the enzyme was formed from a
large cleft at the interface of two monomers. Residues Glu 451, Tyr 504, and Glu 540 were
shown to be important for catalysis.

Using homology modeling among different species of GUS and p-galactosidase proteins, the
potential effect of missense mutations on the GUS tertiary structure was estimated and the
localization of the mutation site was correlated with the residual activity and the clinical
phenotype (Fig. 4). Among 12 missense mutations with a severe phenotype, 10 of these
mutations involve destruction of the hydrophobic core or modification of the packing
(p.S52F, p.P148S, p.E150 K, p.R216W, p.Y320S, p.H351Y, p.R435P, p.R477W, p.Y495C,
p.G572D, p.K606N, and p.R611W). On the other hand, 5 out of 7 mutations located on the
surface of the GUS protein (p.C38G, p.P415L, p.Y508C, p.R577L, and p.W627C) were
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associated with attenuated phenotypes. However, two mutations on the surface (p.S52F and
p.Y495C) were associated with severe phenotypes. These two mutations are
nonconservative amino acid changes that, despite their location on the surface, disrupt the
tertiary structure and result in a severe phenotype. On the other hand, mutations such as
p.D152N, p.L176F, p.A354 V, p.R382 H, p.P408S, p.A619 V, and p.Y626 H are located on
either the hydrophobic core or involve a salt bridge [Jain et al., 1996], and represent
conservative or semiconservative amino acid changes that lead to attenuated phenotypes.

A total of 28 mutations, one pseudodeficiency, and one benign polymorphism were analyzed
by in vitro transient overexpression. We used COS cells for 23 mutations, MPS VI
fibroblasts for three mutations, and BHK cells for two mutations (Table 4). GUS activity
was determined using 4-methylumbelliferyl-B-glucuronide as a substrate. A total of 8 out of
11 mutants associated with the severe phenotype had under 3% of normal cDNA GUS
activity (mean, 1.5%) while 13 out of 14 mutants found in patients with the attenuated
phenotype had higher than 3% of normal activity (3-112% of wild-type GUS activity; mean,
32.8%), indicating a positive correlation between the transient expression level and the
clinical phenotype [Tomatsu et al., 1990,1991;Shipley et al., 1993:Wu and Sly, 1993;
Vervoort et al., 1995 1996,1998a;Yamada et al.,1995:;Storch et al., 2003]. One patient with an
attenuated phenotype had 2.3% of wild-type activity in COS cells.

The G-to-A transition (c.454G>A) in the coding region of the GUS gene, which resulted in
an aspartic-acid-to-asparagine substitution at amino acid position 152 (p.D152N), produced
a pseudodeficiency allele that leads to greatly reduced levels of GUS activity in vitro
without apparent deleterious consequences [Vervoort et al., 1998a]. The ¢.454G>A mutation
was found initially in the pseudodeficient mother of a child with MPS VII, but it was not on
her disease-causing allele, which carried the p.L176F mutation. Screening of 100 unrelated
normal individuals for the ¢.454G>A mutation with a PCR method detected one carrier (a
rough estimate of frequency: 0.5%). Reduced GUS activity following transfection of COS
cells with the p.D152N cDNA supported the causal relationship between the p.D152N allele
and pseudodeficiency. The mutation reduced the fraction of expressed enzyme that was
secreted. Pulse-chase experiments indicated that the reduced activity in COS cells was due
to accelerated intracellular turnover of the p.D152N enzyme [Vervoort et al., 1998a]. The
presence of the p.D152N mutation in combination with certain other MPS VII mutations
might be more deleterious.

Nonsense Mutations

A total of six nonsense mutations have been reported: ¢.328C>T (p.R110X), ¢.935C>G
(p.S312X), ¢.1069C>T (p.R357X), ¢.1337G>A (p.W446X), ¢.1520G>A (p.W507X), and c.
1521G>A (p.W507X) (Table 1) [Shipley et al., 1993;Yamada et al., 1995; Vervoort et al.,
1996,1997,1998a] (Sly, unpublished results). All of them should result in synthesis of
truncated proteins without catalytic activity, predicting a severe phenotype in MPS VII. The
second most frequent p.R357X mutation derived from a C-to-T transition at a CpG site
occurred in diverse ethnic backgrounds suggesting a true recurrent mutation [Shipley et al.,
1993; Vervoort et al., 1996,1997] (Sly, unpublished results). Other nonsense mutations were
sporadic and observed in only one patient.

Splice-Site Mutations

Two splice-site mutations including one novel mutation at the donor site of intron 3 (c.
581+1G>A) were identified in the GUS gene (Table 1). One (c.1244+1G>A) is a
homozygous mutation while the other one is in a compound heterozygote. Both splicing-site
mutations in the GUS gene disrupt the consensus sequence between exon and intron. Both
mutations at the acceptor site cause complete deletion of the following exons. Skipping an
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exon would result in a frameshift and the appearance of a premature stop codon
(p.K194fsX22, p.P415fsX1) and/or absence of a GUS active catalytic site (E540).

In accordance with this prediction, a patient homozygous for the C1244+1 G-to-A splice-site
mutation developed a severe form of MPS VII and showed a complete loss of GUS activity
in fibroblasts [Vervoort et al., 1997] (Sly unpublished results).

A total of five deletions were identified so far in the GUS gene (Table 1) (c.
1081_1107del27, c.1454_1457del4, c.1616_1653del38, c.1775delT, and c.

1874 1875delGA). Four deletions cause frameshifts (c.1454_1457del4, c.1616_1653del38,
€.1775delT, and ¢.1874_1875delGA) and the appearance of premature truncation codons
(p-S485fsX13, p.S539RfsX7, p.F5925fsX2, and p.R625IfsX6, respectively), probably
leading to nonsense-mediated decay of the mRNA and a complete loss of GUS activity in
the affected cells. Patients homozygous for the ¢.1081_1107del27 in-frame mutation
manifested a severe form of MPS VII [Vervoort et al., 1997]. The mechanism of the c.
1616_1653del38 deletion was unique. The patient was a compound heterozygote of
p.W507X and a 38-bp deletion at position 1616—1653 in exon 10. The 38-bp deletion was
caused by a C-to-T transition in exon 10 that generates a new, premature 5’ splice-site. The
resulting nucleotide sequence AGA/GTGAGT has a close homology to the 5’ splice
consensus sequence (A or C) AG/GT (A or G) AGT. This alteration interferes with normal
splicing of the GUS gene transcript by forming a novel 5’ splice-site.

Slipped mispairing can in principle account for the generation of 4 out of 5 deletions
because of a run of identical bases or direct repeat (2 bp or more) (c.1081_1107del27, c.
1454 _1457del4, ¢.1775delT, and c.1874_1875delGA).

Vervoort et al. [1998b] reported a patient with an attenuated phenotype whose paternal allele
(IVS8+0.6kbdel TC) (Table 3) was claimed to create a new donor splice-site that activated a
cryptic exon in an Alu-element of the GUS gene and led to skipping of exon 9. This allele
confers the alternate phenotype, since the maternal allele (p.W446X) is a null allele (Table
1).

No insertions were identified so far in the GUS gene. The GUS gene spans approximately
20 kb, in addition to the 1-kb promoterregion located at 7q11.21, and contains 37 Alu
repeats [Miller et al., 1990; Shipley et al., 1991; Speleman et al., 1996]. Neither large
deletions nor rearrangement were identified. Alu repeats represented around 45% of the
entire GUS gene (8.8 kb of 19.5 kb in total length), showing an extremely high percentage
of Alu elements compared with the human genome (representing 6-12%). In addition, over
20 pseudogenes of GUS gene were observed in the entire human genome. Nevertheless, no
large rearrangement has been reported so far.

Polymorphisms

A total of two benign genetic variants in the coding regions of the GUS gene have been
reported (Table 2) [Tomatsu et al., 1991;Wu et al., 1994; Vervoort et al., 1995,1998a]. One
polymorphism changing an amino acid residue was identified in the normal population (c.
1946C>T, p.P649L). An in vitro expression study showed that this polymorphism provides
88.3% of normal GUS cDNA activity.

Relations Among Genotypes and Phenotypes

The genotype/phenotype correlation for each of 38 single-nucleotide alterations has been
examined based upon the following four factors (Tables 1, 3, and 4): 1) the phenotype of the
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patient homozygous for the mutation; 2) the level of activity by in vitro expression study; 3)
prediction of the likely change in the protein structure; and 4) the presence of a second allele
permitting residual enzyme activity, which would be dominant over an allele permitting no
activity. In all, 15 mutations were associated with a severe phenotype, 14 mutations were
associated with an attenuated phenotype, and one with a normal phenotype
(pseudodeficiency allele). The other seven mutations were not defined by the current
information. A total of 5 out of 6 nonsense mutations and 4 out of 5 deletions were
associated with severe phenotypes. One splicing site mutation was associated with a severe
phenotype and the other was not defined.

Clinical and Diagnostic Relevance

Clinical diagnosis is based on findings typical of an MPS disorder, including developmental
delay and mental retardation, dysostosis multiplex, hepatosplenomegaly, and short stature.
Biochemical diagnosis is based on demonstrating a deficiency of GUS in serum, leukocyte
lysates, or cultured fibroblasts [Glaser and Sly, 1973]. This assay is included in the
diagnostic panel of most biochemical genetics laboratories. Genetests.org lists 14
laboratories that offer diagnostic testing, three of which also offer sequence analysis of the
coding region. Molecular diagnosis and mutational analysis is possible by direct sequencing
of mRNA following RT-PCR [Tomatsu et al., 1991; Shipley et al., 1993; Vervoort et al.,
1996]. Genomic sequencing is more challenging because of multiple unprocessed
pseudogenes, but Shipley et al. [1993] described conditions of amplifying and characterizing
genomic sequences of the true GUS gene, despite the background of related sequences.

The analysis of GUS mutations in MPS VII reveals considerable molecular heterogeneity,
reflecting the diversity of clinical phenotypes. A total of 5 out of 49 unique mutations
occurred over five times, accounting for 36.9% of all the analyzed mutant alleles. The most
prevalent mutation, p.L176F, accounted for 20.4% of the analyzed mutant alleles. For
diagnosis and prognosis in MPS V11, molecular testing should follow direct enzyme assay in
leukocytes and cultured skin fibroblasts. The patients’ clinical severity generally can be
correlated with their genotype, the predicted effect of missense mutations on the tertiary
structure of the enzyme, and the residual activity by in vitro expression study. Many of the
reported patients had the severe form of MPS VII. These patients mainly demonstrate
frameshifts or other mutations resulting in premature truncations, as well as deletions and
splicing-site mutations. Other severe patients had missense mutations affecting conserved
amino acid residues in the hydrophobic core or active site region for maintaining the tertiary
structure of the protein.

Patients who are compound heterozygotes, having a combination of an attenuated and a
severe mutation, manifest clinically milder symptoms than patients homozygous for a severe
mutation. It appears that only a small percentage of normal GUS activity provided by one
allele (2-3%) can protect against severe phenotypes. The protective effect provided by small
amounts of enzyme activity from enzyme replacement and/or gene therapies augers well for
effective treatments for MPS VII in the future.

MPS VII Models

Seven murine, one feline, and one canine model of MPS VII are now available to
experimentally test pharmaceutical agents, bone marrow transplantation, ERT, and gene
therapy (Table 5). These models result from missense mutations or deletions in the GUS
gene, which are responsible for over 95% of mutant human alleles. These models should
greatly contribute to evaluating the effectiveness of treatment.
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http://Genetests.org

1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Tomatsu et al.

Page 8

The original natural MPS VII murine model, gus™PS/™Ps showed a 1-bp deletion (c.
1470delC), which created a frameshift mutation in exon 10. This frameshift mutation
introduces a premature stop codon at codon 497 in exon 10 (mP490RfsX8) and explains the
molecular, biochemical, and pathological abnormalities associated with the gus™Ps/mps
phenotype [Birkenmeier et al., 1989; Sands and Birkenmeier, 1993]. The second natural
MPS VII mouse model, gus™Ps2¥mps2] s deficient in GUS because of insertion of an
intracisternal A particle element into intron 8 of the gus structural gene. Mice with the
gusMPs2I/mps2] genotype had <1% of normal GUS activity and secondary elevations of other
lysosomal enzymes. The phenotype includes shortened life-span, dysmorphic features, and
skeletal dysplasia. Lysosomal storage of GAGs is widespread and affects the brain, skeleton,
eye, ear, heart valves, aorta, and the fixed tissue macrophage system. Thus the phenotypic
and pathologic alterations in gus™PS2Y/mPs2) mice are similar to those in patients with MPS
V11 although milder than those in gus™PS/™PS mice [Gwynn et al., 1998; Vogler et al., 2001].

To enhance the value of the gus™PS/MPS model for enzyme and gene therapy using the human
GUS gene product, we produced a transgenic mouse expressing the human GUS cDNA with
an amino acid substitution at the active site nucleophile (p.E540A) and bred it onto the MPS
V11 (gus™Ps/mPs) hackground [Sly et al., 2001]. The mutant mice expressed the inactive
human GUS from the mutant human transgene. We also used homologous recombination to
simultaneously introduce a human cDNA transgene expressing inactive human GUS
(p.E540A) into intron 9 of the murine Gus gene and a targeted active site mutation
(mE536A) into the adjacent exon 10 [Tomatsu et al., 2003]. These two models retained the
clinical, morphological, biochemical, and histopathological characteristics of the original
MPS VII (gusTPS'MPS) mouse. However, they were now tolerant to immune challenge with
human GUS. These tolerant MPS VII mouse models became useful for preclinical trials
evaluating the effectiveness of enzyme and/or gene therapy with the human gene products
likely to be administered to human patients with MPS VII [Vogler et al., 2001].

To study missense mutant models of murine MPS V11 with phenotypes of varying severity,
we used targeted mutagenesis to produce mE536A and mE536Q, corresponding to active-
site nucleophile replacements p.E540A and p.E540Q in human GUS, and also mL175F,
corresponding to the most common human mutation, p.L176F. The mE536A mouse had no
GUS activity in any tissue and displayed a severe phenotype like that of the originally
described MPS V11 mice carrying a deletion mutation (qus™P$'™PS). The mE536Q and
mL175F mice had low levels of residual activity and milder phenotypes [Tomatsu et al.,
2002b].

In the MPS VII feline model, there was a G-to-A transition in the affected feline cDNA (c.
1074G>A) that predicted a fE351 K substitution, and eliminated GUS enzyme activity in
expression studies. Multiple species comparisons with the crystal structure of human GUS
indicated that E351 is a highly conserved residue most likely essential in maintenance of the
enzyme’s conformation [Fyfe et al., 1999]. An affected male cat 12—-14 weeks old had
walking difficulties and an enlarged abdomen. Other findings included facial dysmorphism,
plump paws, corneal clouding, granulation of neutrophils, vacuolated lymphocytes, and a
positive urine test for sulfated GAGs. Thus, the MPS VII cat had the phenotypic
characteristics of human MPS VII patients [Gitzelmann et al., 1994].

In the MPS VII dog model, the G-to-A change at nucleotide position 559 in the affected
canine cDNA sequence (c.559G>A) causes a cR166 H mutation. Introduction of the G-to-A
substitution at position 559 into the normal canine GUS cDNA nearly eliminated the GUS
enzyme activity expressed in mammalian cells [Haskins et al., 1984,1991;Ray et al., 1998].
The same cR166 H mutation was found in another German shepherd dog [Silverstein et al.,
2004]. This 12-week-old male German shepherd dog was evaluated because of a 3-week
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history of a progressive inability to ambulate. Clinical and laboratory findings included
skeletal deformities, corneal cloudiness, cytoplasmic granules in the neutrophils and
lymphocytes of blood and CSF, and GAGs in a urine sample.

Future Prospects

Improvements in diagnostic techniques should allow identification of uncharacterized
mutations in MPS VII patients (8% of mutant alleles are undefined). To date, most
investigations have been carried out by PCR-mediated strategies and subsequent analysis by
direct sequencing. Large and complex rearrangements, deletions, inversions, or mutations in
the intronic sequence of the GUS gene escape detection by the published PCR-based
strategies. These mutations might be detected by array comparative genomic hybridization
[Lu et al., 2007].

Defining the genotype/phenotype relationship remains one of the most challenging tasks for
MPS VII professionals since the clinical manifestations of MPS VI patients are so variable.
Still needed are long-term clinical observations as well as attempts to characterize the
modifying factors that influence phenotype, posttranslational processing and stabilization of
the mutant enzymes, and the efficient catabolism of DS, HS, and CS.

Longitudinal studies require a larger number of cases of the same age and genotype to
clarify the relationship between genotype, the chemical phenotype in blood and urine DS,
HS, and CS levels, and the clinical course. Additionally, investigations on the relationship
between the GUS residual activity in MPS VII patients and accumulation of each GAG,
particularly in bone and brain, will provide more precise information about the mechanisms
causing systemic bone dysplasia and central nervous system (CNS) involvement in each
mutant form, and may provide a rational basis for more efficient treatment.

Finally, recent development of identification of each GAG by tandem mass spectrometry
will facilitate screening for MPS VII and monitoring therapy [Oguma et al., 2007]. These
techniques will also enhance prospects for newborn screening for lysosomal storage
disorders (LSDs), the importance of which is emphasized by the correlation between early
treatment and favorable response to therapy.
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Figure 1.

Location of GUS gene mutations in MPS VII patients. The exons are presented by open
boxes and the untranslated regions are filled boxes. Clinical phenotypes associated with
missense or nonsense mutations are described.
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Figure 2.

Multiple amino acid alignment of GUS from human (Hosa-GUS), chimpanzee (Patr-GUS),
cow (Bota-GUS), pig (Susc-GUS), dog (Cafa-GUS), mouse (Mumu-GUS), rat (Rano-GUS),
chicken (Gaga-GUS), frog (Xetr-GUS), fruit fly (Drme-GUS), mosquito (Anga-GUS),
honey bee (Apme-GUS), red flour beetle (Trca-GUS), nematode (Cael-GUS), gram-positive
bacteria (Arsp.-GUS), enterobacteria (Esco-GUS), and fungi (Scsp.-GUS), along with
bacterial B-galactosidase (Esco-p-Gal). The arrow indicates the active site (residue E540) of
human GUS. GenBank reference sequences: Homo sapiens, NM_010368.1, NP_034498.1;
Pan troglodytes, XP_001138789.1; Macaca mulata, XM_001087699; Mus musculus,
NM_010368.1, NP_034498.1; Rattus norvegicus, NP_058711; Felis catus,
NM_001009310.1, NP_001009310.1; Canis familiaris, NM_001003191.1,
NP_001003191.1; Bos taurus, NM_001083436.1; Sus scrofa, AK232674.1; Gallus gallus,
NP_001034405; Xenopus tropicalis, CT030620; Danio renio, XM_695030; Drosophila
melanogaster, NP_001014535.1; Anopheles gambiae, XP_320660.2; Apis mellifera,
XM_393305; Tribolium castaneum, XM_964260.1; Caenorhabditis elegans, NP_493548.1,;
Arthrobacter sp., RP10, AAV91790; Scopulariopsis sp., RP38.3, AAV91788; Escherichia
coli, AAB30197.
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